首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
The gamma delta T-cell receptor (TCR) is the first TCR to be expressed in ontogeny in all vertebrates in which it has been examined thoroughly. Murine gamma delta cell-surface protein is detected by the fourteenth day of gestation. In this work, the activation of gamma delta RNA has been studied. Data indicate that the first TCR protein to appear in the thymus is encoded by gamma genes that are activated after cells colonize the thymus. However, the sequential appearance of different gamma delta TCR proteins during thymic ontogeny cannot be readily explained by differential temporal activation of V gamma genes in the thymus. There are distinct patterns of gamma and delta gene expression during fetal liver development and in the fetal gut (or tissue associated with it). Cells apparent in the liver of mice at birth express gamma delta cell-surface protein, but they disappear from the liver very soon afterward. One V gamma gene is rearranged and expressed prethymically. In addition, gamma gene expression is detectable in the livers of newborn athymic mice. Together, these observations indicate a thymic-independent pathway of activation of TCR genes.  相似文献   

3.
4.
Inhibitors of programmed cell death (apoptosis) may regulate tissue differentiation and aberrantly promote cell survival in neoplasia. A novel apoptosis inhibitor of the IAP gene family, designated survivin, was recently found in all of the most common human cancers but not in normal, terminally differentiated adult tissues. The expression of survivin in embryonic and fetal development was investigated. Immunohistochemistry and in situ hybridization studies demonstrated strong expression of survivin in several apoptosis-regulated fetal tissues, including the stem cell layer of stratified epithelia, endocrine pancreas, and thymic medulla, with a pattern that did not overlap with that of another apoptosis inhibitor, bcl-2. A sequence-specific antibody to survivin immunoblotted a single approximately 16.5-kd survivin band in human fetal lung, liver, heart, kidney, and gastrointestinal tract. In mouse embryo, prominent and nearly ubiquitous distribution of survivin was found at embryonic day (E)11.5, whereas at E15 to -21, survivin expression was restricted to the distal bronchiolar epithelium of the lung and neural-crest-derived cells, including dorsal root ganglion neurons, hypophysis, and the choroid plexus. These data suggest that expression of survivin in embryonic and fetal development may contribute to tissue homeostasis and differentiation independently of bcl-2. Aberrations of this developmental pathway may result in prominent re-expression of survivin in neoplasia and abnormally prolonged cell viability.  相似文献   

5.
6.
Heart disease is a leading cause of death in patients with Duchenne muscular dystrophy (DMD). Patients with DMD lack the protein dystrophin, which is widely expressed in striated muscle. In skeletal muscle, the loss of dystrophin results in dramatically decreased expression of the dystrophin associated glycoprotein complex (DGC). Interestingly, in the heart the DGC is normally expressed without dystrophin; this has been attributed to presence of the dystrophin homologue utrophin. We demonstrate here that neither utrophin nor dystrophin are required for the expression of the cardiac DGC. However, alpha-dystroglycan (α-DG), a major component of the DGC, is differentially glycosylated in dystrophin-(mdx) and dystrophin-/utrophin-(dko) deficient mouse hearts. In both models the altered α-DG retains laminin binding activity, but has an altered localization at the sarcolemma. In hearts lacking both dystrophin and utrophin, the alterations in α-DG glycosylation are even more dramatic with changes in gel migration equivalent to 24 ± 3 kDa. These data show that the absence of dystrophin and utrophin alters the processing of α-DG; however it is not clear if these alterations are a consequence of the loss of a direct interaction with dystrophin/utrophin or results from an indirect response to the presence of severe pathology. Recently there have been great advances in our understanding of the glycosylation of α-DG regarding its role as a laminin receptor. Here we present data that alterations in glycosylation occur in the hearts of animal models of DMD, but these changes do not affect laminin binding. The physiological consequences of these alterations remain unknown, but may have significant implications for the development of therapies for DMD.  相似文献   

7.
8.
9.
Utility of dystrophin and utrophin staining in childhood muscular dystrophy   总被引:2,自引:0,他引:2  
To determine the utility of dystrophin and utrophin staining in the differential diagnosis of childhood muscular dystrophy. Fifty muscle biopsies of histologically confirmed cases of childhood muscular dystrophy, below 16 years of age, were stained immunohistochemically for dystrophin and utrophin. All the 30 muscle biopsies of patients with Duchenne muscular dystrophy (DMD) showed all or majority of muscle fibers deficient for dystrophin and positive for utrophin. In the 4 female DMD carriers there was mosaic pattern of staining for dystrophin and reciprocal positivity for utrophin. All the muscle biopsies of patients with other childhood onset muscular dystrophies were positive for dystrophin and negative for utrophin. This study shows that dystrophin staining differentiates DMD and DMD carriers from other childhood muscular dystrophies and utrophin staining is of no added value. Utrophin up-regulation may compensate for structural deficiency in dystrophic muscle.  相似文献   

10.
11.
The utrophin and dystrophin genes share similarities in genomic structure   总被引:7,自引:3,他引:7  
Utrophin and dystrophin are highly homologous proteins whichare reciprocally expressed in DMD (Duchenne muscular dystrophy)muscle. The remarkable similarity of these proteins suggeststhat they may play a similar cellular role in some circumstances;If this were the case then utrophin may be capable of replacingdystrophin in DMD patients. In this paper we show that the genomicstructure of the utrophin gene is similar to the dystrophingene, further exemplifying the relatedness of the two genesand their gene products. We have constructed a 1.25Mb contigof eight yeast artificial chromosome (YAC) clones covering theutrophin gene located on chromosome 6q24. Utrophin is encodedby multiple small exons spanning approximately 900kb. The distributionof exons within the genomic DNA has similarities to that ofthe dystrophin gene. In contrast to dystrophin, the utrophingene has a long 5' untranslated region composed of two exonsand a cluster of unmethylated, rare-cutting restriction enzymesites at the 5' end of the gene. Similarities between the genomicstructure suggest that utrophin and dystrophin arose throughan ancient duplication event involving a large region of genomicDNA.  相似文献   

12.
13.
Process extension is a most marked and characteristic neuronal feature that is observed during the development, regeneration and plasticity of nervous system tissues. Neuro-p24, a novel membranous protein with a molecular weight of 24 kDa, is specifically localized in neurons, particularly in the neurites. Based on its molecular structure and distribution pattern in the brain we proposed that Neuro-p24 plays a role in neurite extension. In the present study we have made several findings that support this hypothesis; first, Neuro-p24 was abundant in motor axonal fibers, neurites of dorsal root ganglia neurons and apical dendrites of cerebral cortex neurons when their extension or arborization was proceeding very actively. Secondly, when COS-7 epithelial cells were transfected with either wild-type or deletion-mutated Neuro-p24 cDNAs, ectopic expression of wild-type cDNA caused morphological alterations resulting in a neuron-like appearance. These observations firmly support our proposal and indicate that Neuro-p24 plays an important role in the nervous tissue.  相似文献   

14.
The gene family of heterotrimeric laminin molecules consists of at least 15 naturally occurring isoforms which are formed by five different alpha, three beta and three gamma subunits. The expression pattern of the individual laminin chains in the human thymus was comprehensively analysed in the present study. Whereas laminin isoforms containing the laminin alpha1 chain (e.g. LN-1) were not present in the human thymus, laminin isoforms containing the alpha2 chain (LN-2/4) or the alpha5 chain (LN-10/11) were expressed in the subcapsular epithelium and in thymic blood vessels. Expression of the laminin alpha4 chain seemed to be restricted to endothelial cells of the thymus, whereas the LN-5 isoform containing the alpha3 chain could be detected on medullary thymic epithelial cells and weakly in the subcapsular epithelium. As revealed by cell attachment assays, early CD4- CD8- thymocytes which are localized in the thymus beneath the subcapsular epithelium adhered strongly to LN-10/11, but not to LN-1, LN-2/4 or LN-5. Adhesion of these thymocytes to LN-10/11 was mediated by the integrin alpha6beta1. During further development, the cortically localized CD4+ CD8+ thymocytes have lost the capacity to adhere to laminin-10/11. Neither do these cells adhere to any other laminin isoform tested. However, the more differentiated single positive CD8+ thymocytes which were mainly found in the medulla were able to bind to LN-5 which is expressed by medullary epithelial cells. Interactions of CD8+ thymocytes with LN-5 were integrin alpha6beta4-dependent. These results show that interactions of developing human thymocytes with different laminin isoforms are spatially and developmentally regulated.  相似文献   

15.
Recent studies with transgenic animals have considerably advanced our knowledge of the roles of dystrophin and utrophin in both muscle and non-muscle tissues. Rigorous analyses of the roles of the various mdx mutations in mice, as well as the use of artificial transgenes in an mdx background, are beginning to define the functional importance of various regions of the dystrophin protein in normal muscle. Furthermore, recent biochemical analyses have revealed new insights into the role and organization of dystrophin at the membrane--cytoskeleton interface. Transgenic approaches have also revealed surprising and encouraging results with respect to utrophin. Against expectations, the long-awaited utrophin knockout mice have a remarkably mild phenotype with only subtle changes in neuromuscular junction architecture. On the other hand, mdx mice transgenic for a mini-utrophin construct showed rescue of the muscular dystrophy phenotype, clearly an encouraging finding with obvious therapeutic possibilities. These and other recent findings are discussed in the context of the structure and function of dystrophin and utrophin at the membrane--cytoskeleton interface This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
A screen of an expression library from the fourth larval stage (L4) of the parasitic nematode Brugia malayi resulted in the identification of a 727 bp full-length cDNA with 29-40% identity to members of the small heat shock family of proteins (Bm-hsp-s1). The open reading frame encoded a protein of approximately 18 kDA (Bm-HSP-s1). An alignment of the Bm-HSP-s1 sequence with the sequences of small HSPs from vertebrate and invertebrate species demonstrated that a majority of the identity was concentrated in the central alpha-crystallin domain. Bm-HSP-s1 was constitutively produced by L4 and adult parasites and at low levels by third-stage larvae (L3), but not by first-stage larvae (microfilariae). In adult parasites, Bm-HSP-s1 was localized to the body wall muscle cells and to the cells of the hypodermis/lateral cord. Bm-HSP-s1 production was induced in adult and L3 incubated at 42 degrees C and in L3s during the developmental transition from vector-stage to vertebrate-stage parasites at 37 degrees C. Neither increased nor decreased temperatures induced Bm-HSP-s1 production in microfilariae. Nitric oxide induced low-level, transient Bm-HSP-s1 synthesis in adults, but not in microfilariae. Bm-HSP-s1 did not function as a molecular chaperone to prevent heat-induced aggregation of a test substrate. The developmentally regulated expression and inducable nature of Bm-HSP-s1 suggests that it may have a stage-restricted role in maintaining parasite homeostasis.  相似文献   

17.
P-glycoprotein (P-gly) is the transmembrane efflux pump responsible for multidrug resistance in tumor cells. The activity of P-gly in mature peripheral lymphocytes is lineage specific, with CD8+ T cells and natural killer (NK) cells expressing high levels as compared to CD4+ T cells and B cells. We have now investigated P-gly activity in immature and mature subsets of mouse thymocytes. Our data indicate that P-gly activity is undetectable in immature CD4?8? and CD4+8+ thymocyte subsets. Among mature thymocytes, P-gly activity is absent in the CD4+ subset but present in the more mature (HSAlow) fraction of CD8+ cells. Furthermore, while thymic CD4?8? T cell receptor (TCR) γδ cells have little P-gly activity, a minor subset of CD4?8? or CD4+ TCR αβ+ thymocytes bearing the NK1.1 surface marker expresses high levels of P-gly activity. Collectively, our results indicate that P-gly activity arises late during thymus development and is expressed in a lineage-specific fashion.  相似文献   

18.
The ganglionic eminence (GE) representing a conspicuous bulb-like elevation of the telencephalic proliferative zone has recently been shown to be involved in the establishment of cortical connections. This study demonstrates the presence of synaptogyrin-immunoreactivity in a large number of cell bodies of the human GE between 12 and 20 weeks of gestation. From the 20th week onwards synaptogyrin expression sharply declines. No immunoreactive structures are detectable in the 23rd week or later. As the GE persists nearly throughout the entire fetal period these results show that its neurochemical features change distinctly in the course of development. The synaptogyrin-immunoreactive GE-cells may form an early corticopedal connection which provides a scaffold for outgrowing cortical axons.  相似文献   

19.
The cranial base, located between the cranial vault and the facial bones, plays an important role in integrated craniofacial development and growth. Transgenic Shh and Sox9-deficient mice show similar defects in cranial base patterning. Therefore, in order to examine potential interactions of Shh, Ihh, another member of the Hh family, and Sox9 during cranial base development and growth, we investigated their cellular mRNA expression domains in the embryonic (E) and early postnatal (PN) cranial base from E10 to PN5 using sectional radioactive 35-S in situ hybridization. Of the Hhs, Shh was observed in the foregut epithelium and the notochord, while Sox9 showed broad expression in the loose mesenchyme of the cranial base area during E10-E11. Subsequently, from E12 onward, all genes were observed in the developing cranial base, and after birth the genes were prominently colocalized in the prehypertrophic chondrocytes of the synchondroses. Collectively, these data suggest that Hh-Sox9 auto- and paracrine signaling interactions may provide a critical mechanism for regulating the patterning of the cranial base as well as for its development and growth.  相似文献   

20.
The cannabinoid receptor one (CB1) is responsible for the effects of cannabis on motor and cognitive function in the CNS. There is to date very limited information about the CB1 gene expression in the human brain, in particular during fetal development. In the present study, in situ hybridization experiments were used to examine the microscopic and macroscopic organization of the CB1 mRNA expression in normal human fetal (approximately 20 weeks of development) and adult brains. The fetal brain showed a distinct heterogeneous pattern of the CB1 mRNA expression which was low to moderate in many brain areas. The most striking feature of the fetal brain was the intense expression in the hippocampal CA region and basal nuclear group of the amygdaloid complex. Many of the same brain areas that showed positive expression of the CB1 mRNA in the fetal brain also expressed the gene in the adult brain. However, aside from an intense expression in the hippocampus which resembled that in fetal brain, the adult brain showed very high expression throughout the cerebral cortex, caudate nucleus, putamen and cerebellar cortex. These results document a different pattern of the anatomical organization of the CB1 mRNA expression in the mid-gestation fetal and adult human brain. Overall, the high CB1 mRNA expression in the fetal hippocampus and amygdala indicates that these limbic structures might be most vulnerable to prenatal cannabis exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号