首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β-内酰胺酶抑制剂的临床应用   总被引:1,自引:0,他引:1  
保维利 《天津药学》2004,16(3):53-55
β-内酰胺类是临床应用广泛、抗感染效果强大的一类抗生素,但细菌的耐药性目前已成为此类药物的严重问题。细菌耐药最主要机制是细菌通过产生β-内酰胺酶破坏β-内酰胺类抗生素,因而解决细菌产生耐药问题的方法之一,是开发β-内酰胺酶抑制剂,与β-内酰胺类抗生素联合应用,使不耐酶的抗生素发挥它原  相似文献   

2.
β-内酰胺类抗生素包括青霉素类、头孢菌素类以及非典型β-内酰胺类等,为品种最多、研究进展最快、临床应用最广泛的一大类药物.在世界抗生素市场中β-内酰胺类抗生素占主导地位.从第一个β-内酰胺类抗生素——青霉素G上市至今将近60年的历史,由于长期大量的应用,细菌对这类药物的耐药性比较严重.细菌产生耐药性机制很多,包括靶位结构或亲和力改变、细菌细胞膜通透住改变、细胞膜主动外排系统及细菌产生灭活酶等.而产生β-内酰胺酶是细菌对β-内酰胺类药物的主要耐药机制.为了解决产酶耐药问题,近年来通过研制耐酶的药物及β-内酰胺酶抑制剂等途径为β-内酰胺类抗生素在临床的应用开创了广阔前景.本文论述了β-内酰胺酶分类、生物活性及各种β-内酰胺酶抑制剂的抑酶作用特点和β-内酰胺类抗生素与β-内酰胺酶抑制剂复合制剂的主要品种及临床应用.  相似文献   

3.
钟小斌  杨玉芳  温燕 《中国药房》2009,(20):1589-1591
β-内酰胺类抗生素是目前临床上应用最多的一类抗菌药物之一,为临床治疗感染性疾病提供了有力的保障。但细菌对其产生耐药的现象逐渐加重,甚至出现同时对多种β-内酰胺类品种耐药的现象,如耐甲氧西林金黄色葡萄球菌(MRSA)、超广谱β-内酰胺酶(ESBLs)菌株等。细菌对β-内酰胺类抗生素产生耐药的机制有细菌细胞膜通透性改变、青霉素结合蛋白的改变、产生口一内酰胺酶以及主动外排机制,其中细菌产生β-内酰胺酶、使β-内酰胺类抗生素水解而失去活性是最主要的耐药机制。β-内酰胺酶抑制剂可抑制β-内酰胺酶,  相似文献   

4.
<正>β-内酰胺类是临床应用广泛、抗感染效果强大的一类抗生素,但细菌的耐药性目前已成为此类药物的严重问题。细菌耐药最主要机制是细菌通过产生β-内酰胺酶破坏β-内酰胺类抗生素,因而解决细菌产生耐药问题的方法之一,是开发β-内酰胺酶抑制剂,与内酰胺类抗生素联合应用,使不耐酶的抗生素发挥它原有的抗菌作用。目前临床应用的品种日  相似文献   

5.
β—内酰胺酶抑制剂的进展   总被引:1,自引:1,他引:0  
方红 《上海医药》1995,(5):32-34
近年来,β-内酰胺类抗生素已成为抗生素大家族中的重要成员,它包括青霉素类、头孢菌素类及其它β-内酰胺类(如:头霉素类、碳青霉烯类、单环β-内酰胺类及氧头孢烯类等)。随着临床上β-内酰胺类抗生素的不断应用,细菌对β-内酰胺类抗生素的耐药亦呈增长的趋势。此类耐药的一个最重要机理是产生β-内酰酶。β-内酰胺酶能够水解β-内酰胺类抗生素的内酰胺环,从而使这类抗生素失去抗菌活性。  相似文献   

6.
随着β—内酰胺抗生素的广泛应用,许多微生物产生的各种β—内酰胺酶已形成一个酶系家族。它们水解β—内酰胺类抗生素的内酰胶环,使之丧失活性,而且随着新β—内酰类抗生素的开发和应用,总是伴随着新的β—内酰胶酶的产生和发展。目前全球有90%金葡菌对青霉素耐药,因此由细菌产生β—内酰胶酶而导致的耐药问题日趋严重。对付细菌β—内酰胶酶主要从发展相对或绝对抵抗β—内酰胺酶水解作用的新抗生素、使用能使细菌停止合成β—内酰胺酶的联合治疗、合并使用对β—内酰胶酶敏感的化合物与对β—内酰胺酶相对稳定的青霉素类,发展特异…  相似文献   

7.
<正>近年来,革兰阴性菌对β-内酰胺类/β-内酰胺类抗生素的耐药性不断增加,最重要的耐药机制是细菌产生各种β-内酰胺酶。β-内酰胺酶抑制剂能够抑制大部分β-内酰胺酶,恢复β-内酰胺类抗生素的抗菌活性。因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂在临床抗感染中的地位不断提升,已成为临床治疗多种耐药细菌感染的重要选择。目前我国临床使用的β-内酰胺类抗生素/β-内酰胺酶抑制剂合剂的种类和规格繁多,临床医师对该类合剂  相似文献   

8.
临床上革兰氏阳性和革兰氏阴性致病菌对青霉素类和头孢菌素类抗生素产生耐药的主要原因是因为致病菌产生β-内酰胺酶。当月β-内酰胺抗生素还没有到达作用的靶部位,对菌体进行杀灭作用之前,耐药菌产生的β-内酰胺酶已将其水解失活。如果能找到在体内能抑制耐药菌产生β-内酰胺酶活性的物质,那么由这些耐药病源菌引起的感染就可用目前临床上正在使用的青霉素类或头孢菌素类抗生素获得成功的治疗。近十年来,国外β-内酰胺酶抑制荆的研究进展十分迅速,已报道数种从微生物发酵中获得的β-内酰胺酶抑制剂及其衍生物,如棒酸、硫霉素及其衍生物MK-0787、PS-5、KA-107、橄榄酸和泉水菌酯(Izumenolide)等。它们对β-内酰胺酶都有很强的抑制作用。最近几年也报道了数种半合成β-内酰胺  相似文献   

9.
β-内酰胺类抗生素(半合成青霉素类和头孢菌素类)在产科临床上广泛使用的重要原因是其毒性低,对胎儿无不良作用,抗菌谱广和具有杀菌作用。然而,随着新β-内酰胺类的使用,对其耐药的菌株日益增多。耐药性的产生与细菌产生水解抗生素β-内酰胺环的β-内酰胺酶有关。目前已确定,产生新型β-内酰胺酶的潜在可能性尚未得到控制。因此,研制半合成青霉素与β-内酰胺酶抑制剂的复合剂是很有前途的。《Unasyn》是美国费歇尔公司生产的氨苄青霉素与β-内酰胺酶抑制剂舒巴克坦复合剂(A/S)的商品名。舒巴克坦是青霉素核的衍生物,它与细菌产生的β-内酰胺酶不可解  相似文献   

10.
非发酵革兰阴性杆菌大多产生能水解β-内酰胺类抗菌药物的灭活酶(β-内酰胺酶),β-内酰胺酶能裂解青霉素族和头孢菌素族抗菌药物的基本结构β-内酰胺环,从而使其丧失抗菌活性,是细菌对β-内酰胺类抗菌药物的主要耐药机制,尤其能产生超广谱β-内酰胺酶(ESBL)的铜绿假单胞菌和鲍曼不动杆菌为代表的多重耐药菌以及对氨基糖苷类及所有β-内酰胺类(替卡西彬克拉维酸除外)天然耐药的嗜麦芽窄食单包菌,是临床住院患者院内感染治疗的重点;洋葱伯克霍尔德菌、木糖氧化无色杆菌、脑膜炎败血金黄杆菌的检出率呈现上升趋势,且多重耐药严重;卡他莫拉菌对利奈唑胺、达托霉素等天然耐药。治疗产ESBL菌引起的感染,应根据药物敏感性试验结果合理使用抗菌药物,延缓细菌耐药性的产生。  相似文献   

11.
控制耐药菌感染是抗生素临床药理研究的一个重要课题。而细菌产生β-内酰胺酶是使β-内酰胺类抗生素灭活的主要原因之一。为了从分子药理水平研究细菌耐药机制和抗生素作用机制,寻找有效新抗生素和评价新抗生素耐酶能力,为临床合理选药提供理论依据,欧美等国家正在深入开展有关阴性杆菌β-内酰胺酶的研究工作,这是国际上进行β-内酰胺类抗生素应用理论研究的一个重要方向。  相似文献   

12.
β-内酰胺酶抑制剂 (β- Lactamase inhibitors)是一种新的 β-内酰胺类药物〔1〕。质粒传递产生 β-内酰胺酶 ,致使一些药物β-内酰胺环水解而失活 ,是病原菌对一些常见的 β-内酰胺类抗生素 (青霉素类、头饱菌素类 )耐药的主要方式。为了克服这种耐药性 ,除了研制具有耐酶性能的新抗生素外 ,还要不断寻找新的β-内酰胺酶抑制剂。目前对竞争型抑制剂的开发已有一些进展。竞争型抑制剂按其作用性质分为可逆性与不可逆性两类。耐酶青霉素 (甲氧西林、苯唑西林钠等 )属可逆性竞争型 β-内酰胺酶抑制剂。它们可与一些细菌的 β-内酰胺酶活性部…  相似文献   

13.
β—内酰胺酶研究进展   总被引:7,自引:1,他引:6  
细菌主要是通过产生质粒介导的超广谱β-内酰胺酶,染色体介导的ClassC酶、增加广谱酶的产量及降低外膜的通透性等而对头孢他定、头孢噻肟等第三代头孢菌素耐药。其酶的种类繁多,特性各异。目前从临床产酶耐药菌中得到的TEM型酶已报道到TEM-68,SHV型酶到SHV-24,ClassC酶有AmpC酶和OXA酶等。随着β-内酰胺酶抑制剂与β-内酰胺类抗生素的联合应用,近年来又发现了耐抑制剂的β-内酰胺酶(inhibitor-resistant TEM β-lactamase),简称IRT-β-内酰胺酶。它们是通过TEM型酶变异而使抑制剂的抑酶作用减弱。大多数耐抑制剂的β-内酰胺酶都是TEM-1和TEM-2的衍生酶。另外,有报道说,近年来抑制剂耐药的β-内酰胺酶在SHV型酶的家族也出现了。  相似文献   

14.
目前,随着临床上耐药菌株的日趋增加,以及由于筛选抗菌作用机制和化学结构全新的理想抗生素的困难,使得抗感染药物的联合应用成为临床上解决耐药菌或严重感染的重要手段。国外很多学者认为β-内酰胺酶非常广泛的存在于革兰氏阳性和阴性菌,并且可以使青霉素类或头孢菌素类β-内酰胺类抗生素水解失活,这是细菌对这些抗生素产生耐药的主要原因。因此,国外除通过化学结构改造发展耐酶的半合成青霉素和头孢菌素外,还开展了对β-内酰胺酶抑制剂的研究。异噁唑类半合成青霉素它们既耐受β-内酰胺酶,同时又对革兰氏阳性和阴性菌产生的β-内酰胺酶有不同程度的抑制作用。为此,许多国家如日本、苏联、英国均有异噁唑类半合成青霉素和氨苄青霉  相似文献   

15.
文摘     
19-39 2β-烷氧羧基青霉烷酸砜的合成与β-内酰胺酶抑制活性β-内酰胺酶的产生是β-内酰胺类抗生素耐药的主要机制,采用自杀性抑制剂抑制β-内酰胺酶是解决这种耐药的有效途径.由铜绿假单胞菌、肠杆菌、柠檬酸杆菌、摩根菌、沙雷菌和普罗威登斯菌产生的染色体介导ClassⅠ类头孢菌素酶对新型广谱头孢菌素有钝化作用,目前应用的β-内酰胺酶抑制剂克拉维酸、舒巴坦和三唑巴坦对ClassⅠ类头孢菌素酶均没有很强的抑制作用.这类酶通过质粒在革兰阴性菌中扩散,因此寻找ClassⅠ类头孢菌素酶抑制剂尤为重要.作者曾报道在三唑巴坦三氮唑环的C-4位引入不同的取代基,所得衍生物均对头孢菌素酶无抑制作用.本文对青霉烷砜骨架C-2位进行了结构修饰,报道了一系列 2β烷氧羰基青霉烷酸砜Ia~Ig(图1)的合成及其对β-内酰胺酶抑制活性.  相似文献   

16.
CEFTAZIDIME耐药细菌的β-内酰胺酶研究   总被引:5,自引:3,他引:2  
应用药物梯度琼脂筛选法获得绿脓杆菌和阴沟杆菌的Ceftazidime耐药菌株(MIC≥64μg/ml)。采用紫外分光光度法检测了耐药菌的β-内酰胺酶活性,酶对12种β-内酰胺抗生素水解的“底物轮廓”以及抑酶活性;应用超薄层分析等电聚焦电泳技术检测了β-内酰胺酶的等电点(pI),并与标准产酶菌株的β-内酰胺酶进行了比较。结果提示:细菌对Ceftazidime耐药后,β-内酰胺酶活性增加13~107倍;这类β-内酰胺酶具有如下特点:(1)水解头孢菌素类强于水解青霉素类;(2)舒巴克坦(5μg/ml)对这类酶无抑制作用,而同等剂量的邻氯青霉素却能明显抑制,(3)pI均≥8.0,与标准质粒介导的β-内酰胺酶的性质不同,符合染色体介导的头孢菌素酶的性质。此外,作者发现pI为8.2或8.4的4株耐药菌的β-内酰胺酶尚未见文献报道。  相似文献   

17.
β-内酰胺酶分子生物学研究进展   总被引:11,自引:0,他引:11  
β-内酰胺酶是细胞对β-内酰胺类抗生素耐药的主要原因,β-内酰胺酶按照各自的底物和抑制轮廓分为4组,根据各自的氨基酸序列分属于A、B、C、D共4种分子类别。细菌β-内酰胺酶耐药基因突变可引起广泛耐药,以TEM和SHV为代表的A类酶的突变多发生在结构基因上,其单点苛多点突变衍生出大量的新型超广谱酶。结构基因以外区域的突变多数发生于启动基因或调节基因,后者的改变往往造成结构基因的过度表达,使产酶量大增而导致耐药。B类金属β-内酰胺酶可通过启动基因上的多点突变产生耐药。C类酶的基因突变一般发生在调节基因上,通过对产酶量的调控引起细菌耐药。  相似文献   

18.
阴沟肠杆菌产β-内酰胺酶是对β-内酰胺类抗生素耐药的主要机制,所产β-内酰胺酶种类较多、特性各异,并在β-内酰胺类抗生素广泛应用的选择压力下,不断有新的β-内酰胺酶产生.文中对阴沟肠杆菌产β-内酰胺酶(EsBLs、AmpC、碳青霉烯酶)耐药性的研究进展作了简要综述.  相似文献   

19.
β-内酰胺类是临床应用广泛、抗感染效果强大的一类抗生素,但细菌的耐药性目前已成为此类药物的严重问题.细菌耐药最主要机制是细菌通过产生β-内酰胺酶破坏β-内酰胺类抗生素,因而解决细菌产生耐药问题的方法之一,是开发β-内酰胺酶抑制剂,与内酰胺类抗生素联合应用,使不耐酶的抗生素发挥它原有的抗菌作用.目前临床应用的品种日益增加,且涉及多种组方、多种配比,含β-内酰胺酶抑制剂的复方制剂主要有舒巴坦、克拉酸和他唑巴坦的复方制剂[1,2].本文对2008-2012 年本院使用这类制剂临床应用情况进行分析,为临床用药提供参考.  相似文献   

20.
抗菌药物临床应用指导原则(续三)   总被引:2,自引:0,他引:2  
<正>第三部分 各类抗菌药物的适应证和注意事项β-内酰胺类/β-内酰胺酶抑制剂 目前临床应用者有阿莫西林/克拉维酸、替卡西林/克拉维酸、氨苄西林/舒巴坦、头孢哌酮-舒巴坦和哌拉西林-三唑巴坦。 一、适应证 本类药物适用于因产β-内酰胺酶而对β-内酰胺类药物耐药的细菌感染,但不推荐用于对复方制剂中抗生素敏感的细菌感染和非产β-内酰胺酶的耐药菌感染。 阿莫西林/克拉维酸适用于产β-内酰胺酶的流感  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号