首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
目的 以壳聚糖为载体制备红景天苷壳聚糖纳米粒(SA-CS-NPs),并考察其体外释药特性。方法 采用溶剂扩散-离子交联法制备SA-CS-NPs,考察其粒径分布和形态,并对SA-CS-NPs的包封率、载药量及其体外释药特性进行研究。结果 所制得的SA-CS-NPs呈球形或类球形,平均粒径为(247.5±23.8)nm(n=3),Zeta电位为(23.4±2.7)mV(n=3),多分散指数(PDI)为0.265±0.071(n=3);平均包封率为(70.15±1.60)%,平均载药量为(14.03±0.32)%(n=3);24 h累积释放率达85%以上。结论 溶剂扩散-离子交联法制备SA-CS-NPs具有合适的粒径和包封率,并能达到缓释效果。  相似文献   

2.
目的 研究甘草次酸(GA)-丹参酮IIA(Tan IIA)复方脂质体(GT-Lip)的制备工艺。方法 以大豆卵磷脂(SPC)和胆固醇(Ch)为膜材,薄膜分散探头超声法制备GT-Lip。通过单因素考察确定水合温度和探头超声功率,正交设计法优化处方工艺;低速离心法测定脂质体中GA与Tan IIA包封率,动态光散射粒径仪测定脂质体粒径与Zeta电位,透射电镜测定脂质体形态。结果 优化处方工艺为SPC-Ch质量比6∶1,SPC-Tan IIA物质的量之比30∶1,SPC-GA物质的量之比24∶1,水合温度为30 ℃,探头超声条件为380 W超声5 min;制备得到的GT-Lip中Tan IIA、GA的包封率分别为(81.50±0.76)%、(98.63±0.90)%(n=3),平均Zeta电位为(?19.00±0.98)mV(n=3),平均粒径为(120.5±1.62)nm(n=3)。结论 优化的GT-Lip制备工艺稳定可行。  相似文献   

3.
目的 制备壳聚糖修饰雷公藤多苷纳米粒(LMWC-TG-NPs),并研究其体外释药行为。方法 采用改良的自乳化溶剂扩散法制备LMWC-TG-NPs;正交试验设计优化雷公藤多苷纳米粒(TG-NPs)处方,单因素试验考察壳聚糖(LMWC)修饰方式;以含20%乙醇的PBS(pH 7.4)为释放介质考察LMWC-TG-NPs的体外释药行为。结果 优化的处方工艺:以1.0% Poloxamer 188、80 mg PLA、12 mL有机相、丙酮-乙醇(2∶3)制备TG-NPs混悬液,以与TG-NPs混悬液等体积的10% LMWC溶液修饰TG-NPs制备LMWC-TG-NPs;根据优化条件制备的LMWC-TG-NPs,外观呈圆形或类圆形,平均粒径为(207.6±3.4)nm,多分散指数(PDI)为0.078±0.009(n=3),包封率和载药量分别为(61.83±2.43)%、(10.70±0.37)%(n=3);体外释药符合Higuchi方程。结论 所制备的LMWC-TG-NPs包封率较高,粒径小,体外释药具有明显的缓释特征,为后期研究其肾脏靶向和毒性奠定了基础。  相似文献   

4.
张生杰  焦文温  张瑜  华素  韩光 《医学教育探索》2012,43(12):2390-2395
目的 采用星点设计-效应面法优化异穿心莲内酯固体脂质纳米粒(IA-SLN)处方工艺,并考察其体外释放特性。方法 采用薄膜-超声分散法制备IA-SLN,以包封率、粒径、Zeta电位为评价指标,考察载体比例、投药量、聚山梨酯80质量分数3因素对制备工艺的影响,并对结果进行方程拟合,用效应面法预测最佳工艺条件;采用透析法研究IA-SLN体外释放机制。结果 包封率、平均粒径、Zeta电位都以二项式拟合最优,复相关系数R2分别为0.985 6、0.913 6、0.933 4,根据优化方案制备的IA-SLN包封率96.62%、平均粒径162.4 nm、Zeta电位?31.6 mV。IA-SLN体外释放符合non-Fick’s扩散机制,药物扩散和脂质骨架溶蚀具有协同作用。结论 星点设计-效应面法可用于IA-SLN的工艺优化,所建立的数学模型预测性良好。  相似文献   

5.
目的 以中药复方小儿湿疹方有效部位为模型药物,制备治疗小儿湿疹的经皮给药复方微乳。方法 通过单因素试验及伪三元相图的绘制筛选微乳组分,并以药物体外经皮渗透速率进一步优化微乳处方。结果 优选的复方小儿湿疹微乳处方为肉豆蔻酸异丙酯-Cremophor EL-丙三醇-水(6.5∶29.25∶29.25∶35),平均粒径为(24.54±0.22)nm,Zeta电位为(?26.5±0.2)mV;黄连生物碱、丹皮酚稳态透皮速率(Js)分别为114.70、74.09 μg/(cm2·h),比原湿疹洗剂的Js分别提高了17和10倍。结论 复方小儿湿疹微乳性状均一、澄清透明,质量稳定,透皮性能好。  相似文献   

6.
目的 研究盐酸青藤碱醇质体的最佳制备工艺,并考察不同促渗剂对其体外经皮渗透的影响和该制剂的皮肤过敏性。方法 采用注入法制备盐酸青藤碱醇质体,以包封率为评价指标,通过正交设计优化最佳制备工艺;同时对其形态、Zeta电位、粒径大小进行分析;以氮酮为阳性促渗剂,研究丁香精油等不同促渗剂预处理离体小鼠腹部皮肤24 h后,对盐酸青藤碱24 h累积渗透量的影响。以豚鼠为动物模型,进行皮肤过敏性试验。结果 所得青藤碱醇质体平均包封率为(66.18±1.84)%,平均粒径为(102.2±10.4)nm,Zeta电位为(?52.4±1.5)mV。2%丁香酚预处理皮肤组,盐酸青藤碱醇质体24 h的累积渗透量为412.493 2 μg/cm2,大约是醇质体组(未促渗)的1.6倍、水溶液组(未促渗)的5.8倍。该制剂外用对皮肤无致敏性。结论 优选得到的盐酸青藤碱醇质体处方和制备工艺合理,醇质体稳定性良好,经皮给药安全。2%丁香酚可显著提高盐酸青藤碱的体外渗透效果。  相似文献   

7.
目的 研究栀子苷经鼻给药醇质体喷雾剂的最佳制备工艺,并考察其体外鼻黏膜渗透性规律和该制剂的鼻黏膜纤毛毒性。方法 采用注入法制备栀子苷醇质体,以包封率为评价指标,应用星点设计-效应面法对栀子苷醇质体制备过程中有关影响因素及工艺参数进行优化;采用透射电镜和光子相关光谱仪考察其药剂学性质;以离体猪鼻腔黏膜为模型,考察栀子苷醇质体喷雾剂的体外透黏膜给药规律,并与其脂质体及水溶液进行比较;以在体蟾蜍口腔上腭纤毛在药物溶液作用下持续摆动的时间评价制剂的鼻黏膜纤毛毒性。结果 最优处方条件下制备的栀子苷醇质体粒径为(173.40±71.02)nm,Zeta电位为(?42.50±8.27)mV,包封率为(65.80±2.53)%,载药量为(5.25±0.15)%。栀子苷醇质体300 min经鼻黏膜单位面积渗透量为23.39 μg/cm2,是其脂质体的2.17倍、水溶液的11.03倍。此外,该制剂基本无鼻黏膜纤毛毒性。结论 优选得到的栀子苷醇质体处方和制备工艺合理,能够显著提高栀子苷的鼻黏膜渗透性,可用于鼻腔给药。  相似文献   

8.
目的 制备O/W型土槿皮乙酸(PAB)微乳,并进行体外经皮渗透性能研究。方法 通过绘制伪三元相图确定PAB微乳形成的区域,以微乳的体外经皮渗透速率为指标进一步优化筛选PAB微乳的处方,并对微乳的外观、形态、粒径分布等进行表征;以大鼠皮肤为渗透屏障,利用V-C扩散池比较了PAB微乳和PAB过饱和水溶液的体外经皮累积渗透量及皮肤滞留量。结果 优选的PAB微乳处方为IPM-Cremophor EL-Transcutol P-水(0.2∶0.97∶1.83∶7),所制备的微乳澄清透明,透射电镜(TEM)观察结果为均匀的球形或近球形,平均粒径为(18.7±1.9)nm。PAB微乳与PAB过饱和水溶液24 h累积渗透量分别为(50.31±4.63)、(6.27±1.33)μg/cm2,皮肤滞留量分别为(6.28±0.31)、(0.51±0.13)μg/cm2,差异均具有显著性(P<0.05)。结论 PAB微乳新型给药系统可有效促进PAB的经皮渗透及提高其皮肤滞留量,为PAB皮肤给药抗真菌新制剂的设计提供了实验基础。  相似文献   

9.
目的:制备姜黄素(Cur)固体脂质纳米粒(SLN)。方法:用薄膜超声法制备Cur-SLN,以mcurm单硬脂酸甘油酯m单硬脂酸甘油酯m卵磷脂、聚山梨酯-80质量浓度、超声时间为考察因素,以包封率为指标,用正交试验优选处方,并考察其粒径分布、Zeta电位。结果:mcurm单硬脂酸甘油酯=1︰3、m单硬脂酸甘油酯m卵磷脂=1︰2.5、聚山梨酯-80质量浓度2.5%、超声时间12 min时,所制得的Cur-SLN平均粒径为(145.6±5)nm,Zeta电位为(-31.9±1.5)mV,包封率为(97.42±0.39)%,载药量为(7.92 ± 0.05)%。结论:采用薄膜-超声法制备Cur-SLN可行,为开发姜黄素新型给药系统提供试验依据。  相似文献   

10.
目的 制备新藤黄酸纳米结构脂质载体并表征其药剂学性质。方法 采用乳化蒸发-低温固化法制备新藤黄酸纳米脂质载体(GNA-NLC),正交试验设计优化最佳工艺处方,并对其包封率、平均粒径及Zeta电位等性质进行考察。结果 优化后处方制备的GNA-NLC多为圆整、实体的类球形,平均粒径为(144.07±1.44)nm,多分散系数为0.24±0.01,Zeta电位为(?28.03±0.29)mV,包封率为(84.65±0.98)%,载药量为(4.21±0.05)%;DSC显示GNA纳米粒确已形成,并且GNA以非晶态分布在基质中。结论 乳化蒸发-低温固化法能成功制备GNA-NLC,工艺简单,易于控制。  相似文献   

11.
中药配伍中相反指两种药物合用产生或增强毒性或使疗效降低,而“十八反”是重要的配伍禁忌,也是现代药性理论争议最多的问题,且至今尚未形成较统一的判断标准和结论。主要介绍了“十八反”中有关海藻、芫花反甘草的毒性和机制研究,探讨了影响“十八反”的因素,并在此基础上提出根据不同药物的特点确定其特定部位的安全药理实验内容的观点。  相似文献   

12.
目的 对金钗石斛Dendrobium nobile茎的化学成分进行研究。方法 采用正相及反相硅胶柱色谱、凝胶柱色谱及制备高效液相色谱等方法进行分离纯化,根据波谱数据进行结构鉴定。结果 分离得到11个化合物,分别鉴定为石斛碱(1)、石斛醚碱(2)、邻苯二甲酸丁酯(3)、松脂素(4)、N-反式桂皮酸酰对羟基苯乙胺(5)、N-反式阿魏酸酰对羟基苯乙胺(穆坪马兜铃酰胺,6)、N-顺式阿魏酸酰对羟基苯乙胺(7)、N-反式香豆酰酪胺(8)、N-顺式香豆酰酪胺(9)、山药素III(10)、二氢松柏醇二氢对羟基桂皮酸酯(11)。结论 化合物359均为首次从该植物中分离获得,其中化合物9为首次从石斛属植物中分离获得。  相似文献   

13.
目的 研究小花八角Illicium micranthum的化学成分。方法 小花八角的枝叶提取物经醋酸乙酯萃取,余下水相经过反复的柱色谱分离、通过波谱分析确定化合物结构。结果 分离得到了1个新化合物和9个已知的成分,分别是小花八角苷(1)、7-β-D-glucosyl pseudomajucin(2)、4, 7, 9-trihydroxy-3, 3′-dimethoxy-8-O-4′-neolignan-9-O-α-L-rhamnopyranoside(3)、icariside E3(4)、isolariciresinol-3a-O-β-D-glucopyranoside(5)、芦丁(6)、杨梅树皮素-3-O-α-L-鼠李糖苷(7)、山柰酚-3-O-α-L-吡喃鼠李糖基-(1→6)-β-D-吡喃葡萄糖苷(8)、山柰酚-8-C-α-L-吡喃鼠李糖基-(1→2)-β-D-吡喃葡萄糖苷(9)、莽草酸(10)。结论 化合物1为新化合物,是首次从八角属植物中分离到的seco-prezizaane型降倍半萜类化合物;化合物2~6为首次从该植物中分离得到。  相似文献   

14.
目的 合成2类两亲性壳聚糖(chitosan,CS)衍生物,自组装成聚合物胶束作为难溶性药物的新型递药载体。方法 先将CS与碘甲烷反应生成N-三甲基壳聚糖(trimethyl chitosan,TMC),然后在TMC的氨基上引入长链脂肪酸(软脂酸和癸酸),合成了两亲性的N-脂肪酰-N-三甲基壳聚糖(N-fatty acyl-N-Trimethyl chitosan,FA-TMC)衍生物。通过FT-IR、1H-NMR和元素分析法,对衍生物的分子结构和N-位取代度进行表征,同时以疏水性药物蛇床子素(osthole,OST)为模型,探讨其胶束增溶特性。结果 实验合成了2类6种不同的新型CS衍生物,分析显示季胺化程度和脂肪酰基接枝率对FA-TMC的胶束性质有较大的影响;对于超声法制备的OST载药胶束,季胺化程度为62.00%、软脂酰基接枝率为13.37%的N-软脂酰-N-三甲基壳聚糖(N-palmitoyl-N-trimethyl chitosan,PA-TMC)和季胺化程度为43.06%、癸酰基接枝率为22.00%的N-癸酰-N-三甲基壳聚糖(N-caprinoyl-N-trimethyl chitosan,CA-TMC)的包封率分别为76.67%、79.11%,载药量分别为19.01%、19.08%,可使OST在水中的溶解度提高两个数量级。结论 FA-TMC是一种具有潜在应用价值的增溶载体,其在水中能自组装形成胶束,并对OST有明显的增溶作用,为OST制剂深入研究与应用奠定了基础。  相似文献   

15.
目的 研究毛茛科植物黄连Coptis chinensis根茎的化学成分。方法 利用硅胶柱色谱、凝胶柱色谱、高效液相色谱等技术对黄连95%乙醇提取物进行分离,根据理化性质与光谱数据鉴定化合物的结构。结果 从黄连95%乙醇提取物的氯仿萃取部分分离得到10个化合物,分别鉴定为N-顺式阿魏酰基酪胺(1)、唐松草林碱(2)、(S)-2-吡咯烷酸-5-甲酸乙酯(3)、5-羟基吡啶-2-甲酸甲酯(4)、3-吲哚甲醛(5)、环-(苯丙-亮)二肽(6)、环-(苯丙-缬)二肽(7)、开环异落叶松脂醇(8)、n-butyl 3-O-feruloylquinate(9)、methyl 3-O-feruloylquinate(10)。结论 化合物18为首次从该属植物中分离得到。  相似文献   

16.
目的 研究青枯菌诱导广藿香的致病过程及防御相关酶同工酶的动态变化。方法 利用青枯菌粗毒素诱导广藿香试管苗,并用聚丙烯酰胺凝胶电泳法,对诱导植株中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)同工酶谱带的变化进行分析。结果 青枯菌诱导1~7 d后的广藿香植株,表现渐进的发病过程,开始时,植株失绿、少数叶片萎垂;逐渐植株茎杆弯曲、整株叶片萎蔫。同工酶电泳分析表明,SOD同工酶在第1、3天时分别出现了新谱带,与对照共有的谱带,强度先增后减;CAT同工酶在第3、5天时分别出现新谱带,第6天时强度达到最大;POD同工酶在第1、4天时分别出现了新谱带,强度先增后减,第7天时所有谱带消失。结论 青枯病的发生呈现渐进的过程。青枯菌诱导1~7 d,广藿香SOD、CAT和POD同工酶谱带在数目和强度上均有所不同,呈动态变化,表明SOD、CAT和POD在广藿香抵抗青枯菌入侵时可能起到较为重要的作用。  相似文献   

17.
目的 研究布渣叶Microcos paniculata的化学成分。方法 采用硅胶、Sephadex LH-20、大孔树脂等柱色谱及制备液相色谱等方法进行分离纯化,根据化合物的理化性质、波谱数据等鉴定结构。结果 从布渣叶的醋酸乙酯和正丁醇萃取部位分离并鉴定了12个化合物,分别为异鼠李素(1)、表儿茶素(2)、黑麦草内酯(3)、去氢吐叶醇(4)、香草酸(5)、丁香酸(6)、咖啡酸甲酯(7)、对羟基苯甲酸(8)、对香豆酸(9)、木栓醇(10)、豆甾醇(11)、β-谷甾醇(12)。结论 化合物37912均为首次从该属植物中分离得到,其中化合物34为首次从该属植物中分离得到的单萜类化合物。  相似文献   

18.
目的 选取嗜肺军团菌mip/flaA优势抗原表位基因,构建mip/flaA二联优势抗原表位基因融合表达载体,并在原核系统中表达,为后续制备嗜肺军团菌蛋白疫苗提供初步的实验基础。方法 运用生物信息学方法对Mip和FlaA蛋白的二级结构和表面特性如理化性质、亲水性、可塑性、抗原指数以及胞外区等方面进行分析,选择其活性表位可能存在的区域为优势抗原表位区。通过PCR扩增和T4连接酶构建pET-mip、pET-flaA和pET-mip/flaA优势抗原表位基因融合表达载体,并诱导其在大肠杆菌中表达。结果 Mip和FlaA都存在多个潜在的抗原表位位点,选取其优势抗原表位区域进行克隆和表达获得成功,并成功表达了mip/flaA二联优势抗原表位融合蛋白。结论 DNA Star软件和Expasy在线蛋白分析系统能够成功预测嗜肺军团菌Mip和FlaA 抗原的表位;选取其优势抗原表位成功构建了pET-mip/flaA二联原核表达载体,并高效表达。  相似文献   

19.
目的 研究长药隔重楼Paris polyphylla var. pseudothibetica根茎中的化学成分,为阐明其有效成分及扩大重楼属植物的药用资源提供科学依据。方法 利用正相硅胶柱色谱、葡聚糖凝胶Sephadex LH-20、正反相制备色谱等手段进行分离纯化,并通过1H-NMR、13C-NMR、ESI-MS等波谱技术进行结构鉴定。结果 从长药隔重楼中分离得到了12个化合物,分别鉴定为:薯蓣皂苷元(1)、薯蓣皂苷元-3-O-α-L-呋喃阿拉伯糖基-(1→4)-[α-L-吡喃鼠李糖基-(1→2)]-β-D-吡喃葡萄糖苷(2)、偏诺皂苷元-3-O-α-L-呋喃阿拉伯糖基-(1→4)-β-D-吡喃葡萄糖苷(3)、偏诺皂苷元-3-O-α-L-呋喃阿拉伯糖基-(1→4)-[α-L-吡喃鼠李糖基-(1→2)]-β-D-吡喃葡萄糖苷(4)、偏诺皂苷元-3-O-α-L-吡喃鼠李糖基-(1→4)-α-L-吡喃鼠李糖基-(1→4)-[α-L-吡喃鼠李糖基-(1→2)]-β-D-吡喃葡萄糖苷(5)、β-谷甾醇(6)、豆甾醇(7)、胡萝卜苷(8)、豆甾醇-3-O-β-D-吡喃葡萄糖苷(9)、山柰酚(10)、β-蜕皮激素(11)、蔗糖(12)。结论 化合物19为首次从该植物中分离得到。  相似文献   

20.
目的 研究药西瓜Citrullus colocynthis的化学成分。方法 采用硅胶、Sephadex LH-20等色谱手段结合重结晶技术进行分离纯化,通过NMR波谱数据和理化性质确定化合物的结构。结果 从药西瓜中分离得到11个化合物,分别鉴定为β-谷甾醇(1)、α-菠甾醇-3-O-β-D-吡喃葡萄糖苷(2)、α-菠甾酮(3)、双-[(2-乙基) 己基] 邻苯二甲酸酯(4)、对羟基苯甲酸(5)、6-C-对甲基苄基牡荆素(6)、双氢葫芦素E(7)、葫芦素E(8)、异表双氢葫芦素D(9)、双氢异葫芦素B-25-乙酯(10)、葫芦素E-2-O-β-D-吡喃葡萄糖苷(11)。结论 化合物6为新化合物,命名为6-C-对甲基苄基牡荆素;化合物157910均为首次从该属植物中分离得到。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号