首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
止痒药水中薄荷脑和麝香草酚的含量测定   总被引:1,自引:0,他引:1  
目的测定止痒药水中薄荷脑和麝香草酚的含量。方法旋光法测定薄荷脑的含量,紫外分光光度法测定麝香草酚的含量。结果薄荷脑质量浓度在3.0~9.0g.L-1范围内有良好的线性关系(r=0.9993),平均回收率为99.4%,RSD为1.9%(n=5)。麝香草酚质量浓度在16~36mg.L-1范围内线性关系良好(r=0.9991),平均回收率为99.8%,RSD为1.6%(n=6)。结论该法简便、快速、准确,可作为止痒药水的质量控制方法。  相似文献   

2.
目的 建立络合分光光度法测定膜剂中卡铂含量的方法.方法 用蒸馏水提取膜剂中卡铂,与等体积1mol·L-1 SbCL2 的 1mol·L-1盐酸溶液反应后,用络合分光光度法测定反应液吸收度,检测波长为395 nm.结果 反应液中卡铂浓度于7.67~46.00 μg·mL-1之间与其吸收度有良好线性关系,r=0.9993;平均回收率=100.3%,RSD=2.3%(n=6).结论 该方法简便、快速、准确,适于测定膜剂中卡铂含量及质量控制使用.  相似文献   

3.
目的:制备奥硝唑双层缓释膜并考察其体外释放度。方法:采用匀浆法制备奥硝唑双层缓释膜,并以膜材聚乙烯醇(PVA17-88)与羧甲基纤维素钠(CMC-Na)的质量比(A)及二者的总用量(B)、甘油用量(C)为因素进行正交试验优选处方;采用紫外分光光度法测定主药含量,并计算其体外释放度。结果:所制缓释膜外观良好,优选处方确定A为1∶1,B为4.5g,C为4.0g。奥硝唑检测浓度在1~20μg·mL-1范围内呈良好的线性关系(r=0.999 5,n=6);平均回收率为100.3%(RSD=1.3%,n=5)。缓释膜可持续释药11.0h,8.0h体外累积释放度为81.50%。结论:该制剂制备方法简单,成品具有缓释性。  相似文献   

4.
奥硝唑凝胶剂的制备及质量控制   总被引:6,自引:2,他引:4  
林中  陈赛贞  周晖 《海峡药学》2004,16(3):38-40
目的 制备奥硝唑凝胶剂并建立质量控制方法。方法  以丙二醇为保湿剂、卡波姆为基质配制水溶性凝胶剂 ,用紫外分光光度法测定奥硝唑的含量。结果  凝胶剂有良好的涂布性 ,奥硝唑在波长 3 12 nm处有最大吸收 ,经处理以后基质在此波长无干扰 ,在 3 .14~ 18.83μg· m L- 1浓度范围内 ,浓度与吸光度呈良好的线性关系 (r=0 .9997) ,平均回收率为 10 0 .2 % (RSD=1.16% )。 结论  奥硝唑凝胶剂的制备工艺简便、性质稳定 ,质量控制方法准确可靠。  相似文献   

5.
目的:建立薄荷麝香草酚搽剂中薄荷脑和麝香草酚的含量测定方法。方法:旋光法测定薄荷脑的含量,紫外分光光度法测定麝香草酚的含量。结果:薄荷脑在1.6~5.6mg/ml范围内浓度和吸收度具有良好的线性关系(r=0.9991),平均回收率为100.7%,RSD为0.7(n=9);麝香草酚在8.1~32.5μg/ml范围内浓度和吸收度具有良好的线性关系(r=0.9994),平均回收率为100.4%,RSD为1.6(n=9);结论:该法准确、可靠、快速,可用于薄荷麝香草酚搽剂的质量控制。  相似文献   

6.
目的 :建立卡地滴眼液的含量测定方法。方法 :用旋光法测定卡地滴眼液中卡那霉素的含量 ,用紫外分光光度法测定卡地滴眼液中地塞米松磷酸钠的含量。结果 :在 1.0~ 5 .0mg·ml-1范围内旋光度与卡那霉素的浓度呈线性关系 (r =0 .9999) ,回收率平均为 99.3% ,RSD =0 .4 0 % (n =5 ) ;在 6~ 2 1μg·ml-1范围内吸收度与地塞米松磷酸钠的浓度呈线性关系 (r =0 .9998,n =6 ) ,回收率平均为 99.2 % ,RSD =0 .2 0 % (n =5 )。结论 :本法简便、快速、准确 ,适用于医院制剂的快速检验。  相似文献   

7.
紫外分光光度法测定奥硝唑氯化钠注射液中奥硝唑含量   总被引:5,自引:0,他引:5  
钱小蔷 《中国药师》2004,7(10):777-778
目的:建立奥硝唑氯化钠注射液中奥硝唑的含量测定方法.方法:采用紫外分光光度法,以318 m为测定波长.结果:奥硝唑在5.62~16.86mg·L-1浓度范围内呈现良好线性关系,r=0.999 9,平均回收率为100.44%,RSD为0.59%(n=5).结论:本法操作简便准确,可作为该制剂的质量控制方法.  相似文献   

8.
奥硝唑口腔膜剂的制备及质量控制   总被引:11,自引:0,他引:11  
安媛  孙德江 《中国药房》2005,16(12):908-909
目的:制备奥硝唑口腔膜剂并建立其质量控制方法。方法:以聚乙烯醇、羧甲基纤维素钠等为辅料制备奥硝唑口腔膜剂;采用紫外分光光度法测定其主药奥硝唑含量,测定波长为316nm。结果:奥硝唑检测浓度在6.0~18.0μg/ml范围内线性关系良好(r=0.9997),平均回收率为100.19%(RSD=0.66%,n=5)。结论:该膜剂制备工艺简单,含量测定快速、准确,质量可控。  相似文献   

9.
《中南药学》2017,(2):187-191
目的优选盐酸米诺环素单向释放膜最佳处方并建立该制剂的质量控制方法。方法采用正交试验法筛选盐酸米诺环素单向释放膜的最佳处方,采用HPLC进行含量测定和单向释放度试验。结果最优处方为PVA17-88∶CMC-Na∶甘油为10∶10∶1,盐酸米诺环素浓度测定的线性范围为0.10~3.75mg·L~(-1),r=0.9990(n=6),平均回收率为97.5%。呈现单向释放的性能,累计释放率可达62.67%。结论该膜剂制备工艺和质量控制方法可行。  相似文献   

10.
目的采用HPLC法和旋光度法测定布洛芬注射液中精氨酸的含量,并从中选择适宜的方法。方法 HPLC法采用Kromasil NH2色谱柱(250 mm×4.6 mm,5μm),以乙腈-磷酸氢二钾溶液(取磷酸氢二钾4.56 g,加水1 000 mL使溶解,磷酸溶液调节pH值至3.5)(体积比57∶43)为流动相,流速1.0 mL.min-1,检测波长214 nm,柱温30℃;旋光度法照《中华人民共和国药典》2010版附录ⅥE旋光度测定法项下的方法操作直接测定布洛芬注射液的旋光度。结果 HPLC法:主药布洛芬与精氨酸分离度良好,精氨酸质量浓度在0.078~0.780 g.L-1内与峰面积呈良好的线性关系,回归方程为A=8.016×104ρ-1.039×103(r=0.999 8,n=6),方法的最低检测限为150 ng,平均回收率为99.72%,RSD为0.98%(n=9);旋光度法:主药布洛芬不干扰精氨酸测定,溶液质量浓度在63.0101.0 g.L-1内旋光度线性关系良好,回归方程为α=104.5ρ-3.039(r=0.999 7,n=6),平均回收率为99.10%,RSD为0.58%(n=9)。结论两种方法均适用于布洛芬注射液中精氨酸的含量测定,可有效测定精氨酸的含量,测定结果也比较一致。相比较而言,旋光度测定法简便快速。  相似文献   

11.
12.
13.
Clinical and in vitro investigations were carried out to test the efficacy of gut lavage, hemodialysis, and hemoperfusion in the treatment of poisoning with paraquat or diquat. In a patient suffering from diquat intoxication 130 times more diquat was removed by gut lavage 30 h after ingestion than was removed by complete aspiration of the gastric contents.Determination of in vitro clearances for paraquat and diquat by hemodialysis showed that, at serum concentrations of 1–2 ppm, such as are frequently encountered in poisoning in man, toxicologically relevant quantities of herbicide cannot be removed from the body. At a concentration of 20 ppm, on the other hand, hemodialysis proved to be effective, the clearance being 70 ml/min at a blood flow rate of 100 ml/min. The efficacy of hemoperfusion with coated activated charcoal was on the whole better. Especially at concentrations around 1–2 ppm, the clearance values for hemoperfusion were some 5–7 times higher than those for hemodialysis.In a patient suffering from paraquat poisoning, both hemodialysis as well as hemoperfusion were carried out. The in vitro results could be confirmed: At serum concentrations of paraquat less than 1 ppm no clearance could be obtained by hemodialysis while by hemoperfusion with activated charcoal quite high clearance values were measured and the serum level dropped down to zero.
Zusammenfassung Klinische Untersuchungen und Laboratoriumsversuche wurden durchgeführt, um die Wirksamkeit von Darmspülung, Hämodialyse und Hämoperfusion bei Paraquat- und Deiquat-Vergiftungen zu prüfen.Bei einem Patienten wurde 30 Std nach Deiquat-Aufnahme durch Darmspülung 130mal mehr Deiquat entfernt als durch vollständige Aspiration des Mageninhaltes. In vitro-Versuche ergaben, daß bei Blutserumkonzentrationen von 1–2 ppm, die bei Vergiftungen oft gemessen werden, durch Hämodialyse keine toxikologisch relevanten Paraquat- oder Deiquat-Mengen entfernt werden können. Dagegen erwies sich die Hämodialyse bei 20 ppm und einer Blutumlaufgeschwindigkeit von 100 ml/min mit einer Clearance von 70 ml/min als wirksam. Die Hämoperfusion mit beschicheter Aktivkohle war in diesen Versuchen aber eindeutig überlegen, denn insbesondere bei Konzentrationen um 1–2 ppm waren die Clearance-Werte 5–7mal höher als bei der Hämodialyse.Die in vitro-Ergebnisse wurden bei einem Patienten mit einer Paraquat-Vergiftung bestätigt: Bei Konzentrationen unter 1 ppm war die Hämodialyse wirkungslos, während durch Hämoperfusion relativ hohe Clearance-Werte erreicht wurden, so daß der Serumspiegel rasch unter die Nachweisgrenze abfiel.
  相似文献   

14.
This study describes a new approach for organophosphorous (OP) antidotal treatment by encapsulating an OP hydrolyzing enzyme, OPA anhydrolase (OPAA), within sterically stabilized liposomes. The recombinant OPAA enzyme was derived from Alteromonas strain JD6. It has broad substrate specificity to a wide range of OP compounds: DFP and the nerve agents, soman and sarin. Liposomes encapsulating OPAA (SL)* were made by mechanical dispersion method. Hydrolysis of DFP by (SL)* was measured by following an increase of fluoride ion concentration using a fluoride ion selective electrode. OPAA entrapped in the carrier liposomes rapidly hydrolyze DFP, with the rate of DFP hydrolysis directly proportional to the amount of (SL)* added to the solution. Liposomal carriers containing no enzyme did not hydrolyze DFP. The reaction was linear and the rate of hydrolysis was first order in the substrate. This enzyme carrier system serves as a biodegradable protective environment for the recombinant OP-metabolizing enzyme, OPAA, resulting in prolongation of enzymatic concentration in the body. These studies suggest that the protection of OP intoxication can be strikingly enhanced by adding OPAA encapsulated within (SL)* to pralidoxime and atropine.  相似文献   

15.
16.
In order to find out the values of the steroid resources for the future use. the compositions and contents of steroidal sapogenins from 13 domestic plants have been investigated. As a result,Dioscorea nipponica, D. quinqueloba andSmilax china were found to have large amount of diosgenin. And pennogenin inTrillium kamtschaticum andParis verticillata, yuccagenin inAllium fistulosum, hecogenin inAgave americana and neochlorogenin inSolanum nigum were appeared to be major steroidal sapogenins.  相似文献   

17.
Abstract

The uptake of metals from food and water sources by insects is thought to be additive. For a given metal, the proportions taken up from water and food will depend both on the bioavailable concentration of the metal associated with each source and the mechanism and rate by which the metal enters the insect. Attempts to correlate insect trace metal concentrations with the trophic level of insects should be made with a knowledge of the feeding relationships of the individual taxa concerned. Pathways for the uptake of essential metals, such as copper and zinc, exist at the cellular level, and other nonessential metals, such as cadmium, also appear to enter via these routes. Within cells, trace metals can be bound to proteins or stored in granules. The internal distribution of metals among body tissues is very heterogeneous, and distribution patterns tend to be both metal and taxon specific. Trace metals associated with insects can be both bound on the surface of their chitinous exoskeleton and incorporated into body tissues. The quantities of trace meals accumulated by an individual reflect the net balance between the rate of metal influx from both dissolved and particulate sources and the rate of metal efflux from the organism. The toxicity of metals has been demonstrated at all levels of biological organization: cell, tissue, individual, population, and community. Much of the literature pertaining to the toxic effects of metals on aquatic insects is based on laboratory observations and, as such, it is difficult to extrapolate the data to insects in nature. The few experimental studies in nature suggest that trace metal contaminants can affect both the distribution and the abundance of aquatic insects. Insects have a largely unexploited potential as biomonitors of metal contamination in nature. A better understanding of the physico-chemical and biological mechanisms mediating trace metal bioavailability and exchange will facilitate the development of general predictive models relating trace metal concentrations in insects to those in their environment. Such models will facilitate the use of insects as contaminant biomonitors.  相似文献   

18.
Advances in the molecular biological knowledge of neuronal nicotinic acetylcholine receptors (nAChRs) have led to a growing interest by the pharmaceutical industry in the development of novel compounds that selectively modulate nAChR function. The ability of (-)-nicotine, an activator of nAChRs, to enhance attentional aspects of cognition in animals and humans, to exert neuroprotective and anxiolytic-like effects, and presumably to mediate the negative correlation between smoking and Alzheimer's (and Parkinson's) Disease, has focused interest on the potential therapeutic utility of modulators of nAChR function for treatment of some of the deficits associated with these progressive, neurodegenerative conditions. Numerous compounds are known which activate nAChRs and which might serve as lead compounds toward the development of such agents. The pharmacologic diversity of neuronal nAChR subtypes suggests the possibility of developing selective compounds which would have more favourable side-effect profiles than existing agents. This broader class of agents, collectively called cholinergic channel modulators (ChCMs), is anticipated to encompass compounds which would have more favourable side-effect profiles than existing agents, which generally exhibit low selectivity. This selectivity may be achieved by preferentially activating some subtypes of nAChRs (i.e., Cholinergic Channel Activators, ChCAs) or inhibiting the function of other subtypes (Cholinergic Channel Inhibitors, ChCIs). An overview of the biology of nAChRs and the rationale for the use of ChCMs for the treatment of dementia related to neurodegenerative diseases are presented, followed by a discussion of lead compounds and compounds under consideration for clinical evaluation.  相似文献   

19.
20.
The precocity and efficacy of the vaccines developed so far against COVID-19 has been the most significant and saving advance against the pandemic. The development of vaccines has not prevented, during the whole period of the pandemic, the constant search for therapeutic medicines, both among existing drugs with different indications and in the development of new drugs. The Scientific Committee of the COVID-19 of the Illustrious College of Physicians of Madrid wanted to offer an early, simplified and critical approach to these new drugs, to new developments in immunotherapy and to what has been learned from the immune response modulators already known and which have proven effective against the virus, in order to help understand the current situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号