首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The recent characterization of excitatory and inhibitory synaptic receptive fields in rat auditory cortex laid the basis for further investigation of the roles of synaptic excitation and inhibition in cortical computation and plasticity. The mouse is an increasingly important model system because of the wide range of genetic tools available for it. Here we present the first in vivo whole-cell voltage-clamp measurements of synaptic excitation and inhibition in the mouse cortex. We find that a substantial population of auditory cortical neurons receives balanced synaptic excitation and inhibition, whose amplitude ratios and relative time courses remain approximately constant across tone frequency. We conclude that the synaptic mechanisms underlying tone-evoked auditory cortical responses in mice closely resemble those in rats, supporting the mouse as a suitable model for synaptic processing in auditory cortex.  相似文献   

3.
小鼠小脑皮质的组织发生   总被引:5,自引:3,他引:2  
目的:探讨小鼠小脑皮质的组织发生过程。方法:应用光镜和电镜技术对胚胎和生后小脑皮质进行形态学观察,对各层厚度和细胞密度进行测量。结果:胚胎12 d(E12)小脑原基有室管膜层、套层和边缘层构成,约出生当日(P0)出现外颗粒层、分子层、Purkinje细胞层和内颗粒层。外颗粒层P6/7达最厚,至P20消失。P0至P30内颗粒层细胞逐步分化发育成熟,Purkinje细胞树突树逐渐形成,约P7时Purkinje细胞排列成单层。结论:E12至P0片层化小脑主要经历了细胞增殖、分化与迁移;P0至P30片层化结构逐渐发育成熟,外颗粒层消亡以细胞迁移和凋亡为主,其他各层细胞主要经历了分化发育与凋亡。  相似文献   

4.
Following hyperpolarizing inputs, many neurons respond with an increase in firing rate, a phenomenon known as rebound excitation. Rebound excitation has been proposed as a mechanism to encode and process inhibitory signals and transfer them to target structures. Activation of low-voltage-activated T-type calcium channels and the ensuing low-threshold calcium spikes is one of the mechanisms proposed to support rebound excitation. However, there is still not enough evidence that the hyperpolarization provided by inhibitory inputs, particularly those dependent on chloride ions, is adequate to deinactivate a sufficient number of T-type calcium channels to drive rebound excitation on return to baseline. Here, this issue was investigated in the deep cerebellar nuclear neurons (DCNs), which receive the output of the cerebellar cortex conveyed exclusively by the inhibitory Purkinje cells and are also known to display rebound excitation. Using cerebellar slices and whole cell recordings of large DCNs, we show that a novel piperidine-based compound that selectively antagonizes T-type calcium channel activity, 3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydropyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2), suppressed rebound excitation elicited by current injection as well as by synaptic inhibition, whereas other electrophysiological properties of large DCNs were unaltered. Furthermore, TTA-P2 suppressed transient high-frequency rebounds found in DCNs with low-threshold spikes as well as the slow rebounds present in DCNs without low-threshold spikes. These findings demonstrate that chloride-dependent synaptic inhibition effectively triggers T-type calcium channel-mediated rebounds and that the latter channels may support slow rebound excitation in neurons without low-threshold spikes.  相似文献   

5.
Cerebellar granule cell to Purkinje cell synapses have been reported to show plasticity when stimulating the parallel fibres, but not when granule cell axons are stimulated in the granular layer. The latter absence of plasticity has been attributed either to the synapses made by ascending granule cell axons lacking some feature needed to evoke plasticity, such as metabotropic glutamate receptors, or to spillover of glutamate between adjacent active synapses being essential for plasticity to occur and having a greater effect for parallel fibre stimulation than for granular layer stimulation. Here we show that both long-term depression (LTD) and endocannabinoid plasticity can depend on interaction between adjacent synapses. These results focus attention on the need to characterize the spatial pattern of parallel fibre activity evoked by physiological stimuli, in order to assess the conditions under which synaptic plasticity will occur in vivo .  相似文献   

6.
Many types of neurons can release endocannabinoids that act as retrograde signals to inhibit neurotransmitter release from presynaptic terminals. Little is known, however, about the properties or role of such inhibition under physiological conditions. Here we report that brief bursts of presynaptic activity evoked endocannabinoid release, which strongly inhibited parallel fiber-to-Purkinje cell synapses in rat cerebellar slices. This retrograde inhibition was triggered by activation of either postsynaptic metabotropic or ionotropic glutamate receptors and was restricted to synapses activated with high-frequency bursts. Thus, endocannabinoids allow neurons to inhibit specific synaptic inputs in response to a burst, thereby dynamically fine-tuning the properties of synaptic integration.  相似文献   

7.
The tottering mouse is an autosomal recessive disorder involving a missense mutation in the gene encoding P/Q-type voltage-gated Ca2+ channels. The tottering mouse has a characteristic phenotype consisting of transient attacks of dystonia triggered by stress, caffeine, or ethanol. The neural events underlying these episodes of dystonia are unknown. Flavoprotein autofluorescence optical imaging revealed transient, low-frequency oscillations in the cerebellar cortex of anesthetized and awake tottering mice but not in wild-type mice. Analysis of the frequencies, spatial extent, and power were used to characterize the oscillations. In anesthetized mice, the dominant frequencies of the oscillations are between 0.039 and 0.078 Hz. The spontaneous oscillations in the tottering mouse organize into high power domains that propagate to neighboring cerebellar cortical regions. In the tottering mouse, the spontaneous firing of 83% (73/88) of cerebellar cortical neurons exhibit oscillations at the same low frequencies. The oscillations are reduced by removing extracellular Ca2+ and blocking L-type Ca2+ channels. The oscillations are likely generated intrinsically in the cerebellar cortex because they are not affected by blocking AMPA receptors or by electrical stimulation of the parallel fiber-Purkinje cell circuit. Furthermore, local application of an L-type Ca2+ agonist in the tottering mouse generates oscillations with similar properties. The beam-like response evoked by parallel fiber stimulation is reduced in the tottering mouse. In the awake tottering mouse, transcranial flavoprotein imaging revealed low-frequency oscillations that are accentuated during caffeine-induced attacks of dystonia. During dystonia, oscillations are also present in the face and hindlimb electromyographic (EMG) activity that become significantly coherent with the oscillations in the cerebellar cortex. These low-frequency oscillations and associated cerebellar cortical dysfunction demonstrate a novel abnormality in the tottering mouse. These oscillations are hypothesized to be involved in the episodic movement disorder in this mouse model of episodic ataxia type 2.  相似文献   

8.
9.
Summary Structural components in the synaptic cleft were examined in cerebellar excitatory synapses by conventional electron microscopy and by rapid freezing followed by freeze-substitution or deep etching. Two transverse components and one parallel element were identified in the clefts of rapidly frozen and freeze-substituted synapses: (i) bridging fibrils, 4–6 nm in diameter, that span the cleft; (ii) columnar pegs, 4–6 nm wide and 8–15 nm high, projecting from the postsynaptic surface; and (iii) intervening fine fibrils running parallel to the apposed synaptic membranes. These were more clearly visible in deep-etched synapses, although the postsynaptic pegs were difficult to distinguish from intramembrane particles in the cross-fractured postsynaptic membranes. Deep etching also revealed other fibrils on the cytoplasmic surface of the postsynaptic membrane. These appear to contact the membrane surface or the intramembrane particles. Freeze-substituted materials also displayed the fibrillar components in the postsynaptic dense fuzz, but failed to display the presynaptic dense projections typically observed in thin sections or deep-etched replicas of the conventionally fixed materials. The bridging fibrils are likely to play a mechanical role in holding the synapse together, while the short pegs may be integral parts of the receptor molecules.  相似文献   

10.
11.
Glutamate is the predominant excitatory neurotransmitter in the vertebrate CNS. Ionotropic glutamate receptors mediate fast excitatory actions whereas metabotropic glutamate receptors (mGluRs) mediate a variety of slower effects. For example, mGluRs can mediate presynaptic inhibition, postsynaptic excitation, or, more rarely, postsynaptic inhibition. We previously described an unusually slow form of postsynaptic inhibition in one class of projection neuron in the song-control nucleus HVc of the songbird forebrain. These neurons, which participate in a circuit that is essential for vocal learning, exhibit an inhibitory postsynaptic potential (IPSP) that lasts several seconds. Only a portion of this slow IPSP is mediated by GABA(B) receptors. Since these cells are strongly hyperpolarized by agonists of mGluRs, we used intracellular recording from brain slices to investigate the mechanism of this hyperpolarization and to determine whether mGluRs contribute to the slow synaptic inhibition. We report that mGluRs hyperpolarize these HVc neurons by activating G protein-coupled, inwardly-rectifying potassium (GIRK) channels. MGluR antagonists blocked this response and the slow synaptic inhibition. Thus, glutamate can combine with GABA to mediate slow synaptic inhibition by activating GIRK channels in the CNS.  相似文献   

12.
N Garin  G Escher 《Neuroscience》2001,105(2):431-441
Using confocal laser scanning microscopy and immunohistochemistry, this study shows the complete morphological development of GABAergic synaptic contacts between Purkinje cells and neurons of the deep cerebellar nuclei of the mouse. Firstly, presynaptic varicosities visualized with antibodies against synaptophysin, synapsin or glutamic acid decarboxylase, were detected when the postsynaptic GABA(A) receptors were not yet aggregated in the membrane but had a diffuse cytoplasmic distribution, which indicated a lead in maturation of presynaptic terminals over target cells. Secondly, receptor aggregates developed suddenly after an initial week of diffuse expression and these clusters matured into more numerous and larger synaptic aggregates. During this postsynaptic maturation, the presynaptic varicosities develop into numerous and well-defined spots. As soon as both pre- and postsynaptic clusters were detectable, these sites are always colocalized. We therefore consider the aggregation of postsynaptic receptor during development as a landmark of synapse formation. Our observations are consistent with a developmental model in which the presynaptic neuron differentiates its axon before the target neuron expresses the mature form of its receptors on the membrane. The presynaptic neuron can therefore instruct the target neuron about the distribution and aggregation of the postsynaptic receptors at the synapse.  相似文献   

13.
目的探讨小鼠小脑皮质发育过程中放射状胶质细胞的分化。方法应用免疫荧光及5-溴脱氧尿嘧啶核苷(BrdU)检测技术,标记小鼠胚胎8d至生后180d小脑(57例,分为19组,每组3只)的神经干细胞、放射状胶质细胞、普肯耶细胞及颗粒细胞。结果放射状胶质细胞于胚胎13d的神经上皮出现,尔后该细胞分化为各种神经元和贝格曼胶质细胞,并在小脑皮质层状结构的形成中起着重要作用。结论放射状胶质细胞来源于神经上皮细胞,是神经细胞和神经胶质细胞的前体细胞。在小脑皮质的发育过程中,放射状胶质细胞能分化为普肯耶细胞和颗粒细胞,并为神经细胞的迁移提供路径和支架。  相似文献   

14.
Recent studies have indicated that impaired neural circuitry in the prefrontal cortex is a prominent feature of the neuropathology of schizophrenia. Clozapine is one of the most effective antipsychotic drugs used for this debilitating disease. Despite its effectiveness, the mechanism by which clozapine acts on prefrontal cortical circuitry remains poorly understood. In this study, in vitro multiple whole cell recordings were performed in slices of the ferret prefrontal cortex. Clozapine, which effectively inhibited the spontaneous synchronized network activities in the prefrontal neurons, achieved the suppressive effect by decreasing the recurrent excitation among pyramidal neurons and by enhancing the inhibitory inputs onto pyramidal cells through a likely network mechanism. Indeed, under the condition of disinhibition, the depressing effects were reversed and clozapine enhanced the recurrent excitation. These results suggest that the therapeutic actions of clozapine in alleviating the positive symptoms of schizophrenia are achieved, at least partially, through the readjustment of synaptic balance between the excitation and inhibition in the prefrontal cortical circuitry.  相似文献   

15.
 Adenoviral vectors have recently been recognized as highly efficient systems for gene delivery into various tissues. We show that a reporter gene introduced into nerve terminals via an adenovirus can be used to label cell bodies retrogradely and then label the axons and nerve terminals of the infected neurons anterogradely in vivo. We injected a replication-defective recombinant adenovirus carrying the E. coli β-galactosidase gene (lacZ) into the cerebellar cortex of the adult mouse. The first evidence of retrograde labeling was obtained at 2 days after the infection when neurons in the pontine nuclei and the reticulotegmental nucleus of the pons weakly expressed β-galactosidase, and at 3 days post-infection when neurons in all precerebellar nuclei, known to project to the cerebellar cortex, were strongly stained with X-gal in a Golgi-like manner. Anterograde transport of lacZ gene products was recognized at 3 days post-infection; β-galactosidase-positive axons arose from somata or dendrites of retrogradely labeled neurons, passed through the middle or inferior cerebellar peduncles, and entered the cerebellum. Anterogradely labeled mossy terminals were recognized on the injection side at 8 days post-infection, and on the contralateral side at 14 days post-infection. β-Galactosidase expression persisted for up to two months, with a decrease in the total number of labeled cells over time. We could not find any signs of anterograde or retrograde transsynaptic labeling in the nuclei synaptically linked to the cerebellar cortex at any time point after injection up to 58 days post-infection. Accepted: 2 June 1997  相似文献   

16.
Purkinje cell (PC) dendrites are made by a proximal dendritic domain, which is provided with scattered clusters of spines innervated by a single climbing fiber (CF) and by a distal domain with a high density of spines innervated by parallel fibers (PFs). Following block of electrical activity a spine increase occurs in the proximal domain and the new spines are innervated by the PFs while the number of synaptic contacts formed by the CF is reduced. Also the GABAergic input expands its territory of innervation on the proximal domain, which undergoes a profound restructuring of the glutamate and GABA receptors. Excitatory-like postsynaptic assemblies appear not only on the new spines, but also on the smooth region of the dendrite and both of them may be innervated by GABAergic terminals. In this case GABA receptors coexist with the glutamate receptors leading to the formation of hybrid synapses. In contrast, PF synapses contain solely glutamate receptors. Thus, the expression of glutamate receptors appears to be an intrinsic property of the PC, while the expression of the GABA receptors is induced by the presence of GABAergic terminals. The data highlight an important feature of the CF input; its electrical activity, in addition to inducing a powerful phasic excitation and a tonic inhibition, controls the finer architecture of the cerebellar cortex.  相似文献   

17.
Executive system function, mediated largely by the prefrontal cortex (PFC), often declines significantly with normal aging in humans and non-human primates. The neural substrates of this decline are unknown, but age-related changes in the structural properties of PFC neurons could lead to altered synaptic signaling and ultimately to PFC dysfunction. The present study addressed this issue using whole-cell patch clamp assessment of excitatory and inhibitory postsynaptic currents (PSCs) in layer 2/3 pyramidal cells in in vitro slices of the PFC from behaviorally characterized young (< or =12 years old) and aged (> or =19 years old) rhesus monkeys. Behaviorally, aged monkeys were significantly impaired in performance on memory and executive system function tasks. Physiologically, the frequency of spontaneous glutamate receptor-mediated excitatory PSCs was significantly reduced in cells from aged monkeys, while the frequency of spontaneous GABAA receptor-mediated inhibitory PSCs was significantly increased. In contrast, there was no effect of age on the frequency, amplitude, rise time or decay time of action potential-independent miniature excitatory and inhibitory PSCs. The observed change in excitatory-inhibitory synaptic balance likely leads to significantly altered signaling properties of layer 2/3 pyramidal cells in the PFC with age.  相似文献   

18.
The involvement of GABA mediated neurotransmission in the central control of respiration was investigated by administration of the specific GABAA receptor agonist muscimol and the specific GABAA receptor antagonist biculline into the fourth cerebral ventricle of the rabbit. Cycle-triggered averaging of the phrenic nerve activity (PNA) was used to quantify drug-induced changes of the central respiratory pattern. Muscimol reduced the peak amplitude of PNA and increased the duration of the respiratory phases. High amounts of muscimol led to a long-lasting but reversible central apnea. Bicuculline very effectively blocked the effects of externally applied muscimol. Blockade of intrinsically active GABAergic neurotransmission by bicuculline resulted in a multitude of effects. Peak amplitude of PNA increased whereas the duration of both inspiration and expiration decreased. In this respect, effects of bicuculline and muscimol were complementary. Bicuculline reduced the slope of the inspiratory ramp, increased postinspiratory activity and induced an augmenting type of discharge activity in the last part of expiration resulting in a smooth transition between expiration and inspiration. In some cases the respiratory modulation was completely lost and PNA became perfectly tonic. This 'apneustic' type of respiratory pattern could be transformed into rhythmic breathing by increasing the respiratory drive. We conclude that neurotransmission via GABAA receptors is important for the maintenance of respiratory rhythm as well as the generation of normal respiratory pattern.  相似文献   

19.
Summary Visual evoked potentials (VEPs) were recorded from cat cortex (area 17) before, during and after application of the GABA blocker bicuculline (iontophoretic or topical). The stimuli comprised a test sinusoidal grating, and a mask grating oriented either parallel or orthogonal to the test. Both test and mask alternated in contrast at different temporal frequencies. VEPs were averaged in synchrony with the test contrast reversal, so the mask did not contribute directly to the averaged VEP response. Before application of bicuculline, both parallel and orthogonal masks attenuated the amplitude of VEPs and changed the phase response, but in different ways. Orthogonal masks lowered the slope of the contrast response curve without affecting extrapolated threshold, while parallel masks caused the curve to shift to the right. Orthogonal masks increased the phase advance, while parallel masks eliminated it. During application of bicuculline, neither parallel nor the orthogonal masks attenuated VEP amplitudes. The results suggest that although the mechanisms for the action of parallel and orthogonal masks are clearly distinct, both are mediated by the GABA-ergic inhibitory system. Given this evidence, measurement of VEP contrast response curves may provide a simple non-invasive technique for monitoring visual inhibition in humans.  相似文献   

20.
The involvement of GABA mediated neurotransmission in the central control of respiration was investigated by administration of the specific GABA, receptor agonist muscimol and the specific GABA, receptor antagonist bicuculline into the fourth cerebral ventricle of the rabbit. Cycle-triggered averaging of the phrenic nerve activity (PNA) was used to quantify drug-induced changes of the central respiratory pattern. Muscimol reduced the peak amplitude of PNA and increased the duration of the respiratory phases. High amounts of muscimol led to a long-lasting but reversible central apnea. Bicuculline very effectively blocked the effects of externally applied muscimol. Blockade of intrinsically active GABAergic neurotransmission by bicuculline resulted in a multitude of effects. Peak amplitude of PNA increased whereas the duration of both inspiration and expiration decreased. In this respect, effects of bicuculline and muscimol were complementary. Bicuculline reduced the slope of the inspiratory ramp, increased postinspiratory activity and induced an augmenting type of discharge activity in the last part of expiration resulting in a smooth transition between expiration and inspiration. In some cases the respiratory modulation was completely lost and PNA became perfectly tonic. This ‘apneustic’ type of respiratory pattern could be transformed into rhythmic breathing by increasing the respiratory drive. We conclude that neurotransmission via GABA, receptors is important for the maintenance of respiratory rhythm as well as the generation of normal respiratory pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号