首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The continuing spread of methamphetamine (METH) abuse has stimulated research aimed at understanding consequences of its prolonged exposure. Alterations in nigrostriatal dopamine (DA) system parameters have been characterized in experimental studies after discontinuation of long‐term METH but fewer studies have included similar assessments during METH exposure. Here, we report METH plasma pharmacokinetics and striatal DA system alterations in rat after noncontingent and contingent METH administration for 7.5 weeks. Escalating METH exposure was delivered by dynamic infusion (DI) that incorporated a “humanized” plasma METH half life or by intravenous self‐administration (IVSA) that included binge intakes. Kinetic modeling of DI and IVSA for 24 h periods during the final week of METH exposure showed that plasma METH levels remained between 0.7 and 1.5 µM. Animals were sacrificed during their last METH administration for autoradiography assessment using [3H]ligands and D2 agonist‐induced [35S]GTPγS binding. DA transporter binding was decreased (DI, 34%; IVSA, 15%) while vesicular monoamine transporter binding and substantia nigra DA cell numbers were unchanged. Decreases were measured for D2 receptor (DI and IVSA, 15–20%) and [35S]GTPγS binding (DI, 35%; IVSA, 18%). These similar patterns of DI and IVSA associated decreases in striatal DA markers reflect consequences of cumulative METH exposure and not the drug delivery method. For METH IVSA, individual differences were observed, yet each animal's total intake was similar within and across three 24‐h binges. IVSA rodent models may be useful for identifying molecular mechanisms that are associated with METH binges in humans. Synapse 67:476–488, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
A major feature of human methamphetamine (METH) abuse is the gradual dose escalation that precedes high-dose exposure. The period of escalating doses (EDs) is likely associated with development of tolerance to aspects of METH's pharmacologic and toxic effects but the relative contributions of pharmacokinetic and pharmacodynamic factors have not been well defined. In our prior studies in rats, we showed that pretreatment with an ED-METH regimen (0.1-4.0 mg/kg over 14 days) attenuated the toxicity of a subsequently administered high-dose METH binge (4 x 6 mg/kg at 2 h interval) that itself produced behavioral stereotypy, increases in core temperature, and decreases in DA system phenotypic markers in caudate-putamen (CP). Using those ED-METH and binge protocols in the present studies, pharmacokinetic and pharmacodynamic parameters that may have contributed to the apparent neuroprotection afforded by ED-METH were assessed. The ED-METH regimen itself reduced [(3)H]WIN35,428 (WIN) binding to the dopamine transporter (DAT) by 15% in CP, but did not affect DA content. During the METH binge, ED-METH pretreated animals showed attenuated increases in core temperature while concurrent microdialysis studies in CP showed a reduced DA response despite unaltered extracellular levels of METH. At 1 h after the binge, concentrations of METH and its metabolite amphetamine in brain and plasma were unaffected by the ED-METH. The results show that ED-METH pretreatment produces reductions in DAT binding and the DA response during a subsequent METH binge by altering pharmacodynamic and not pharmacokinetic parameters.  相似文献   

3.
Methamphetamine (METH), a powerful psychoactive drug, causes damage to the nervous system and leads to degenerative changes similar to Alzheimer's disease (AD), however, the molecular mechanism between the toxicity of METH and AD-related symptoms remains poorly understood. In this study, we investigated the effect of METH exposure on the accumulation of amyloid-β by establishing the animal and cell models. The results showed that METH exposure increased amyloid precursor protein (APP) and β-secretase (BACE1), contributed to the accumulation of amyloid-β, and which was alleviated with the pretreatment of BACE1 inhibitor. In addition, METH exposure decreased ubiquitin carboxy-terminal hydrolases L1 (UCHL1) which was related to the degradation of BACE1, and therefore led to the up-regulation of BACE1. In summary, the study could provide a new insight into the molecular mechanisms of METH toxicity and new evidence for the link between METH abuse and AD.  相似文献   

4.
Characterization of methamphetamine's (METH) dose-dependent effects on brain neurochemistry may represent a critical component for better understanding the range of resultant behavioral pathologies. Most human studies, however, have assessed only the effects of long term, high dose METH abuse (e.g., greater than 1000 mg/day) in individuals meeting DSM-IV criteria for METH dependence. Yet, for the majority of METH abusers, their patterns of METH exposure that consist of lower doses remain less well-characterized. In this study, blood samples were obtained from 105 individuals detained by police for possible criminal activity and testing positive for stimulants by EMIT assay. METH blood concentrations were subsequently quantified by GC-MS and were predominantly in the low micromolar range (0.1-11.1 microM), with median and mean values of 1.3 microM (0.19 mg/l) and 2 microM (0.3 mg/l), respectively. Pharmacokinetic calculations based on these measured values were used to estimate initial METH body burdens, the median value being 52 mg. Modeling a 52 mg dose for a 4 day-METH maintenance exposure pattern of 4 doses/day at 4 h intervals showed that blood concentrations remained between 1 and 4 microM during this period. Collectively, these data present evidence for a METH exposure pattern distinct from high dose-METH abuse and provide the rationale for assessing potential brain pathology associated with such lower dose-METH exposure.  相似文献   

5.
Methamphetamine (METH) use, with and without human immunodeficiency virus (HIV)-1 comorbidity, exacerbates neurocognitive decline. Oxidative stress is a probable neurotoxic mechanism during HIV-1 central nervous system infection and METH abuse, as viral proteins, antiretroviral therapy and METH have each been shown to induce mitochondrial dysfunction. However, the mechanisms regulating mitochondrial homeostasis and overall oxidative burden in astrocytes are not well understood in the context of HIV-1 infection and METH abuse. Here, we report METH-mediated dysregulation of astrocyte mitochondrial morphology and function during prolonged exposure to low levels of METH. Mitochondria became larger and more rod shaped with METH when assessed by machine learning, segmentation analyses. These changes may be mediated by elevated mitofusin expression coupled with inhibitory phosphorylation of dynamin-related protein-1, which regulate mitochondrial fusion and fission, respectively. While METH decreased oxygen consumption and ATP levels during acute exposure, chronic treatment of 1 to 2 weeks significantly enhanced both when tested in the absence of METH. Together, these changes significantly increased not only expression of antioxidant proteins, augmenting the astrocyte’s oxidative capacity, but also oxidative damage. We propose that targeting astrocytes to reduce their overall oxidative burden and expand their antioxidant capacity could ultimately tip the balance from neurotoxicity towards neuroprotection.  相似文献   

6.
Abuse of stimulant drugs such as methamphetamine (METH) and cocaine has been associated with long-lasting persistent behavioral alterations. Although METH-induced changes in the striatal dopaminergic system might play a role in these effects, the potential underlying neuroanatomical substrate for the chronic cognitive dysfunction in METH users is unclear. To investigate the involvement of non-dopaminergic systems in the neurotoxic effects of METH, we treated rats with an escalating dose-multiple binge regimen, which we have suggested may more closely simulate human METH exposure profiles. Combined neuropathological and stereological analyses showed that 30 days after the last binge, there was shrinkage and degeneration in the pyramidal cell layers of the frontal cortex and in the hippocampal CA3 region. Further immunocytochemical analysis showed that METH exposure resulted in loss of calbindin interneurons in the neocortex and selective damage to pyramidal neurons in the CA3 region of the hippocampus and granular cells in the dentate gyrus that was accompanied by microglial activation. Taken together, these studies suggest that selective degeneration of pyramidal neurons and interneurons in the neocortex and limbic system might be involved in the cognitive alterations in METH users.  相似文献   

7.
A number of reviews have focused on the short- and long-term effects of MDMA and, in particular, on the persistent deficits in serotonin neurotransmission that accompany some exposure regimens. The mechanisms underlying the serotonin deficits and their relevance to various behavioral and cognitive consequences of MDMA use are still being debated. It has become clear, however, that some individuals develop compulsive and uncontrolled drug-taking that is consistent with abuse. For other drugs of abuse, this transition has been attributed to neuroadaptations in central dopamine mechanisms that occur as a function of repeated drug exposure. A question remains as to whether similar neuroadaptations occur as a function of exposure to MDMA and the impact of serotonin neurotoxicity in the transition from use to abuse. This review focuses specifically on this issue by first providing an overview of human studies and then reviewing the animal literature with specific emphasis on paradigms that measure subjective effects of drugs and self-administration as indices of abuse liability. It is suggested that serotonin deficits resulting from repeated exposure to MDMA self-administration lead to a sensitized dopaminergic response to the drug and that this sensitized response renders MDMA comparable to other drugs of abuse.  相似文献   

8.
Behavioral and neural consequences of prenatal exposure to nicotine   总被引:17,自引:0,他引:17  
OBJECTIVE: To review evidence for the neurodevelopmental effects of in utero exposure to nicotine. Concerns about long-term cognitive and behavioral effects of prenatal exposure to nicotine arise from reports of increased rates of disruptive behavioral disorders in children whose mothers smoked during pregnancy. The relatively high rate of tobacco smoking among pregnant women (25% of all pregnancies in the U.S.) underlines the seriousness of these concerns. METHOD: This review examines the largest and most recent epidemiological and clinical studies that investigated the association of prenatal nicotine exposure with health, behavioral, and cognitive problems. Because of the numerous potential confounding variables in human research, findings from animal studies, in which environmental factors are strictly controlled, are also discussed. Finally, neural and molecular mechanisms that are likely to underlie neurodevelopmental disruptions produced by prenatal nicotine exposure are outlined. RESULTS: A dose-response relationship between maternal smoking rates and low birth weight (potentially associated with lower cognitive ability) and spontaneous abortion is consistently found, whereas long-term developmental and behavioral effects in the offspring are still controversial, perhaps because of the difficulty of separating them from other genetic and environmental factors. Despite the wide variability of experimental paradigms used in animal studies, common physical and behavioral effects of prenatal exposure to nicotine have been observed, including low birth weight, enhanced locomotor activity, and cognitive impairment. Finally, disturbances in neuronal pathfinding, abnormalities in cell proliferation and differentiation, and disruptions in the development of the cholinergic and catecholaminergic systems all have been reported in molecular animal studies of in utero exposure to nicotine. CONCLUSIONS: Prenatal exposure to nicotine may lead to dysregulation in neurodevelopment and can indicate higher risk for psychiatric problems, including substance abuse. Knowledge of prenatal exposure to nicotine should prompt child psychiatrists to closely monitor at-risk patients.  相似文献   

9.
Disturbed information processing observed in neuropsychiatric disorders is reflected by deficient sensorimotor gating, measured as prepulse inhibition (PPI) of the acoustic startle response (ASR). Long-term, higher dose methamphetamine (METH) abuse patterns are associated with cognitive impairments, mania and/or schizophrenia-like psychosis. The present study investigated in rats METH-induced impairment of sensorimotor gating using an intravenous self-administration (IVSA) escalating dose procedure. In this procedure, rats escalated drug intake during weekly extended access periods to METH IVSA (1, 3, and 6h), where PPI was assessed after each access period and thus at various times of drug exposure. Despite increased drug intake over the course of extended access to METH, disruption of sensorimotor gating was only seen after the access period of 6h. The data suggest that METH-induced impairment of sensorimotor gating in IVSA-tasks is rather attributed to continuous and higher dose exposure than to actual amounts of drug present at the time of testing. IVSA procedures, comprising stepwise stimulant escalation may serve as a useful translational model in rats that approximate important aspects of human abuse pattern in the context of stimulant-induced cognitive and behavioral deficits.  相似文献   

10.
Our previous studies have shown that neonatal exposure to lipopolysaccharide (LPS) resulted in long-lasting dopaminergic injury and enhanced methamphetamine (METH)-induced increase of locomotion in the adult male rat. To further investigate the effect of neonatal LPS exposure-induced dopaminergic injury, we used our neonatal rat model of LPS exposure (1 mg/kg, intracerebral injection in postnatal day 5, P5, rats) to examine the METH sensitization as an indicator of drug addiction in the adult rats. On P70, animals began a treatment schedule of 5 daily subcutaneous (s.c.) administration of METH (0.5 mg/kg) or saline (P70-P74) to induce behavioral sensitization. Ninety-six hours after the 5th treatment with METH or saline (P78), animals received a single dose of 0.5 mg/kg METH (s.c.) or saline. Neonatal LPS exposure enhanced the level of development of behavioral sensitization including distance traveled, rearing events and stereotypy to METH administration in both male and female rats. Neonatal LPS exposure also enhanced the reinstated behavioral sensitization in both male and female rats after the administration had ceased for 96 h. However, neonatal LPS exposure induced alteration in the reinstated behaviors sensitization of distance traveled and rearing events to METH administration appears to be greater in male than in female rats. These results indicate that neonatal brain LPS exposure produces a persistent lesion in the dopaminergic system, as indicated by enhanced METH-induced locomotor and stereotyped behavioral sensitization in later life. These findings show that early-life brain inflammation may enhance susceptibility to the development of drug addiction in later life.  相似文献   

11.
Cellular dehydration of central osmoreceptors evokes an integration of behavioral (i.e. drinking) and endocrinologic (i.e. arginine vasopressin secretion) responses to maintain body fluid balance. These osmoregulatory mechanisms have been intensely investigated in adult models. However, there has been limited research of the fetal development of neural mechanisms regulating responses to dehydration. Although behavioral and neuroendocrine responses to dehydration have been demonstrated in utero in precocial species (e.g. ovine), there has been no study to date demonstrating that these responses develop before the neonatal period of altricial species (e.g. rat). This study is the first to use the near-term rat fetus to investigate the effects of maternal subcutaneous hypertonic (2 M NaCl) or isotonic (0.15 M NaCl) saline injection on fetal plasma osmolality and brain FOS-immunoreactivity (FOS-ir). Maternal subcutaneous hypertonic saline significantly increased maternal and fetal plasma osmolality to similar levels (328+/-6 and 326+/-6 mosM/kg, respectively). In response to plasma hypertonicity, maternal and fetal brain FOS-ir increased significantly in the regions including the lamina terminalis, and the supraoptic and paraventricular nuclei (SON and PVN) of the hypothalamus. Together, these data indicate that central mechanisms for dipsogenic and arginine vasopressin secretory responses to hypertonicity are present and responsive in the fetal rat brain at near-term gestation. However, differences between fetal and maternal FOS-ir mapping suggest that fetal osmoreceptor development is not yet completed near term.  相似文献   

12.
Persistent changes in behavior and psychological function that occur as a consequence of exposure to drugs of abuse are thought to be mediated by the structural plasticity of specific neural circuits such as the brain's dopamine (DA) system. Changes in dendritic morphology in the nucleus accumbens (NAc) accompany drug‐induced enduring behavioral and molecular changes, yet ultrastructural changes in synapses following repeated exposure to drugs have not been well studied. The current study examines the role of DA D3 receptors in modulating locomotor activity induced by both acute and repeated methamphetamine (METH) administration and accompanying ultrastructural plasticity in the shell of NAc in mice. We found that D3 receptor mutant (D3?/?) mice exhibited attenuated acute locomotor responses as well as the development of behavioral sensitization to METH compared with wild‐type mice. In the absence of obvious neurotoxic effects, METH induced similar increases in synaptic density in the shell of NAc in both wild‐type and D3?/? mice. These results suggest that D3 receptors modulate locomotor responses to both acute and repeated METH treatment. In contrast, the D3 receptor is not obviously involved in modulating baseline or METH‐induced ultrastructural changes in the NAc shell. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Methamphetamine (METH) is a psychostimulant drug with potent effects on the central nervous system that can cause psychotic symptoms similar to those of schizophrenia. Specific alterations in GABAergic neuronal markers have been reported in schizophrenia and animal models of psychotic illness. The aim of this study was to determine whether there are changes in subpopulations of GABAergic neurons, defined by the presence of calcium binding proteins (CBPs), in animal models of METH abuse. Rats received acute (Binge) doses of 4 × 6 mg/kg, a chronic escalating dose regime (0.1–4 mg/kg over 14 days) or a combination of the two and were compared with a vehicle-administered control group. Brains were taken and sections of frontal cortex (Cg1) and hippocampus (dentate gyrus and CA1-3 regions) underwent immunostaining for three CBPs [parvalbumin (PV), calbindin (CB), and calretinin (CR)]. Significant decreases in PV-immunoreactive (IR) neurons in each METH group and all regions were observed. Smaller METH-induced deficits in CB–IR cells were observed, reaching significance primarily following chronic METH regimes, while CR–IR was significantly reduced only in frontal cortex following chronic administration. These results suggest that METH regimes in rats can induce selective deficits in GABAergic neuronal subtypes similar to those seen in schizophrenia and may underlie the psychosis and/or cognitive impairment that can occur in METH abuse and dependence.  相似文献   

14.
1. Since it is ethically unacceptable to use human subjects to conduct manipulative experimental hypothesis-testing research on major depression, investigators interested in the development, the substrates or the mechanisms of treatment of depressive disorders have turned to observational models with humans or to interactive models with animals. 2. One of the earliest animal models of depression, the infant/mother separation in monkeys, is based on the Freudian notion of the loss-inward directed anger-depression connection. 3. The hypothesis that depression is caused by stress led to the development of numerous animal models of depression based on the behavioral abnormalities induced in animals, usually rats but occasionally other species, by exposure to prolonged or intense stress. 4. The selective therapeutic efficacy of antidepressant drugs suggested the hypothesis that depression is caused by a neurochemical abnormality that is alleviated by chronic exposure to antidepressants. This hypothesis has been refined to state that depressive disorders are caused by genetically based neurochemical dysregulation of neural activity in the limbic system. 5. Models based on the limbic dysfunction hypothesis could be used to explore the specific neural substrates of depression. At present, the rat with limbic dysfunction induced by olfactory bulbectomy appears to fulfill best the requirements for a model of depression. The future development or discovery of a genetic strain of animals that shows comparable behavioral and neurovegetative deficits and similar selective drug responses to those seen in patients with depressive disorder, would make tremendous contributions to the understanding not only of depression but also of the neurobiology of the limbic system.  相似文献   

15.
Body temperature profiles observed during methamphetamine (METH) exposure are known to affect dopamine and tyrosine hydroxylase (TH) levels in the striatum of mice; hyperthermia potentiates depletion while hypothermia is protective against depletions. In the current study, the doses of METH were sufficiently great that significant dopamine and TH depletions occurred even though hypothermia occurred. Four doses, administered at 2 h intervals, of 15 mg/kg (4x15 mg/kg) D-METH significantly decreased TH and dopamine levels to 50% of control in mice becoming hypothermic during dosing in a 13 degrees C environment. Phenobarbital or dizocilpine during METH exposure blocked the depletions while diazepam did not. Phenobarbital and dizocilpine did not block depletions by altering the hypothermic profiles from that observed during METH only exposure. Here we show that phenobarbital and dizocilpine can block measures of METH neurotoxicity by non-thermoregulatory mechanisms.  相似文献   

16.
《Brain research bulletin》2006,68(6):466-475
Methamphetamine (METH) is a drug of abuse and neurotoxin that induces Parkinson's-like pathology after chronic usage by targeting dopaminergic neurons. Elucidation of the intracellular mechanisms that underlie METH-induced dopaminergic neuron toxicity may help in understanding the mechanism by which neurons die in Parkinson's disease. In the present study, we examined the role of reactive oxygen species (ROS) in the METH-induced death of human dopaminergic SK-N-SH cells and further assessed the neuroprotective effects of zinc and metallothionein (MT) against METH-induced toxicity in culture. METH significantly increased the production of reactive oxygen species, decreased intracellular ATP levels and reduced the cell viability. Pre-treatment with zinc markedly prevented the loss of cell viability caused by METH treatment. Zinc pre-treatment mainly increased the expression of metallothionein and prevented the generation of reactive oxygen species and ATP depletion caused by METH. Chelation of zinc by CaEDTA caused a significant decrease in MT expression and loss of protective effects of MT against METH toxicity. These results suggest that zinc-induced MT expression protects dopaminergic neurons via preventing the accumulation of toxic reactive oxygen species and halting the decrease in ATP levels. Furthermore, MT may prevent the loss of mitochondrial functions caused by neurotoxins. In conclusion, our study suggests that MT, a potent scavenger of free radicals is neuroprotective against dopaminergic toxicity in conditions such as drug of abuse and in Parkinson's disease.  相似文献   

17.
Many drugs with unknown safety profiles are administered to pregnant women, placing their offspring at risk. I assessed whether behavioral outcomes for children exposed during gestation to antidepressants, anxiolytics, anti-seizure, analgesic, anti-nausea and sedative medications can be predicted by more extensive animal studies than are part of the FDA approval process. Human plus rodent data were available for only 8 of 33 CNS-active drugs examined. Similar behavioral and cognitive deficits, including autism and ADHD emerged in human offspring and in animal models of these disorders after exposure to fluoxetine, valproic acid, carbamazepine, phenytoin, phenobarbital and acetaminophen. Rodent data helpful in identifying and predicting adverse effects of prenatal drug exposure in children were first generated many years after drugs were FDA-approved and administered to pregnant women. I recommend that enhanced behavioral testing of rodent offspring exposed to drugs prenatally should begin during preclinical drug evaluation and continue during Phase I clinical trials, with findings communicated to physicians and patients in drug labels.  相似文献   

18.
Methamphetamine is a neurotoxic pychostimulant which affects monoaminergic and non-monoaminergic systems in the brain. Clinical studies in humans have found that exposure to methamphetamine in the developing embryo can cause significant behavioral and cognitive anomalies later in life. Exposure of animals to methamphetamine (METH) in utero can cause neurobehavioral effects that do not become apparent until young adulthood. In the present study, we sought to determine the effects of in utero METH exposure on the striata of perinatal rat pups using a recently developed 17 k cDNA microarray. We found that METH administration caused alterations in 913 genes according to strict criteria. These alterations include changes in genes that participate in signal transduction, heat shock responses and neuronal development. The majority of the changes in gene expression were more prominent at the 7-day time point. These observations suggest that in utero METH exposure might initiate molecular programs that significantly impact gene expression during the developmental period long after the last exposure to this drug. Thus, during development, METH exposure in utero might cause significant long-term changes in gene expression that might constitute, in part, some of the substrates for the behavioral and cognitive anomalies reported in the literature.  相似文献   

19.
Methamphetamine toxicity and messengers of death   总被引:2,自引:0,他引:2  
Methamphetamine (METH) is an illicit psychostimulant that is widely abused in the world. Several lines of evidence suggest that chronic METH abuse leads to neurodegenerative changes in the human brain. These include damage to dopamine and serotonin axons, loss of gray matter accompanied by hypertrophy of the white matter and microgliosis in different brain areas. In the present review, we summarize data on the animal models of METH neurotoxicity which include degeneration of monoaminergic terminals and neuronal apoptosis. In addition, we discuss molecular and cellular bases of METH-induced neuropathologies. The accumulated evidence indicates that multiple events, including oxidative stress, excitotoxicity, hyperthermia, neuroinflammatory responses, mitochondrial dysfunction, and endoplasmic reticulum stress converge to mediate METH-induced terminal degeneration and neuronal apoptosis. When taken together, these findings suggest that pharmacological strategies geared towards the prevention and treatment of the deleterious effects of this drug will need to attack the various pathways that form the substrates of METH toxicity.  相似文献   

20.
Methamphetamine (METH) is a drug of abuse and neurotoxin that induces Parkinson's-like pathology after chronic usage by targeting dopaminergic neurons. Elucidation of the intracellular mechanisms that underlie METH-induced dopaminergic neuron toxicity may help in understanding the mechanism by which neurons die in Parkinson's disease. In the present study, we examined the role of reactive oxygen species (ROS) in the METH-induced death of human dopaminergic SK-N-SH cells and further assessed the neuroprotective effects of zinc and metallothionein (MT) against METH-induced toxicity in culture. METH significantly increased the production of reactive oxygen species, decreased intracellular ATP levels and reduced the cell viability. Pre-treatment with zinc markedly prevented the loss of cell viability caused by METH treatment. Zinc pre-treatment mainly increased the expression of metallothionein and prevented the generation of reactive oxygen species and ATP depletion caused by METH. Chelation of zinc by CaEDTA caused a significant decrease in MT expression and loss of protective effects of MT against METH toxicity. These results suggest that zinc-induced MT expression protects dopaminergic neurons via preventing the accumulation of toxic reactive oxygen species and halting the decrease in ATP levels. Furthermore, MT may prevent the loss of mitochondrial functions caused by neurotoxins. In conclusion, our study suggests that MT, a potent scavenger of free radicals is neuroprotective against dopaminergic toxicity in conditions such as drug of abuse and in Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号