首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There is considerable interest in the skin as a site of drug application both for local and systemic effect. However, the skin, in particular the stratum corneum, poses a formidable barrier to drug penetration thereby limiting topical and transdermal bioavailability. Skin penetration enhancement techniques have been developed to improve bioavailability and increase the range of drugs for which topical and transdermal delivery is a viable option. This review describes enhancement techniques based on drug/vehicle optimisation such as drug selection, prodrugs and ion-pairs, supersaturated drug solutions, eutectic systems, complexation, liposomes, vesicles and particles. Enhancement via modification of the stratum corneum by hydration, chemical enhancers acting on the structure of the stratum corneum lipids and keratin, partitioning and solubility effects are also discussed. The mechanism of action of penetration enhancers and retarders and their potential for clinical application is described.  相似文献   

2.
The skin acts as a major target as well as a principle barrier for topical/transdermal (TT) drug delivery. The stratum corneum plays a crucial role in barrier function for TT drug delivery. Despite major research and development efforts in TT systems and the advantages of these routes, low stratum corneum permeability limits the usefulness of topical drug delivery. To overcome this, methods have been assessed to increase permeation. One controversial method is the use of vesicular systems, such as liposomes and niosomes, whose effectiveness depends on their physicochemical properties. This review focuses on the effect of liposomes and niosomes on enhancing drug penetration, and defines the effect of composition, size and type of the vesicular system on TT delivery.  相似文献   

3.
《Drug delivery》2013,20(5):199-209
Abstract

The highly organized structure of the stratum corneum provides an effective barrier to the drug delivery into or across the skin. To overcome this barrier function, penetration enhancers are always used in the transdermal and dermal drug delivery systems. However, the conventional chemical enhancers are often limited by their inability to delivery large and hydrophilic molecules, and few to date have been routinely incorporated into the transdermal formulations due to their incompatibility and local irritation issues. Therefore, there has been a search for the compounds that exhibit broad enhancing activity for more drugs without producing much irritation. More recently, the use of biomaterials has emerged as a novel method to increase the skin permeability. In this paper, we present an overview of the investigations on the feasibility and application of biomaterials as penetration enhancers for transdermal or dermal drug delivery systems.  相似文献   

4.
Transdermal drug delivery has many advantages over the oral administration of drugs. This is the reason why many researchers have extensively investigated the transdermal absorption of drugs. However, a much smaller number of drugs are marketed using this route of delivery, compared to oral dosage forms, because drug absorption across the skin is very low due to the stratum corneum (the main barrier for drug absorption across the skin). Overcoming the penetration barrier would significantly improve the development of an efficient transdermal drug delivery system. Several techniques have been developed, or are under development, to bypass the stratum corneum. Approaches that have been made to overcome the stratum corneum fit into five different categories: (i) device and formulation; (ii) modification of stratum corneum by chemical enhancers; (iii) ablation; (iv) bypassing the stratum corneum via appendages; and (v) electrically assisted methods such as iontophoresis and electroporation. Furthermore, possible combinatorial uses of several approaches have been studied. Although the safety issues of these synergistic approaches still require clarification, several combinations could be promising. Finally, there is a necessity to regulate the intradermal disposition of drugs to develop a more efficient transdermal drug delivery system after overcoming the skin barrier.  相似文献   

5.
It is well-known that intercellular lipids in the stratum corneum (SC) of the skin play an important role in maintaining barrier function, and many types of penetration enhancers affecting lipids are used in topical products to improve transdermal drug permeability. Recently, it was reported that functional proteins in tight junctions of the epidermis are important for barrier function. In this study, the effects of penetration enhancers such as fatty esters, amines/amides, and alcohols on the barrier function of the skin were evaluated in rat skin and normal human-derived epidermal keratinocytes (NHEK). All penetration enhancers decreased the electrical impedance (EI), however, the potencies of some penetration enhancers were not equal between rat skin and NHEK. The differences were clarified by immunohistochemical studies: some fatty esters decreased the immunoreactivity of involucrin and keratin 10 in the upper layer of the epidermis, while alcohols decreased the immunoreactivity of desmoglein-1, claudin-1, and E-cadherin located in the lower layer of the epidermis. From these results, it is suggested that penetration enhancers show new action mechanisms disturbing barrier-related proteins in epidermis, which are classified into two categories depending on their action sites.  相似文献   

6.
It is preferred that topically administered drugs act either dermally or transdermally. For that reason they have to penetrate into the deeper skin layers or permeate the skin. The outermost layer of the human skin, the stratum corneum, is responsible for its barrier function. Most topically administered drugs do not have the ability to penetrate the stratum corneum. In these cases modulations of the skin penetration profiles of these drugs and skin barrier manipulations are necessary. A skin penetration enhancement can be achieved either chemically, physically or by use of appropriate formulations. Numerous chemical compounds have been evaluated for penetration-enhancing activity, and different modes of action have been identified for skin penetration enhancement. In addition to chemical methods, skin penetration of drugs can be improved by physical options such as iontophoresis and phonophoresis, as well as by combinations of both chemical and physical methods or by combinations of several physical methods. There are cases where skin penetration of the drug used in the formulation is not the aim of the topical administration. Penetration reducers can be used to prevent chemicals entering the systemic circulation. This article concentrates on the progress made mainly over the last decade by use of chemical penetration enhancers. The different action modes of these substances are explained, including the basic principles of the physical skin penetration enhancement techniques and examples for their application.  相似文献   

7.
8.
Triprolidine-containing matrix was fabricated with ethylene-vinyl acetate (EVA) copolymer to control the release of the drug. The permeation rate of triprolidine in the stripped skin was greatly larger than that in the whole skin. Thus it showed that the stratum corneum acts as a barrier of skin permeation. The effect of penetration enhancer and stripping of skin on the permeation of triprolidine through the excised mouse skin was studied. Penetrating enhancers showed increased flux probably due to the enhancing effect on the skin barrier, the stratum corneum. Among enhancers used such as glycols, fatty acids and non-ionic surfactants, polyoxyethylene-2-oleyl ether showed the best enhancement. The permeability of triprolidine was markedly increased with stripping of the mouse skin to remove the stratum corneum that acts as a barrier of skin permeation. For the controlling transdermal delivery of triprolidine, the application of EVA membrane containing permeation enhancer could be useful in the development of transdermal drug delivery system.  相似文献   

9.
The use of topical formulation is popular over the past decade due to extensive researches made in the field of transdermal drug delivery. As a result, an increasing number of drugs are being added to the list of therapeutic agents that can be delivered to systemic circulation through the skin. Commonly available dosage forms for the topical application are creams, ointments, gels, patches etc. The therapeutic benefits of the above topical formulations are limited due to barrier property of stratum corneum (SC). The use of chemical penetration enhancers (CPEs) is one of the long standing approach to overcome the barrier property of SC. Numerous class of novel compounds have been evaluated for penetration enhancement activity, including soft enhancement for percutaneous absorption (SEPA), for example, 2 N-nonyl-1,3- dioxolanes, N-acetyle prolinate esters (such as pentyl- and octyl-N-acetyle prolinate), alkyldiloxanes (e.g., 1-Alkyl-3-b-D glucopyranosyl-1,1,3,3-tetramethyl disiloxanes), transcarbam (such as 5-(dodecyloxycarbonyl) pentylammonium-5- (dodecyloxycarbonyl) pentylcarbamate), iminosulfurane (like N-hexyl,N-benzoyl-S,S-dimethylimino-sulfuranes), capsaicin derivatives (e.g., Nonivamide), cinnamene compounds (such as cinnamic acid, cinnamaldehyde etc), terpenes (like clove and basil oil) and synergestic combination of penetration enhancers (SCOPE). We briefly describe about the anatomy of skin. Potential mechanisms of action of above novel PEs along with adverse reactions associated with traditional PEs are also considered in this review.  相似文献   

10.
Vehicles designed to enhance drug delivery through the skin must incorporate specific elements that improve the ability of the delivery system to overcome the barrier posed by the stratum corneum. This review discusses several chemical penetration enhancers that have been investigated as potential tools to increase drug flux. In addition, lipid-based delivery systems offer an attractive alternative to traditional drug vehicles. The relationship between liposome composition and drug permeation is discussed, in addition to the possible mechanism of action of lipid vesicle-mediated drug delivery.  相似文献   

11.
Various enhancers, such as fatty acids (saturated, unsaturated), glycerides, propylene glycols, and non-ionic surfactants, have been incorporated in the loratadine-EVA matrix to increase the rate of skin permeation of loratadine from an EVA matrix. The enhancing effects of these enhancers on the skin permeation of loratadine were evaluated using a modified Keshary-Chien cell fitted with intact excised rat skin. The penetration enhancers showed a higher flux, probably due to the enhancing effect on the skin barrier, the stratum corneum. Among the enhancers used, such as the fatty acids, glycols, propylene glycols, and non-ionic surfactants, linoleic acid showed the best enhancement. For the enhanced transdermal delivery of loratadine, application of an EVA matrix containing a permeation enhancer might be useful in the development of a transdermal drug delivery system.  相似文献   

12.
Liposomes have been extensively studied and suggested as a vehicle for topical drug delivery systems. However, the mechanism by which liposomes deliver drugs into intact skin is not fully understood. In the present study, we have tried to understand the mechanism of transport of hydrophilic drugs into the skin using liposomes. The effect of separation of the non-entrapped, hydrophilic fluorescent compound, carboxyfluorescein (CF), from liposomally entrapped CF was investigated by measuring the penetration of CF across human skin under non-occlusive conditions in vitro using Franz diffusion cells. The fluorescent dye, CF, was incorporated into the liposomes and applied onto the skin. After a 6 and 12h incubation period, the amount of CF in the epidermal membrane and the full thickness skin was determined by fluorescence spectroscopy or by confocal laser scanning microscopy (CLSM). The liposomal formulation containing CF both inside and outside the vesicles showed statistically enhanced penetration of CF into the human stratum corneum (SC) as compared to the formulations containing CF only outside of the liposomes and CF in Tris buffer. The CLSM results revealed that the formulation in which CF was present outside the liposomes showed bright fluorescence intensity in the SC and very weak fluorescence in the viable epidermis. However, the CF in Tris buffer failed to show any fluorescence in the viable epidermis. The results indicated that phospholipid vesicles not only carry the entrapped hydrophilic substance, but also the non-entrapped hydrophilic substance into the SC and possibly into the deeper layers of the skin.  相似文献   

13.
In order to achieve enhanced topical drug delivery, it is necessary to make physical or biomolecular structural alterations to the stratum corneum by suitable techniques or by the use of specific chemical agents or drug carriers. The role of the chemical penetration enhancer is to reversibly alter the barrier properties of the stratum corneum by disruption of the membrane structures or by maximizing drug solubility within the skin. Alternatively, permeant delivery to the dermal vasculature using one of several physical methods to reduce diffusional resistance within the skin may be used to promote drug penetration. In the present article, we summarize the major facets of the diverse spectrum of penetration enhancement techniques that include modification of the stratum corneum, lipid-based delivery systems, drug/vehicle interactions, bypassing the stratum corneum, and electrical techniques of enhancement.  相似文献   

14.
Topical DNA vaccines have been shown to elicit both broad humoral and cellular immune response in vivo. The skin is an attractive site for the delivery DNA antigens for DNA vaccination. However, due to skin's barrier properties, the penetration of DNA and the applications of topical vaccination are limited. To improve permeability of stratum corneum and the potency of topical DNA vaccines, efficient delivery systems are needed. Topical vaccination has been achieved using topical application of naked DNA with or without tape stripping and DNA/lipid based complex such as liposomes, niosomes, Transfersomes, or microemulsion. All methods resulted in significant enhancement in humoral and cellular immune response over naked DNA alone. To develop more cost-effective and needle free vaccines, skin targeted immunizations are required. This overview focuses on the comparison of the potency of topical DNA vaccine between naked DNA and DNA-lipid based complex.  相似文献   

15.
Triprolidine-containing matrix was fabricated with poly(4-methyl-1-pentene) (TPX) polymer to control the release of the drug. Effect of penetration enhancer and stripping of skin on the permeation of triprolidine through the excised mouse skin was studied. Penetrating enhancers showed the increased flux probably due to the enhancing effect on the skin barrier, the stratum corneum. Among enhancers used such as glycols, fatty acids and non-ionic surfactants, polyoxyethylene-2-oleyl ether showed the best enhancement. The permeability of triprolidine was markedly increased with stripping the mouse skin to remove the stratum corneum, which acts as a barrier of skin permeation. For the controlling delivery of triprolidine, the TPX matrix containing permeation enhancer could be developed.  相似文献   

16.
To enhance transdermal delivery of atenolol, ethylene-vinyl acetate (EVA) matrix of drug containing penetration enhancer was fabricated. Effect of penetration enhancer on the permeation of atenolol through the excised rat skin was studied. Penetrating enhancers showed the increased flux probably due to the enhancing effect on the skin barrier, the stratum corneum. Among enhancers used such as glycols, fatty acids and non-ionic surfactants, polyoxyethylene 2-oleyl ether showed the best enhancement. For the controlling transdermal delivery of atenolol, the application of EVA matrix containing permeation enhancer could be useful in the development of transdermal drug delivery system.  相似文献   

17.
Effect of vehicles and enhancers on the topical delivery of cyclosporin A   总被引:5,自引:0,他引:5  
Topical delivery of cyclosporin a (CysA) is of great interest for the treatment of autoimmune skin disorders. The purpose of this study was to investigate the effect of various vehicles and enhancers on the topical delivery across rat skin. The topical (to the skin) delivery of CysA was evaluated in vitro using rat skin mounted in a Franz diffusion cell. CysA was analyzed by UV-HPLC. As vehicles, CysA vehicle containing 40% ethanol showed significantly enhanced deposition of CysA into the stratum corneum (SC) and deeper skin, as compared to other vehicles. The efficiency of the vehicles to improve the topical delivery of CysA was sequenced in the order of: 40% ethanol>ethyl oleate>Transcutol>isopropyl myristate>ethanol>Labrasol>propylene glycol>Lauroglycol FCC. Next, we tested effect of pre-treatment with chemical enhancers on the penetration of CysA. The permeation-enhancer effect of enhancers was in the following order: 10% menthol approximately 0.05% SLS>5% Azone>5% NMP>5% DEMO. Moreover, chemical enhancers shortened the lag time of the penetration of CysA into deeper skin. The present study suggests that the suspension of 40% ethanol containing 0.5% drug can more effectively enhance the topical delivery of CysA after skin pre-treatment with 10% menthol or 0.05% SLS.  相似文献   

18.
The present study evaluated the potential of a w/o microemulsion as a topical carrier system for delivery of the antioxidant quercetin. Topical and transdermal delivery of quercetin were evaluated in vitro using porcine ear skin mounted on a Franz diffusion cell and in vivo on hairless-skin mice. Skin irritation by topical application of the microemulsion containing quercetin, and the protective effect of the formulation on UVB-induced decrease of endogenous reduced glutathione levels and increase of cutaneous proteinase secretion/activity were also investigated. The w/o microemulsion increased the penetration of quercetin into the stratum corneum and epidermis plus dermis at 3, 6, 9 and 12h post-application in vitro and in vivo at 6h post-application. No transdermal delivery of quercetin occurred. By evaluating established endpoints of skin irritation (erythema formation, epidermis thickening and infiltration of inflammatory cells), the study demonstrated that the daily application of the w/o microemulsion for up to 2 days did not cause skin irritation. W/o microemulsion containing quercetin significantly prevented the UVB irradiation-induced GSH depletion and secretion/activity of metalloproteinases.  相似文献   

19.
Transdermal drug delivery (TDD) is the administration of therapeutic agents through intact skin for systemic effect. TDD offers several advantages over the conventional dosage forms such as tablets, capsules and injections. Currently there are about eight drugs marketed as transdermal patches. Examples of such products include nitroglycerin (angina pectoris), clonidine (hypertension), scopolamine (motion sickness), nicotine (smoking cessation), fentanil (pain) and estradiol (estrogen deficiency). Since skin is an excellent barrier for drug transport, only potent drugs with appropriate physicochemical properties (low molecular weight, adequate solubility in aqueous and non-aqueous solvents, etc) are suitable candidates for transdermal delivery. Penetration enhancement technology is a challenging development that would increase significantly the number of drugs available for transdermal administration. The permeation of drugs through skin can be enhanced by physical methods such as iontophoresis (application of low level electric current) and phonophoresis (use of ultra sound energy) and by chemical penetration enhancers (CPE). In this review, we have discussed about the CPE which have been investigated for TDD. CPE are compounds that enhance the permeation of drugs across the skin. The CPE increase skin permeability by reversibly altering the physicochemical nature of the stratum corneum, the outer most layer of skin, to reduce its diffusional resistance. These compounds increase skin permeability also by increasing the partition coefficient of the drug into the skin and by increasing the thermodynamic activity of the drug in the vehicle. This review compiles the various CPE used for the enhancement of TDD, the mechanism of action of different chemical enhancers and the structure-activity relationship of selected and extensively studied enhancers such as fatty acids, fatty alcohols and terpenes. Based on the chemical structure of penetration enhancers (such as chain length, polarity, level of unsaturation and presence of some special groups such as ketones), the interaction between the stratum corneum and penetration enhancers may vary which will result in significant differences in penetration enhancement. Our review also discusses the various factors to be considered in the selection of an appropriate penetration enhancer for the development of transdermal delivery systems.  相似文献   

20.
Vehicle dependent effects on the penetration behavior of drugs following topical application are well known from the literature. In this context, many reports concerning the enhancing activities for hydrophilic as well as lipophilic substances by colloidal drug carrier systems, particularly microemulsions, are available. However, there is little knowledge about the localization of the drugs within the skin and the stratum corneum, respectively. In the present study, the lipophilic dye curcumin incorporated in an oil-in-water microemulsion and in an amphiphilic cream was applied onto the skin of human volunteers. Using the method of tape stripping to remove the stratum corneum (SC), the depth profiles of the dye within the horny layer were compared. Applying the microemulsion, a deeper part of the SC was accessible by a number of 20 tapes removed and significantly smaller amounts of curcumin were found on the skin surface. Also differences in the distribution and localization of the dye within the stratum corneum were observed by laser scanning microscopy. Furthermore, curcumin was detected in hair follicles. It was obvious that the microemulsion led to a penetration into the complete follicular infundibula, whereas, following application of the cream, a fluorescence signal was only received from the follicular orifices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号