首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of both chronic and acute lithium treatment on hypothalamic opioid peptides was investigated. Acute treatment with lithium was found to stimulate the release of beta-endorphin, dynorphin and Met-enkephalin from perfused rat hypothalamic slices. Application of tetrodotoxin was found to have no effect upon the stimulation indicating it to be mediated at the nerve terminal level. The release of hypothalamic opioid peptides is known to be under the chronic control of a system of inhibitory autoreceptors. Blockade of these autoreceptors with, for example, the opioid receptor antagonist naloxone causes a release of all three opioid peptides. Simultaneous addition of naloxone and lithium was found to have no additive effect on the release of any opioid, suggesting lithium acts via an inhibition of the inhibitory autoreceptor. Preincubation with pertussis toxin prevented the lithium stimulation of dynorphin and Met-enkephalin, but not beta-endorphin, release, indicating lithium interacts with a G-protein to affect the autoreceptor controlling the release of dynorphin and Met-enkephalin. Chronic treatment with lithium in vivo (10 days) had no effect on the basal release or hypothalamic content of any of the opioids, but prevented the naloxone-stimulated release of dynorphin and Met-enkephalin in vitro. Long-term treatment with lithium would thus appear to inactivate the autoreceptor(s) controlling their release. These data demonstrate a lithium-stimulated release of hypothalamic beta-endorphin, Met-enkephalin and dynorphin, apparently mediated via an inhibition of the autoreceptors controlling their release. Chronic treatment with lithium permanently inactivated the autoreceptor(s) controlling the release of dynorphin and Met-enkephalin but not beta-endorphin. Lithium would appear to mediate its effects upon Met-enkephalin and dynorphin release via an interaction with a pertussis toxin-sensitive G-protein. The mechanisms underlying its release of beta-endorphin are at present uncertain.  相似文献   

2.
Recent studies have shown that inhibitory feedback mechanisms regulate the release of the endogenous opioid peptides beta-endorphin (acting predominantly at mu opioid receptors in the brain), dynorphin (a kappa opioid receptor ligand) and [Met]enkephalin (a delta opioid receptor ligand) from the rat hypothalamus. By using specific antagonists of the various opioid receptor types, it is shown that the release of these peptides from hypothalamic slices in vitro is not only controlled by homologous (auto)-receptors, but that cross-regulation between the three neuronal opioid receptor types also occurs; thus, the delta receptor antagonist N,N-diallyl-Tyr-Aib-Aib-Phe-Leu increases the release of all three peptides, the mu receptor antagonist D-tetrahydroisoquinoline-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 increases that of beta-endorphin and dynorphin, and the kappa receptor antagonist nor-binaltorphimine increases that of dynorphin; all these effects occur in the presence of tetrodotoxin, indicating a presynaptic site of action. We propose the term "allelo-receptors" to describe this particular form of neuronal regulation in which an endogenous ligand, acting via its own specific receptor, also regulates the release of related peptides which activate different classes of opioid receptors.  相似文献   

3.
Summary Administration of synthetic human corticotropin-releasing factor (hCRF; 2 µg/kg body weight) to six normal male subjects produced a significant rise in plasma ACTH, followed by an increase in circulating cortisol. Simultaneous treatment with the opioid antagonist naloxone (1.6 mg i.v. bolus, followed by an infusion at a rate of 1.2 mg/h) significantly potentiated the hCRF-induced rise in ACTH and enhanced the cortisol response to hCRF. It is suggested that naloxone acts by antagonizing an inhibitory ultra-short-loop feedback effect of coreleased -endorphin on pituitary corticotrophs, thereby amplifying the net effect of hCRF, i.e., the release of ACTH.ACTH adrenocorticotropic hormone - CRF corticotropin-releasing factor - hCRF human CRF - oCRF ovine CRF - EKG electrocardiogram - POMC proopiomelanocortin - RIA radioimmunoassay - S.E.M. standard error of the mean This study was supported by the Deutsche Forschungsgemeinschaft (Go 299/3-2; Mu 585/2-2)  相似文献   

4.
H Steiner  C R Gerfen 《Neuroscience》1999,88(3):795-810
Projection neurons of the striatum release opioid peptides in addition to GABA. Our previous studies showed that the opioid peptide dynorphin regulates that subtype of projection neurons which sends axons to the substantia nigra/entopeduncular nucleus, as indicated by an inhibitory action of dynorphin/agonists on D1 dopamine receptor-mediated immediate-early gene induction in these neurons. The other subtype of striatal projection neurons projects to the globus pallidus and contains the opioid peptide enkephalin. Here, we investigated whether enkephalin regulates the function of striatopallidal neurons, by analysing opioid effects on immediate-early gene induction by D2 dopamine receptor blockade that occurs in these neurons. Thus, the effects of systemic and intrastriatal administration of various opioid receptor agonists and antagonists on immediate-early gene expression (c-fos, zif 268) induced by the D2 receptor antagonist eticlopride were examined with in situ hybridization histochemistry. Intrastriatal infusion of enkephalin (delta and mu), but not dynorphin (kappa), receptor agonists suppressed immediate-early gene induction by eticlopride in a dose-dependent manner. This suppression was blocked by the opioid receptor antagonist naloxone, confirming the involvement of opioid receptors. Repeated treatment with D2 receptor antagonists produces increased enkephalin expression and diminished immediate-early gene inducibility in striatopallidal neurons, as well as behavioral effects that are attenuated compared to those of acute treatment (e.g., reduced akinesia). Naloxone reversed such behavioral recovery (i.e. reinstated akinesia), but did not significantly affect suppressed immediate-early gene induction. Our results indicate that enkephalin acts, via mu and delta receptors in the striatum, to inhibit acute effects of D2 receptor blockade in striatopallidal neurons. Moreover, the present findings suggest that increased enkephalin expression after repeated D2 receptor antagonist treatment is an adaptive response that counteracts functional consequences of D2 receptor blockade, but is not involved in suppressed immediate-early gene induction. Together with our earlier findings of the role of dynorphin, these results indicate that opioid peptides in the striatum serve as negative feedback systems to regulate the striatal output pathways in which they are expressed.  相似文献   

5.
Dynorphin1–13 antagonized in a concentration-dependent fashion the contractile effect of neurotensin on the isolated preparation of the guinea pig ileum myenteric plexus. The inhibitory action of dynorphin was reduced in the presence of naloxone, indicating the opioid nature of this interaction. Atropine also reduced the excitatory component of the neurotensin-induced contractile response; the joint application of atropine plus dynorphin did not cause additional inhibition of the contractile effect of neurotensin.  相似文献   

6.
Effects of 'rapid eye movement' sleep deprivation (REMd) on two opioid peptides, beta-endorphin and dynorphin, were studied in rats. Both peptides were measured by radioimmunoassay techniques. The level of beta-endorphin was estimated in the hypothalamus, in the anterior lobe of the pituitary and in the blood. The amount of dynorphin was estimated in the hypothalamus. REMd was induced for 72 h and achieved by two different methods, the platform technique and the pendulum technique. Three control groups were additionally run. As a consequence of REMd, an increase in beta-endorphin level was discovered in the blood plasma, while a small decrease was found in the hypothalamus. No changes could be detected for beta-endorphin levels in the pituitary or for hypothalamic dynorphin concentration. The deprivation effects are interpreted as belonging to a group of changes, all of which point to a small increase in tonic arousal as a result of REMd.  相似文献   

7.
In the midbrain, dopamine neurons can release dopamine somatodendritically. This results in an inhibitory postsynaptic current (IPSC) within adjacent dopamine cells that occurs by the activation of inhibitory D(2) autoreceptors. Kappa, but not mu/delta, opioid receptors inhibit this IPSC. The aim of the present study was to determine the mechanism by which kappa-opioid receptors inhibit the dopamine IPSC. In both the ventral tegmental area (VTA) and substantia nigra compacta (SNc) the kappa-receptor agonist U69593 inhibited the IPSC, but not the current induced by the exogenous iontophoretic application of dopamine. The endogenous peptide dynorphin A (1-13) also inhibited IPSCs in the VTA and SNc, but also the dopamine iontophoretic current in the VTA. Although both kappa agonists induced a postsynaptic outward current in the VTA, the current induced by dynorphin was dramatically larger. This suggests that the decrease in iontophoretic dopamine current was the result of occlusion. Occlusion alone, however, could not completely account for suppression of the IPSC. The kappa opioid inhibition of the IPSC was not affected by global increases or decreases in dopamine cell activity within the slice. These findings suggest that, although kappa opioid receptors can hyperpolarize dopamine neurons, they also suppress dopamine release by direct actions at the release site. The results thus demonstrate both pre- and postsynaptic actions of kappa receptor agonists. The actions of dynorphin indicate that VTA dopamine cells are selectively regulated by kappa receptors.  相似文献   

8.
The roles of acetylcholine and dynorphin (1-13) in the presynaptic control of the release of [3H]dopamine continuously synthesized from [3H]tyrosine were examined in a prominent striosomal enriched area and in an adjacent matrix enriched area of the cat caudate nucleus. This was achieved using microsuperfusion devices applied vertically onto coronal slices of cat brain. These devices were placed in a striosomal enriched area located in the core of the structure (acetylcholinesterase-poor zone) and in an adjacent matrix enriched area (acetylcholinesterase-rich zone). [3H]Tyrosine was delivered continuously to each microsuperfusion device and [3H]dopamine released was estimated in the superfusate. As previously shown, in the presence of tetrodotoxin (1 microM), acetylcholine (50 microM) induces a prolonged stimulation of [3H]dopamine release in both compartments through an interaction with muscarinic receptors. Our present study indicates that both dynorphin 1-13 (1 microM) and the selective kappa agonist trans-3,4-dichloro-N-methyl-N[2-(1-pyrrolidinyl)cyclohexyl]benzeneace tamine (U50488) (1 microM) inhibit the tetrodotoxin-resistant acetylcholine-evoked release of [3H]dopamine, these effects being slightly more pronounced in the matrix than in the striosomal enriched area. Naloxone (1 microM) reversed the inhibitory effect of U50488 in both areas. These results suggest that dynorphin exerts an inhibitory presynaptic control of dopamine release through kappa opioid receptors located on dopamine nerve terminals in the striosome as well as in the matrix. However, the presynaptic cholinergic control of dopamine release is much more complex in the matrix than in the striosomal enriched area. Besides its tetrodotoxin-resistant stimulatory effect, acetylcholine exerts two opposing tetrodotoxin-sensitive effects on [3H]dopamine release, one facilitatory and the other inhibitory. We demonstrate here that in the superfused matrix enriched area, the indirect acetylcholine inhibitory response is mediated by dynorphin-containing neurons. Indeed, the short-lasting stimulatory effect of acetylcholine on [3H]dopamine release was converted into a long-lasting response in the presence of naloxone (1 microM), and, in this latter condition, the co-application of dynorphin 1-13 (1 microM) restored the short-lasting stimulatory effect.  相似文献   

9.
Neostriatal GABAergic neurons projecting to the globus pallidus synthesize the opioid peptide enkephalin, while those innervating the substantia nigra pars reticulata and the entopeduncular nucleus synthesize dynorphin. The differential control exerted by dopamine on the activity of these two efferent projections concerns also the biosynthesis of these opioid peptides. Using in situ hybridization histochemistry, we investigated the role of opioid co-transmission in the regulation of neostriatal and pallidal activity. The expression of the messenger RNAs encoding glutamate decarboxylase-the biosynthetic enzyme of GABA-and the precursor peptides of enkephalin (preproenkephalin) and dynorphin (preprodynorphin) were measured in rats after a sustained blockade of opioid receptors by naloxone (s.c. implanted osmotic minipump, eight days, 3 mg/kg per h), and/or a subchronic blockade of D2 dopamine receptors by haloperidol (one week, 1.25 mg/kg s.c. twice a day). The density of mu opioid receptors in the neostriatum and globus pallidus was determined by autoradiography. Naloxone treatment resulted in a strong up-regulation of neostriatal and pallidal mu opioid receptors that was not affected by the concurrent administration of haloperidol. Haloperidol alone produced a moderate down-regulation of neostriatal and pallidal micro opioid receptors. Haloperidol strongly stimulated the expression of neostriatal preproenkephalin and preprodynorphin messenger RNAs. This effect was partially attenuated by naloxone, which alone produced moderate increases in preproenkephalin and preprodynorphin messenger RNA levels. In the neostriatum, naloxone did not affect either basal or haloperidol-stimulated glutamate decarboxylase messenger RNA expression. A strong reduction of glutamate decarboxylase messenger RNA expression was detected over pallidal neurons following either naloxone or haloperidol treatment, but concurrent administration of the two antagonists did not result in a further decrease. The amplitude of the variations of mu opioid receptor density and of preproenkephalin and preprodynorphin messenger RNA levels suggests that the regulation of neostriatal and pallidal micro opioid receptors is more susceptible to a direct opioid antagonism, while the biosynthesis of opioid peptides in the neostriatum is more dependent on the dopaminergic transmission. The down-regulation of mu opioid receptors following haloperidol represents probably an adaptive change to increased enkephalin biosynthesis and release. The haloperidol-induced increase in neostriatal preprodynorphin messenger RNA expression might result from an indirect, intermittent stimulation of neostriatal D1 receptors. The haloperidol-induced decrease of pallidal glutamate decarboxylase messenger RNA expression suggests, in keeping with the current functional model of the basal ganglia, that the activation of the striatopallidal projection produced by the interruption of neostriatal dopaminergic transmission reduces the GABAergic output of the globus pallidus. The reduction of pallidal glutamate decarboxylase messenger RNA expression following opioid receptor blockade indicates an indirect, excitatory influence of enkephalin upon globus pallidus neurons and, consequently, a functional antagonism between the two neuroactive substances (GABA and enkephalin) of the striatopallidal projection in the control of globus pallidus output. Through this antagonism enkephalin could partly attenuate the GABA-mediated effects of a dopaminergic denervation on pallidal neuronal activity.  相似文献   

10.
Ogura M  Kita H 《Neuroscience》2002,114(4):973-982
The entopeduncular nucleus (EP) receives dense neostriatal afferent axons that contain dynorphin (DYN, an endogenous kappa-receptor agonist), in addition to GABA and substance P. To examine the role of DYN in the EP, whole-cell recordings were performed in rat brain slice preparations. Based on the physiological and morphological characteristics, all the neurons recorded were similar to the Type-I EP neuron described in a previous study. The kappa-receptor agonist dynorphin A (1-13) (DYN13) hyperpolarized and decreased the input resistance of approximately one-quarter of the EP neurons examined. The hyperpolarization was due to an increase in potassium conductance since current-voltage relationship curves obtained before and after DYN13 application crossed at the potassium equilibrium potential. In the presence of the glutamate blocker 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide and 3-(2-carboxypiperzin-4-yl)-propyl-1-phosphonic acid in artificial cerebrospinal fluid, stimulation of the globus pallidus evoked bicuculline-sensitive multi-component GABAergic responses in EP neurons. Application of DYN13 equally reduced the amplitudes of the short-latency response, conceivably evoked by pallido-EP axons, and the medium-latency response, conceivably evoked by striato-EP axons. These effects were reversed by bath application of a non-selective opioid antagonist naloxone or by a kappa-opioid receptor-selective antagonist nor-binaltorphimine dihydrochloride (nor-BNI), but not by the partial differential -antagonist naltrindole or the mu-antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2). DYN13 also reduced the frequency of tetrodotoxin-insensitive miniature-inhibitory postsynaptic potential (mIPSPs) without changing their amplitude distributions. The decrease of the frequency of mIPSPs was reversible upon washing and was also completely blocked by nor-BNI. The results of the present study on the EP indicated that DYN released from striatal axons might exert at least three different effects on these target nuclei. Firstly, DYN might provide negative feedback regulation of striatal GABAergic outputs at their termination sites. Secondly, DYN released from the striatal terminals might diffuse to the pallidal terminals, regulating their GABA release. Thirdly, DYN might exert a direct inhibition of EP neurons. Thus, DYN released from striatal axons might control the activity of EP neurons by reducing the GABAergic transmission and also by hyperpolarizing postsynaptic membrane.  相似文献   

11.
The involvement of the peripheral opioid system in modulating inflammatory pain has been well documented. This study aimed to investigate the possibility of electroacupuncture (EA)-mediated peripheral opioid release. Rats were injected with complete Freund's adjuvant in one of the hind paws to induce localized inflammatory pain. The pain behavioral changes were measured by paw withdrawal latency (PWL) to a noxious thermal stimulus. At day 5 of inflammation, rats received a second injection of saline or opioid antagonists into the inflamed paw, followed by EA at 30 Hz, 2 mA, and 0.1 ms for 30 minutes. The EA was conducted at acupuncture point GB30. A control was used in which needles were inserted at GB30 but no electrical stimulation was applied. Rats receiving EA showed a significantly longer PWL as compared with the control from 30 minutes to three hours after EA treatment. Intraplantar but not intraperitoneal injection of naloxone methiodide, a peripherally acting opioid receptor antagonist, eliminated the analgesic effect at 30 minutes after EA treatment. Intraplantar injection of an antibody against beta-endorphin and a corticotropin-releasing factor antagonist also produced a reduction in PWL in rats receiving EA. These data strongly suggest that peripheral opioids are released by EA at the inflammatory site.  相似文献   

12.
13.
In order to examine the capacity of pharmacologically useful opiates to stimulate human mast cell secretion, subjects were skin tested with morphine, codeine, or meperidine hydrochloride. All three agents acted equipotently in eliciting positive immediate skin reactions from all subjects tested. Each agent demonstrated 10 mm of net whealing at 5 to 10 micrograms base (16.7 to 40.4 nmol) injected intradermally. The ability to elicit immediate skin test reactions with endogenous opioid peptides was examined with the use of dynorphin, [D-Ala, 2-D-Leu5] enkephalin, beta-endorphin, and morphiceptin . All four compounds induced wheal-and-flare reactions with the order of potency: dynorphin, greater than beta-endorphin, and greater than [D-Ala, 2-D-Leu5] enkephalin approximately equal to morphiceptin at dose ranges of 0.3 to 8.45 nmol. The inhibition of reactivity by hydroxyzine and the demonstration of mast cell degranulation by electron microscopy suggest that the immediate skin responses to opioid stimulation occur as a consequence of mast cell degranulation. Experiments with the opioid receptor antagonist, naloxone, suggest that both opioid and nonopioid receptors may be involved. These results imply that endogenous opioid peptides possibly may play a role in mast cell function and/or degradulation .  相似文献   

14.
In order to imitate the in vivo situation with constituents from the blood-brain barrier, astrocytes from newborn rat cerebral cortex were co-cultured with adult rat brain microvascular endothelial cells. These astrocytes exhibited a morphologically differentiated appearance with long processes. 5-HT, synthetic mu-, delta- or kappa-opioid agonists, and the endogenous opioids endomorphin-1, beta-endorphin, and dynorphin induced higher Ca(2+) amplitudes and/or more Ca(2+) transients in these cells than in astrocytes in monoculture, as a sign of more developed signal transduction systems. Furthermore, stimulation of the co-cultured astrocytes with 5-HT generated a pronounced increase in intracellular Ca(2+) release in the presence of the inflammatory or pain mediating activators substance P, calcitonin gene-related peptide (CGRP), lipopolysaccharide (LPS), or leptin. These Ca(2+) responses were restored by opioids so that the delta- and kappa-opioid receptor agonists reduced the number of Ca(2+) transients elicited after incubation in substance P+CGRP or leptin, while the mu- and delta-opioid receptor agonists attenuated the Ca(2+) amplitudes elicited in the presence of LPS or leptin. In LPS treated co-cultured astrocytes the mu-opioid receptor antagonist naloxone attenuated not only the endomorphin-1, but also the 5-HT evoked Ca(2+) transients. These results suggest that opioids, especially mu-opioid agonists, play a role in the control of neuroinflammatory activity in astrocytes and that naloxone, in addition to its interaction with mu-opioid receptors, also may act through some binding site on astrocytes, other than the classical opioid receptor.  相似文献   

15.
Summary Administration of synthetic human corticotropin-releasing factor (hCRF, 2 µg/kg body weight) during simultaneous application of the opioid antagonist naloxone (1.6 mg i.v. bolus, followed by an infusion at a rate of 1.2 mg/h) produced a significant increase in plasma C-peptide levels of six male Type 2 diabetic patients which even exceeded the postprandial values. This stimulatory effect of hCRF/naloxone on plasma C-peptide was less pronounced in six healthy men. hCRF alone did not provoke any reaction of plasma C-peptide in either group.The possibility of a paracrine, CRF-dependent mechanism in pancreatic islets which somehow involves inhibitory opioid receptors is preferentially discussed. Such a mechanism may underlie the stimulatory action of hCRF/naloxone on B cells and would explain the absent reaction of peripheral venous plasma C-peptide to hCRF alone as well as the amplifying effect of simultaneous opioid receptor blockade.Abbreviations ACTH adrenocorticotropic hormone - C-peptide connecting-peptide - CRF corticotropin-releasing factor - hCRF human CRF - oCRF ovine CRF - min minutes - S.D. standard deviation - S.E.M. standard error of the mean This study was supported by the Deutsche Forschungsgemeinschaft (Go 299/3-2)Dedicated to Professor Dr. N. Zöllner on the occasion of his 65th birthday  相似文献   

16.
The distribution of neurons expressing beta-endorphin immunoreactivity was explored in the brain of adult jerboa during two distinct periods characterizing its reproductive cycle. A large presence of cell bodies displaying beta-endorphin immunoreactivity occured within different parts of the mediobasal hypothalamus along its rostrocaudal extent, from the retrochiasmatic area to the posterior arcuate nucleus. Quantitatively, the highest density of immunoreactive beta-endorphin neurons was noted at the medial level of the arcuate nucleus. Furthermore, a seasonal study showed that the number of IR-beta-endorphin neurons was highest in the anterior portion of the arcuate nucleus of jerboas sacrificed in autumn as compared to those sacrificed during spring-summer. Quantitatively, the number of beta-endorphin containing neurons in autumn was 200% in comparison to that found in spring-summer. These results suggest that beta-endorphin containing neuronal population especially localized in the anterior part of arcuate nucleus, exerts an inhibitory influence on the GnRH neurosecretory system in the jerboa, notably in autumn, probably via an increasing expression of its products. The results provide morphofunctional arguments in favour of inhibitory opioid control of GnRH neurons activity and hence the neuroendocrine events regulating reproduction in jerboa.  相似文献   

17.
The relationship between the cloned kappa opioid receptor, dynorphin, and the neurohypophysial hormones vasopressin and oxytocin was analysed in the guinea-pig hypothalamic magnocellular neurosecretory neurons. This analysis was performed in order to understand better which population of neuroendocrine neurons in the guinea-pig is modulated by kappa opioid receptors and its endogenous ligand dynorphin. Extensive co-localization was observed between kappa opioid receptor immunoreactivity and preprodynorphin immunoreactivity in neuronal cell bodies in the paraventricular and supraoptic nuclei. Cells positive for either the kappa opioid receptor or both the kappa opioid receptor and preprodynorphin were restricted to the vasopressin expressing neuronal population and not found in the oxytocin expressing neuronal population. The kappa opioid receptor and dynorphin were examined in the posterior pituitary and both were found to be extensively distributed. Staining for the kappa opioid receptor and dynorphin B co-localized in posterior pituitary. In addition, immunogold electron microscopy confirmed that kappa opioid receptor and dynorphin B immunoreactivity were found in the same nerve terminals. Ultrastructural analysis also revealed that kappa opioid receptor immunoreactivity was associated with both nerve terminals and pituicytes. Within nerve terminals, kappa opioid receptor immunoreactivity was often associated with large secretory vesicles and rarely associated with the plasma membrane.Our data suggest that the cloned kappa opioid receptor may directly modulate the release of vasopressin but not oxytocin in guinea-pig hypothalamic magnocellular neurosecretory neurons and posterior pituitary. Furthermore, we propose that this receptor is an autoreceptor in this system because our results demonstrate a high degree of co-localization between kappa opioid receptor and dynorphin peptide immunoreactivity in magnocellular nerve terminals.  相似文献   

18.
We have recently demonstrated that the pineal neurohormone melatonin can enhance immune reactivity in normal mice and counteract the effects of acute stress or corticosterone treatment on antibody production, thymus weight and anti-viral resistance. These remarkable immunopharmacologic effects of melatonin were abolished by naltrexone, suggesting an involvement of the endogenous opioid system. Here we compared the immunopharmacologic action of beta-endorphin, dynorphin 1-13, leu-enkephalin and metenkephalin with that of melatonin in restraint-stressed or prednisolone-treated mice and in normal nonstressed animals. We found that beta-endorphin and dynorphin 1-13 can mimic the immunoenhancing and antistress effect of melatonin. However, at variance with the pineal neurohormone, these opioids were effective in umprimed mcie, too. We found also that restraint stress or prednisolone treatment decreases the immunopharmacologic potency of beta-endorphin and augments that of dynorphin 1-13. In fact, at the doses used, beta-endorphin enhanced the antibody response in normal but not in stressed or prednisolone-treated mice, while dynorphin 1-13 was effective only in counteracting the effect of stress or prednisolone treatment. Most interestingly, all these effects proved to be dependent on the time of administration, i.e. showed a circadian rhythm in analogy with the effects of melatonin. Again, naltrexone abolished all the opioid effects, indicating that their action was exerted via opioid receptors. These findings have important scientific and practical implications.  相似文献   

19.
Interleukin-8 (IL-8) is produced by human decidual cells in culture, and may play a role in the initiation of parturition. beta-endorphin is released in significant amounts into the maternal and fetal circulation during labour. The effect of beta-endorphin on IL-8 production by human chorio-decidual cells in culture was investigated. Mixed cells were obtained from the decidual surfaces of 35 term placentas. The cells were plated out at 10x10(6) cells per well in Roswell Park Memorial Institute 1640 culture medium. After 48 h the cells were washed and incubated with either plain culture medium (control), 1 micromol/l progesterone, 1-100 nmol/l beta-endorphin or 1 nmol/l N-acetyl beta-endorphin. After 48 h, IL-8 concentrations were measured in the supernatants by enzyme-linked immunosorbent assay (ELISA). Experiments were repeated in the presence of naloxone (1 micromol/l) and using calcium-deficient culture medium. Progesterone (P < 0.0002) and beta-endorphin (P < 0. 0005) significantly inhibited the production of IL-8. The inhibitory effect of beta-endorphin was blocked by naloxone and by using calcium-deficient medium. N-acetyl beta-endorphin had no significant effect on IL-8 production. These findings suggest that beta-endorphin has an inhibitory effect on IL-8 production by decidual cells, and that the effect is mediated via opioid receptors and is calcium-dependent.  相似文献   

20.
Dynorphin A (1-17) is an endogenous opioid peptide that is antinociceptive at physiological concentrations, but in excess can elicit a number of pathological effects. Both kappa-opioid and N-methyl-D-aspartate receptor antagonists modulate dynorphin toxicity, suggesting that dynorphin is acting directly or indirectly through these receptor types. We found in spinal cord neurons that the neurotoxic effects of dynorphin A and several dynorphin-derived peptide fragments are largely mediated by N-methyl-D-aspartate receptors. Despite these findings, aspects of dynorphin A toxicity could not be accounted for by opioid or N-methyl-D-aspartate receptor mechanisms. To address this issue, neurons enriched in kappa-opioid, N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors were isolated from embryonic day-15 mouse striata and the effects of extracellularly administered dynorphin A (1-17) and (13-17) on neuronal survival were examined in vitro. Unlike spinal cord neurons, N-methyl-D-aspartate receptors mature later than alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptors in striatal neurons, thus providing a strategy to elucidate non-N-methyl-D-aspartate receptor-mediated mechanisms of toxicity. Time-lapse photography was used to repeatedly follow the same neurons before and during experimental treatments. Dynorphin A (1-17 or 13-17; 10 microM) caused significant neuronal losses after 48 to 72 hours versus untreated controls. Dynorphin A or A (13-17) toxicity was unaffected by the opioid receptor antagonist naloxone (10 microM) or by dizocilpine (10 microM). In contrast, the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline- 2,3-dione (10 microM) significantly attenuated only dynorphin A (1-17)-induced neuronal losses and not that induced by dynorphin A (13-17). Dynorphin A (1-17) toxicity was accompanied by a proportional loss of R2 and R3 subunits of the AMPA receptor complex, but not non-N-methyl-D-aspartateR1, expressing neurons and was mimicked by the ampakine 1-(1,4-benzodioxan-6-ylcarbonyl)piperidine. Although it is unclear whether dynorphin A activates alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptors directly or indirectly via glutamate release, our culture conditions do not support glutamate retention or accumulation. Our findings suggest that dynorphin A (1-17) can exert toxic effects on striatal neurons via an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号