首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Linkage data using the markers F9, DXS105 (cX55.7), DXS98 (4D-8) and DXS52 (St14) are presented from 22 kindreds segregating with the fragile X. Two-point linkage analysis was carried out taking into account cytogenetic results and penetrance classes defined by mental impairment status of mothers. Recombination frequencies (theta) corresponding to the maximum z scores (z) were obtained between F9 (z = 3.48, theta = 0.18), DXS105 (z = 5.06, theta = 0.07), DXS98 (z = 4.79, theta = 0.01) and DXS52 (z = 6.44, theta = 0.09) and the fragile X. Recombination frequencies between marker loci in fragile X families are also presented. These recombination frequencies need to be combined with those from other studies in order to determine the best estimates of map distances for use in genetic counselling, until markers closer to the fragile X, or at the fragile X, can be used. Most potential fra(X) heterozygotes were informative for flanking markers using the above 4 probes. Carrier risks were determined by 3-point analysis using informative flanking markers, taking into account cytogenetic results. Low level fra(X) expression occurred in 2 probable non-carriers; emphasising the need for extreme caution in the interpretation of low rates of expression.  相似文献   

2.
Multipoint linkage analysis was undertaken with eight Xq cloned DNA sequences which identify one or more restriction fragment length polymorphisms in 26 families. These families comprise seven phase known normal families with three or more males in the third generation, seven families segregating for haemophilia B, one large family with dyskeratosis congenita, and 11 families with the fragile X syndrome. Phase known meioses informative for three or more loci supported the order centromere--DXYS1--DXS107--DXS102, DXS51--F9--FRAXA--DXS15, DXS52, F8--Xqter in each group of families studied. One of the normal families was segregating for protan colour blindness and showed a phase known recombination which would support the order centromere--F9--DXS52--CBP--Xqter. With the exception of DXYS1, all of these sequences have been localised to Xq27----qter by in situ hybridisation or hybridisation to Xq fragment panels, and on this basis should lie within 20 cM of one another. No recombination was observed between the sequences localised to Xq28, namely DXS52, F8, and DXS15 (between DXS15 and DXS52 Z = 12.25 at theta = 0 with confidence limits of 0 to 5 cM). However, an excess of recombination was apparent in the region of FRAXA with maximal lod scores as follows: F9 versus FRAXA (Z = 2.05, theta = 0.19), DXS52 versus FRAXA (Z = 1.85, theta = 0.26), and DXS15 versus FRAXA (Z = 1.33, theta = 0.27). No consistent differences were observed in the frequency of recombination when families with the fragile X syndrome were compared with normal families or families segregating for other X linked conditions. These results are compared with other published work and support the conclusion that although measurable linkage exists between these flanking markers and FRAXA, the intervals as measured by the frequency of meiotic recombination will seriously limit their clinical usefulness.  相似文献   

3.
Linkage data using the polymorphic loci F9, DXS105, DXS98, DXS52, DXS15, and F8 and the DNA probe 1A1 are presented from 14 families segregating for fragile X [fra(X)] syndrome. Recombination fractions corresponding to the maximum LOD scores obtained by two-point linkage analysis suggest that DXS98 (Zmax = 3.23, theta = 0.0) and DXS105 (Zmax = 2.09, theta = 0.0) are the closest markers proximal to FRAXA and that DXS52 is the closest distal marker (Zmax = 3.55, theta = 0.16). FRAXA is located within a 25 cM interval between F9 and DXS52, coincident with DXS98, on multipoint linkage analysis. Phase-known three way crossover information places F8 outside the cluster (DXS52, DXS15, 1A1). Confidence limits for the markers DXS98 and DXS52 are relatively wide (0.0-0.15 and 0.06-0.31, respectively), but when used in combination with cytogenetic examination offer improved carrier detection in comparison with cytogenetic analysis alone.  相似文献   

4.
In an extended family with eight individuals with infantile autism, in association with other developmental disorders and fragile (X) (q27.3), DNA techniques were used to investigate linkage between X chromosomal probes and the disorder. F9 was not informative and recombination was found between fragile X and DXS15, DXS51 and DXS52.  相似文献   

5.
A new RFLP marker U6.2 defining the locus DXS304 was recently mapped to the distal long arm of the X chromosome. In the present study we report the results of genetic linkage analysis of 13 fragile X [fra(X)] families that were informative for the new marker. Analysis of the recombinants for F9-FRAXA, DXS105-FRAXA, DXS98-FRAXA, DXS52-FRAXA, DXS15-FRAXA, and F8C-FRAXA, places DXS304 distal and near to the FRAXA locus. Combined with results from previous studies, our results support the order Xcen.-F9-DXS105-DXS98-FRAXA-DXS304-DXS5 2-DXS15-F8C-Xqter. Close linkage was observed between DXS304 and the disease locus with a peak lod score of 5.12 at theta = 0.04 from the present study and, with a peak lod score of 17.45 at theta = 0.035 when our data are combined with published data from 2 other studies. The present study confirms that U6.2 is useful for prenatal diagnosis and carrier testing in families affected by fra(X) syndrome.  相似文献   

6.
We report on linkage data between DXS105, DXS98, the locus for the fragile X syndrome (FRAXA), and 3 other polymorphic loci that flank the FRAXA locus. An analysis was undertaken to determine the relative positions of DXS105 and DXS98 and to test the assignment of DXS105 to a location proximal and closely linked to FRAXA. In this study of fragile X fra(X) syndrome families, the DXS105 locus was calculated to be proximal to FRAXA with a maximum lod score of 10.36 at theta = 0.08. DXS105 was also shown to be closely linked to the gene for factor IX (F9)(Z = 11.84 at theta = 0.08) and to DXS98 (Z = 4.91 at theta = 0.04). The order of the loci proximal to FRAXA is most likely centromere-factor IX-DXS105-DXS98-FRAXA-telomere. The use of DXS105 and DXS98 in clinical investigations should significantly increase the accuracy of risk assessment in informative fragile X families.  相似文献   

7.
Multipoint linkage of 9 anonymous probes to HPRT, factor 9, and fragile X   总被引:2,自引:0,他引:2  
We have analyzed the segregation of restriction fragment length polymorphisms (RFLPs) associated with 9 anonymous probes detecting loci DXS10, DXS15, DXS19, DXS37, DXS51, DXS52, DXS98, DXS99, and DXS100 and probes for HPRT and F9 in a set of 40 families segregating fragile X (fra(X]. Using two-point and multipoint analysis, we have established their relative genetic locations. The results indicate that DXS99 and DXS10, unlike previous reports, are not tightly linked to F9. A new locus was found to map within the F9 - fra(X) region. DXS98 showed 6% recombination with fra(X) and appeared to be the closest locus to fra(X). These results will be useful for mapping the relative position of newly defined X probes in this region and for future genetic studies of families with fra(X), hemophilia B, or Lesch-Nyhan mutations.  相似文献   

8.
In a large family with the fragile X syndrome, we performed linkage investigations with six probes, detecting RFLPs at both sides of the fragile site Xq27. The nearest flanking markers were cX55.7 (DXS105) on the centromeric side (theta = 0.04, lod 5.0) and St14 (DXS52) on the telomeric side (theta = 0.08, lod 4.0). Non-penetrance could be shown by the presence of the grandpaternal X chromosome in three mentally retarded fra(X) positive males. A second non-penetrant male in this family had inherited an abnormal grandmaternal X chromosome. His carrier mother had two retarded fra(X) positive brothers. Intermediate between the non-penetrant and fully penetrant males was a non-retarded male, who expressed the fragile site in 6% of his cells. His X chromosome showed the same polymorphisms as were found in his seven severely retarded brothers. In five fra(X) negative females the presence of an abnormal X chromosome could be demonstrated. Despite the existence of non-penetrance in this pedigree, there was no close linkage between a factor IX polymorphism and the fragile site (theta = 0.16, lod 1.9). However, in six descendants of a non-penetrant male, the change to penetrance appeared to be accompanied by a low recombination frequency for flanking markers.  相似文献   

9.
During the past 4 years (1985-1989), we have analyzed 171 cases in 50 fragile X [fra(X)] families by DNA linkage methods. Most (140 cases; 81%) were for carrier detection, both female (98 cases; 57%) and male (41 cases; 24%). Women who were obligate carriers of the fra(X) mutation accounted for an additional 6 "prior-to-pregnancy" cases. Four pregnancies have subsequently occurred with 3 having been successfully monitored (one male, 2 females). One pregnancy miscarried early prior to testing. Prenatal diagnoses (26 cases; 15%) accounted for the remainder of cases (15 males, 11 females). These will be discussed in the companion paper by Shapiro et al. (Am J Med Genet, 1991). A diagnosis in the cytogenetically uninformative carrier cases was reached in greater than 75% of analyses with a panel of 5 probes: 3 proximal (F9, DXS105, DXS98) and 2 distal (F8, DSX52). Five additional probes, 3 proximal (DXS10, DSX51, DSX102) and 2 distal (DSX15, DXS33), were used in cases that were resistant to analysis with the standard panel. In 60% of cases, flanking markers were identified (proximal and distal). Given this panel, only 5% of cases did not have any informative markers identified. Thus, molecular methods can provide a useful adjunct to cytogenetic analysis in most situations. An unusual association between the rare allele (A1) of DXS10 with the X chromosome carrying the fra(X) mutation was observed. This occurred in both male and female carriers in the uppermost generation tested. The basis for this association is uncertain at the present time.  相似文献   

10.
Linkage analysis was performed in 34 fragile X (fra(X)) families in order to study the efficiency of carrier detection using the restriction fragment length polymorphisms (RFLPs) closely linked to fra(X) locus (FRAXA). The marker loci used were F9, DXS105, DXS98, DXS369, DXS297 and DXS477 proximally and DXS465, DXS296, DXS304, DXS52 and F8C distally to FRAXA. Flanking heterozygosity was achieved in 60% of the females with a combination of 3 restriction enzymes and 6 closest RFLP markers. When adding more distant markers and other restriction enzymes to the analysis, the proportion of females heterozygous for flanking polymorphisms increased to 96%. With RFLP-analysis most (85/91) females at high risk of being a carrier could be separated clearly into 2 groups: those with a very low and those with a very high risk. The 6 cases with a recombination between flanking markers did not benefit from RFLP-analysis.  相似文献   

11.
We have studied the inheritance of several polymorphic Xq27/28 DNA marker loci in two three generation families with the X linked neonatal lethal form of centronuclear/myotubular myopathy (XL MTM). We found complete linkage of XLMTM to all four informative Xq28 markers analysed, with GCP/RCP (Z = 3.876, theta = 0.00), with DXS15 (Z = 3.737, theta = 0.00), with DXS52 (Z = 2.709, theta = 0.00), and with F8C (Z = 1.020, theta = 0.00). In the absence of any observable recombination, we are unable to sublocalise the XLMTM locus further within the Xq28 region. This evidence for an Xq28 localisation may allow us to carry out useful genetic counselling within such families.  相似文献   

12.
Linkage analysis using the polymorphic loci DXS369, DXS296, DXS297 and DXS306 was carried out on a cohort of 17 families segregating for fragile X syndrome. The observed recombination fractions at: DXS369 (Zmax = 3.02; theta = 0.06), DXS297 (Zmax = 2.92; theta = 0.0), DXS296 (Zmax = 3.82; theta = 0.0), DXA306 (Zmax = 4.55; theta = 0.05) confirm that these loci are tightly linked to FRAXA. Our experience in the cytogenetic analysis of 58 at risk pregnancies by chorionic villus or fetal blood sample examination documents a false negative rate in obligate carrier male pregnancies for CVS of 11% and for FBS of 3%.  相似文献   

13.
Linkage analysis using the polymorphic loci DXS369, DXS296, DXS297 and DXS306 was carried out on a cohort of 17 families segregating for fragile X syndrome. The observed recombination fractions at: DXS369 (Zmax = 3. 02; theta=0. 06), DXS297 (Zmax= 2. 92; theta = 0.0), DXS296 (Zmax = 3. 82; theta = 0.0), DXA306 (Zmax = 4. 55; theta = 0.05) confirm that these loci are tightly linked to FRAXA. Our experience in the cytogenetic analysis of 58 at risk pregnancies by chorionic villus or fetal blood sample examination documents a false negative rate in obligate carrier male pregnancies for CVS of 11% and for FBS of 3%.  相似文献   

14.
RFLP studies were done in 82 (75%) of all known hemophilia A families in the Finnish population (approximately 5 million). Two intragenic RFLPs (Bc1I/F8A, XbaI/p482.6) and two extragenic markers (TaqI/St14, Bg1II/DX13) were used. Among 263 females at risk, carriership could be evaluated with an intragenic marker in 47% and with an extragenic marker in 26%. In 27% of the females, carriership could be neither excluded nor confirmed; 68% of these females were relatives of an isolated patient. Eight recombinations between the factor VIII gene (F8C) and DXS52 (lod 25.02 at theta max 0.06), eight recombinations between F8C and DXS15 (lod 21.91 at theta max 0.05), and two recombinations between DXS52 and DXS15 (lod 33.56 at theta max 0.01) were found. Using multipoint linkage analysis, the most likely order of loci supported by the data was: F8C-DXS15-DXS52-DXS134. RFLP segregation analysis provides a highly useful method of carrier detection and prenatal diagnosis of hemophilia A, but its limitations must be carefully taken into account.  相似文献   

15.
The linkage relationship between the factor VIII gene (F8C) and the DXS52 locus was examined in 8 families. Two recombinations were identified in 35 informative meioses (Zmax = 5.67; theta = 0.05), one in a family with hemophilia A, the other in a family with the fra(X) syndrome. Based on the latter recombination, the most probable order of loci was determined to be centromere-fra(X)-DXS15-DXS52-F8C-telomere. When these data are added to those reported previously the most probable genetic distance between F8C and DXS52 is 3 cM (Z = 14.62). Identification of these and other recombinations suggests that the use of DXS52 as a genetic marker for carrier detection and prenatal diagnosis of hemophilia A has an error rate between 3-5%.  相似文献   

16.
The use of linked DNA markers and linkage analysis in the fragile X [fra(X)] syndrome allows for improved genetic counseling and prenatal diagnosis. In order to provide the most accurate information, it is important to determine the order and location and position of flanking markers. Conflicting results have been reported for the order of 3 DNA markers distal to the fra(X) locus. We analyzed the linkage relationships of the distal markers ST14 (DXS52), DX13 (DXS15), and F8 (F8C) in 102 fra(X) families. The results indicated that the 3 DNA markers were closely linked to one another and mapped approximately 11 to 15% recombination units away from the fra(X) locus. The most likely order was fra(X)-DXS52-DXS15-F8. The order fra(X)-DXS52-F8 and 728 times more likely than the order fra(X)-F8-DXS52. One family showed a probable double recombinant: in one individual there was recombination between fra(X)-DXS52 and between DXS52-F8. The low probability of this occurring, 0.3%, raises the possibility of an alternate chromosome arrangement or an unusual recombinant mechanism in some individuals.  相似文献   

17.
Until recently few polymorphic loci had been genetically mapped close to the fragile X syndrome locus [FRAXA]. Six polymorphic loci, DXS369, DXS297, DXS296, DXS304, IDS and DXS374, have now been mapped closer to the fragile X FRAXA than in the present study. We report the results of genetic linkage analysis of 32 fragile X [fra(X)] families using 12 polymorphic loci including these new markers. Cytogenetic and molecular data were combined in two-point linkage analysis for the estimation of lod scores and carrier probabilities in potential carriers. Combined with results from previous studies, recombination fractions (0) corresponding to the maximum lod scores (Z max) were obtained for each of the 12 loci versus FRAXA. Recombination fractions between marker loci in the families were also calculated. The data were evaluated to determine the efficacy of using the strategy suggested by Suthers et al. (1991a) for molecular studies in fra(X) families. The large proportion of females heterozygous for at least one locus (83%) and of females heterozygous for flanking loci (60%) indicate that this is a very useful diagnostic strategy. Use of these new marker loci substantially changed the carrier risk estimates for members of 7 of the 32 families from the risk estimates previously calculated on the basis of less closely linked probes available prior to 1989.  相似文献   

18.
The Coffin-Lowry syndrome (McKusick No. 30360) is a rare genetically transmitted disorder characterized by severe mental retardation, "coarse" facial appearance, thick soft skin, tapering fingers, and progressive skeletal abnormalities. X-linked inheritance is implied since the males are severely affected with variably mild manifestations in carrier women. We have performed a linkage analysis with many X-linked RFLP markers in 4 families. Positive two-point lod scores were obtained with DXS28 (z(theta) = 2.00 at theta = 0.05) and DXS41 (z(theta) = 1.26 at theta = 0.10). We performed a 5-point linkage analysis using the LINKMAP program assuming that DXS16 and DXS43 are a single locus and using the following fixed map (distances in centimorgans): DXS85 - 18cM - (DXS16, DXS43) - 13cM - DXS41 - 5cM -DXS28. This gave a multipoint lod score of 3.41 for a localisation in Xp22.2-p22.1, between DXS43 and DXS41.  相似文献   

19.
Recently some of us cloned a new probe RN1 (DXS369), which appears a close marker for the fragile X locus (FRAXA) [Oostra et al.: Genomics 1990]. We present here new evidence for its physical and genetic mapping in the DXS98--FRAXA interval. We used 2 different somatic cell hybrid lines with breakpoints in the Xq27-q28 region: L10B Rea and PeCHN, and we established the order: (DXS105, DXS98)-L10B Rea-DXS369-PeCHN- (DXS304, DXS52). We detected an additional TaqI RFLP at the DXS369 locus which increases its informativeness up to 57%. Two point linkage analysis in a large set of families gave high lod scores for the FRAXA-DXS369 linkage (z(theta) = 10.1 at theta = 0.044) and for DXS369-DXS304, a marker distal to FRAXA (z = 19.2 at theta = 0.070). By multipoint analyses we established the localization of DXS369 in the DXS98-FRAXA interval. DXS369 is a much closer proximal marker for FRAXA than DXS105 or DXS98 and any new probe mapping between the breakpoints in L10B Rea and PeCHN will be of potential interest as a marker for FRAXA.  相似文献   

20.
We report the genetic localisation of the fragile site at Xq27.3 associated with fragile X syndrome. The position of the fragile site within the multipoint linkage map was determined using two polymorphic microsatellite AC repeat markers FRAXAC1 and FRAXAC2. These markers were physically located within 10 kilobases and on either side of the p(CCG)n repeat responsible for the fragile site. FRAXAC1 has five alleles with heterozygosity of 44% and is in strong linkage disequilibrium with FRAXAC2 which has eight alleles and a heterozygosity of 71%. No recombination was observed either between these markers in 40 normal CEPH pedigrees or with the fragile X in affected pedigrees. These markers provide the means for accurate diagnosis of the fragile X genotype in families by rapid polymerase chain reaction analysis and were used to position the fragile X within the multipoint map of the X chromosome to a position 3.7 cM distal to DXS297 and 1.2 cM proximal to DXS296.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号