首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Calder PC 《Nutrients》2010,2(3):355-374
Long chain fatty acids influence inflammation through a variety of mechanisms; many of these are mediated by, or at least associated with, changes in fatty acid composition of cell membranes. Changes in these compositions can modify membrane fluidity, cell signaling leading to altered gene expression, and the pattern of lipid mediator production. Cell involved in the inflammatory response are typically rich in the n-6 fatty acid arachidonic acid, but the contents of arachidonic acid and of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can be altered through oral administration of EPA and DHA. Eicosanoids produced from arachidonic acid have roles in inflammation. EPA also gives rise to eicosanoids and these often have differing properties from those of arachidonic acid-derived eicosanoids. EPA and DHA give rise to newly discovered resolvins which are anti-inflammatory and inflammation resolving. Increased membrane content of EPA and DHA (and decreased arachidonic acid content) results in a changed pattern of production of eicosanoids and resolvins. Changing the fatty acid composition of cells involved in the inflammatory response also affects production of peptide mediators of inflammation (adhesion molecules, cytokines etc.). Thus, the fatty acid composition of cells involved in the inflammatory response influences their function; the contents of arachidonic acid, EPA and DHA appear to be especially important. The anti-inflammatory effects of marine n-3 PUFAs suggest that they may be useful as therapeutic agents in disorders with an inflammatory component.  相似文献   

2.
The intake of individual n-6 and n-3 polyunsaturated fatty acids (PUFA) have been estimated in 4,884 adult subjects of both sexes, volunteers from the French SUVIMAX intervention trial. On an energy basis, both men and women consumed 4.2% energy as linoleic acid, 0.38% as α-linolenic acid, 0.08% as arachidonic acid, 0.06% as eicosapentaenoic acid (EPA), 0.03% as docosapentaenoic acid (DPA) and 0.11% as docosahexaenoic acid (DHA), with a mean linoleic/α-linolenic acid ratio of 11.3. The intake of α-linolenic acid was well below the current recommendations (0.8% of energy) for almost all subjects, as a consequence of the low consumption of α-linolenic acid-rich oils and fats. The mean intake levels of long-chain n-3 PUFA were higher than the recommended levels, but showed great interindividual variations, due to very large differences in the consumption of fish, especially of fatty fish.  相似文献   

3.
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease manifested by swollen and painful joints, bone erosion and functional impairment. The joint lesions are characterised by infiltration of T lymphocytes, macrophages and B lymphocytes into the synovium and by synovial inflammation involving eicosanoids, cytokines and matrix metalloproteinases. In relation to inflammatory processes, the main fatty acids of interest are the n-6 PUFA arachidonic acid, which is the precursor of inflammatory eicosanoids such as PGE2 and leukotriene B4, and the n-3 PUFA EPA and DHA, which are found in oily fish and fish oils. Eicosanoids derived from the n-6 PUFA arachidonic acid play a role in RA, and the efficacy of non-steroidal anti-inflammatory drugs in RA indicates the importance of pro-inflammatory cyclooxygenase pathway products of arachidonic acid in the pathophysiology of the disease. EPA and DHA inhibit arachidonic acid metabolism to inflammatory eicosanoids. EPA also gives rise to eicosanoid mediators that are less inflammatory than those produced from arachidonic acid and both EPA and DHA give rise to resolvins that are anti-inflammatory and inflammation resolving. In addition to modifying the lipid mediator profile, n-3 PUFA exert effects on other aspects of immunity relevant to RA such as antigen presentation, T-cell reactivity and inflammatory cytokine production. Fish oil has been shown to slow the development of arthritis in an animal model and to reduce disease severity. Randomised clinical trials have demonstrated a range of clinical benefits in patients with RA that include reducing pain, duration of morning stiffness and use of non-steroidal anti-inflammatory drugs.  相似文献   

4.
Although an increased dietary intake of long-chain n-3 PUFA is considered an effective preventive strategy, a theoretical concern related to the possible increase of lipid peroxidation induced by a PUFA-rich diet still remains a problem. In this study, the effects of different PUFA (linoleic, α-linolenic, arachidonic, eicosapentaenoic and docosahexaenoic acid) on cytotoxicity, lipid oxidation, and modulation of antioxidant defenses were evaluated in HepG2 cells submitted to an oxidative stress (H2O2). Results clearly evidenced that all supplemented PUFA, but DHA, enhanced cell susceptibility to H2O2. Overall, our results underline that PUFA cannot be considered as a single category but as individual compounds, and research on mechanisms of action and preventive effects should deal with the individual fatty acids, particularly in the case of DHA.  相似文献   

5.
PurposeThis cohort study examined the relationship between maternal intake of individual fatty acids, meat, and fish during pregnancy and the risk of wheeze and eczema in children aged 23–29 months because epidemiologic evidence on this topic is inconclusive.MethodsSubjects were 1354 Japanese mother-child pairs. Data on maternal intake during pregnancy were assessed with a validated diet history questionnaire. Data on symptoms of wheeze and eczema were based on criteria of the International Study of Asthma and Allergies in Childhood.ResultsSignificant inverse exposure-response relationships were observed between maternal intake of eicosapentaenoic acid (EPA) and EPA plus docosahexaenoic acid (DHA) during pregnancy and infantile wheeze although the adjusted odds ratios between extreme quartiles fell just short of the significance level. No such inverse relationships were detected for infantile eczema. Maternal intake of total fat, saturated fatty acids, monounsaturated fatty acids, total n-3 polyunsaturated fatty acids (PUFA), α-linolenic acid, DHA, total n-6 PUFA, linoleic acid, arachidonic acid, cholesterol, fish, and meat and the ratio of n-3 to n-6 PUFA consumption were not significantly related to infantile wheeze or eczema.ConclusionsHigher maternal intake of EPA and EPA plus DHA during pregnancy may reduce the risk of infantile wheeze.  相似文献   

6.
A wealth of evidence indicates that consumption of fish or dietary fish oils containing long-chain (n-3) PUFA such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular benefit, including a reduction in circulating triacylglycerol concentrations and reduced mortality from coronary heart disease. Shorter-chain dietary (n-3) PUFA such as alpha-linolenic acid from vegetable oils are inefficiently converted to EPA and DHA and do not possess the hypotriglyceridemic properties attributed to fish oils. The objective of this study was to investigate the effect of dietary Echium oil, a plant oil containing the 18-carbon (n-3) PUFA stearidonic acid, on tissue fatty acid content and serum triacylglycerol concentrations in hypertriglyceridemic humans. Asymptomatic subjects with mild-to-moderate hypertriglyceridemia were enrolled in an open-labeled study. Subjects underwent a 4-wk lead-in period and were then instructed to follow the National Cholesterol Education Program Step 1 diet. Subjects (n = 11) whose serum triacylglycerol concentrations remained between 3.4 and 5.1 mmol/L (300 and 450 mg/dL) were instructed to consume 15 g of Echium oil daily for 4 wk. During the treatment period, serum triacylglycerol concentrations decreased by 21%, or 0.87 +/- 0.26 mmol/L (mean +/- SD) compared with baseline (P < 0.05); 8 of 11 subjects had a decrease in serum triacylglycerols ranging from 13 to 52% with a decrease from baseline of 30%, or 1.26 +/- 0.41 mmol/L (mean +/- SD). There were no significant changes in any other clinical laboratory variables. Concentrations of long-chain (n-3) PUFA, including EPA, increased (P < 0.05) in plasma and neutrophils when subjects consumed Echium oil. In conclusion, dietary plant oils rich in stearidonic acid are metabolized to longer-chain, more unsaturated (n-3) PUFA. These oils appear to possess hypotriglyceridemic properties typically associated with fish oils.  相似文献   

7.
The health benefits of long-chain (n-3) PUFA have been widely reported in the literature. Despite the potential benefits, consumption of these fatty acids continues to fall below recommendations from various health and regulatory agencies. Incorporation of long-chain PUFA in foods represents a considerable challenge due to the increased risk of lipid oxidation resulting in the development of off-flavors and reduced shelf life. As a result, new sources of (n-3) fatty acids are needed that are more efficiently converted to long-chain (n-3) fatty acids than α-linolenic acid (ALA) and can be more easily incorporated into food. Stearidonic acid [SDA, 18:4 (n-3)] is an intermediate in the desaturation of ALA to EPA. Soybeans have been modified to contain SDA. Clinical studies have demonstrated a significant increase in EPA levels when SDA is consumed. Being more stable, SDA has been added to a variety of foods and has demonstrated equal consumer acceptance compared to a regular soybean oil control. SDA-enhanced soybean oil can provide to food companies and consumers an option to increase (n-3) fatty acid consumption in foods consumers typically eat.  相似文献   

8.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are increased in plasma lipids and blood cell membranes in response to supplementation. Whilst arachidonic acid (AA) is correspondingly decreased, the effect on other fatty acids (FA) is less well described and there may be site-specific differences. In response to 12 months EPA + DHA supplementation in doses equivalent to 0–4 portions of oily fish/week (1 portion: 3.27 g EPA+DHA) multinomial regression analysis was used to identify important FA changes for plasma phosphatidylcholine (PC), cholesteryl ester (CE) and triglyceride (TAG) and for blood mononuclear cells (MNC), red blood cells (RBC) and platelets (PLAT). Dose-dependent increases in EPA + DHA were matched by decreases in several n-6 polyunsaturated fatty acids (PUFA) in PC, CE, RBC and PLAT, but were predominantly compensated for by oleic acid in TAG. Changes were observed for all FA classes in MNC. Consequently the n-6:n-3 PUFA ratio was reduced in a dose-dependent manner in all pools after 12 months (37%–64% of placebo in the four portions group). We conclude that the profile of the FA decreased in exchange for the increase in EPA + DHA following supplementation differs by FA pool with implications for understanding the impact of n-3 PUFA on blood lipid and blood cell biology.  相似文献   

9.
Increasing demand for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) containing fish oils is putting pressure on fish species and numbers. Fisheries provide fish for human consumption, supplement production and fish feeds and are currently supplying fish at a maximum historical rate, suggesting mass-scale fishing is no longer sustainable. However, the health properties of EPA and DHA long-chain (LC) omega-3 polyunsaturated fatty acids (PUFA) demonstrate the necessity for these oils in our diets. EPA and DHA from fish oils show favourable effects in inflammatory bowel disease, some cancers and cardiovascular complications. The high prevalence of these diseases worldwide indicates the requirement for alternative sources of LC-PUFA. Strategies have included plant-based fish diets, although this may compromise the health benefits associated with fish oils. Alternatively, stearidonic acid, the product of α-linolenic acid desaturation, may act as an EPA-enhancing fatty acid. Additionally, algae oils may be a promising omega-3 PUFA source for the future. Algae are beneficial for multiple industries, offering a source of biodiesel and livestock feeds. However, further research is required to develop efficient and sustainable LC-PUFA production from algae. This paper summarises the recent research for developing prospective substitutes for omega-3 PUFA and the current limitations that are faced.  相似文献   

10.
目的分析我国不同水产品消费地区孕妇脂肪酸摄入状况。方法应用食物频率法分别在淡水产品消费量较高的江苏省句容市、海产品消费量较高的山东省即墨市以及水产品消费量很低的河南省辉县市,对180名22~35岁孕妇进行妊娠中、晚期膳食调查,分析脂肪酸摄入状况。结果句容、即墨、辉县孕妇膳食中饱和脂肪酸(SFA),单不饱和脂肪酸(MUFA),多不饱和脂肪酸(PUFA)的比例分别为1:2.50:1.05、1:1.44:1.31、1:1.48:1.24。n-6PUFA/n-3PUFA分别为5.51、17.62、13.85。辉县孕妇膳食中SFA和n-6PUFA摄入量最高;句容孕妇膳食中MUFA和n-3PUFA摄入量最高;即墨孕妇膳食中二十碳五烯酸(EPA,20:5n-3)和二十二碳六烯酸(DHA,22:6n-3)摄入量最高。句容和辉县孕妇膳食中的花生四烯酸(AA,20:4n-6)摄入量均高于即墨。三地孕妇膳食中EPA和DHA均主要来自水产品;AA主要来自畜禽肉类和蛋类;亚麻酸(ALA,18:3n-3)和亚油酸(LA,18:2n-6)主要来自食用油、畜禽肉类、坚果和主食及糕点类。结论三地区SFA、MUFA、PUFA的摄入比例合理。即墨、辉县孕妇膳食中n-6/n-3PUFA比例偏高;即墨市孕妇膳食中DHA和EPA摄入量高于其它两地,但仍明显低于推荐量。建议增加孕妇膳食n-3PUFA,特别是DHA和EPA的摄入量。  相似文献   

11.
Studies on animal and human subjects have shown that greatly increasing the amount of linseed (also known as flaxseed) oil (rich in the n-3 polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALNA)) or fish oil (FO; rich in the long-chain n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) in the diet can decrease a number of markers of immune function. The immunological effects of more modest doses of n-3 PUFA in human subjects are unclear, dose-response relationships between n-3 PUFA supply and immune function have not been established and whether ALNA has the same effects as its long-chain derivatives is not known. Therefore, the objective of the present study was to determine the effect of enriching the diet with different doses of FO or with a modest dose of ALNA on a range of functional responses of human monocytes and lymphocytes. In a randomised, placebo-controlled, double-blind, parallel study, forty healthy males aged 18-39 years were randomised to receive placebo or 3.5 g ALNA/d or 0.44, 0.94 or 1.9 g (EPA+DHA)/d in capsules for 12 weeks. The EPA:DHA ratio in the FO used was 1.0:2.5. ALNA supplementation increased the proportion of EPA but not DHA in plasma phospholipids. FO supplementation decreased the proportions of linoleic acid and arachidonic acid and increased the proportions of EPA and DHA in plasma phospholipids. The interventions did not alter circulating mononuclear cell subsets or the production of tumour necrosis factor-alpha, interleukin (IL) 1beta, IL-2, IL-4, IL-10 or interferon-gamma by stimulated mononuclear cells. There was little effect of the interventions on lymphocyte proliferation. The two higher doses of FO resulted in a significant decrease in IL-6 production by stimulated mononuclear cells. It is concluded that, with the exception of IL-6 production, a modest increase in intake of either ALNA or EPA+DHA does not influence the functional activity of mononuclear cells. The threshold of EPA+DHA intake that results in decreased IL-6 production is between 0.44 and 0.94 g/d.  相似文献   

12.
The role of n-3 polyunsaturated fatty acids (PUFAs) in psychiatric illness is a topic of public health importance. This report describes development and biomarker validation of a 21-item, self-report food frequency questionnaire (FFQ) intended for use in psychiatric research to assess intake of α-linolenic acid (18:3n-3 [ALA]), docosahexaenoic acid (22:6n-3 [DHA]), and eicosapentaenoic acid (20:5n-3 [EPA]). In a cross-sectional study conducted from September 2006 to September 2008, sixty-one ethnically diverse adult participants with (n=34) and without (n=27) major depressive disorder completed this n-3 PUFA FFQ and provided a plasma sample. Plasma levels of n-3 PUFAs EPA and DHA, and n-6 PUFA arachidonic acid (20:4n-6 [AA]) were quantified by gas chromatography. Using Spearman's ρ, FFQ-estimated intake correlated with plasma levels of DHA (r=0.50; P<0.0001) and EPA (r=0.38; P=0.002), but not with ALA levels (r=0.22; P=0.086). Participants were classified into quartiles by FFQ-estimated intake and plasma PUFA concentrations. Efficacy of the FFQ to rank individuals into same or adjacent plasma quartiles was 83% for DHA, 78.1% for EPA, and 70.6% for ALA; misclassification into extreme quartiles was 4.9% for DHA, 6.5% for EPA, and 8.2% for ALA. FFQ-estimated EPA intake and plasma EPA were superior to plasma AA levels as predictors of the plasma AA to EPA ratio. This brief FFQ can provide researchers and clinicians with valuable information concerning dietary intake of DHA and EPA.  相似文献   

13.
Higher adherence to a Mediterranean diet (MeDi) and n-3 PUFA may both contribute to decreased dementia risk, but the association between MeDi adherence and lipid status is unclear. The aim of the present study was to analyse the relationship between plasma fatty acids and MeDi adherence in French elderly community dwellers. The study population (mean age 75·9 years) consisted of 1050 subjects from Bordeaux (France) included in the Three-City cohort. Adherence to the MeDi (scored as 0-9) was computed from a FFQ and 24?h recall. The proportion of each plasma fatty acid was determined. Cross-sectional analysis of the association between plasma fatty acids and MeDi adherence was performed by multi-linear regression. After adjusting for age, sex, energy intake, physical activity, smoking status, BMI, plasma TAG and apoE-?4 genotype, plasma palmitoleic acid was significantly inversely associated with MeDi adherence, whereas plasma DHA, the EPA+DHA index and total n-3 PUFA were positively associated with MeDi adherence. The n-6:n-3 PUFA, arachidonic acid (AA):EPA, AA:DHA and AA:(EPA+DHA) ratios were significantly inversely associated with MeDi adherence. Plasma EPA was positively associated with MeDi adherence only in apoE-?4 non-carriers. There was no association between MeDi adherence and SFA and total MUFA. The present results suggest that the protective effect of the MeDi on cognitive functions might be mediated by higher plasma DHA and lower n-6:n-3 PUFA ratios.  相似文献   

14.
Inflammation plays a key role in many common conditions and diseases. Fatty acids can influence inflammation through a variety of mechanisms acting from the membrane to the nucleus. They act through cell surface and intracellular receptors that control inflammatory cell signalling and gene expression patterns. Modifications of inflammatory cell membrane fatty acid composition can modify membrane fluidity, lipid raft formation and cell signalling leading to altered gene expression and can alter the pattern of lipid and peptide mediator production. Cells involved in the inflammatory response usually contain a relatively high proportion of the n-6 fatty acid arachidonic acid in their membrane phospholipids. Eicosanoids produced from arachidonic acid have well-recognised roles in inflammation. Oral administration of the marine n-3 fatty acids EPA and DHA increases the contents of EPA and DHA in the membranes of cells involved in inflammation. This is accompanied by a decrease in the amount of arachidonic acid present. EPA is a substrate for eicosanoid synthesis and these are often less potent than those produced from arachidonic acid. EPA gives rise to E-series resolvins and DHA gives rise to D-series resolvins and protectins. Resolvins and protectins are anti-inflammatory and inflammation resolving. Thus, the exposure of inflammatory cells to different types of fatty acids can influence their function and so has the potential to modify inflammatory processes.  相似文献   

15.
Vegetable oils containing stearidonic acid (SDA, 18 : 4n-3) are considered better precursors of long-chain n-3 PUFA (LC n-3 PUFA) than those with only α-linolenic acid (ALA, 18 : 3n-3). The present study re-examined this premise using treatments where added ALA from linseed oil was matched with ALA plus SDA from echium oil. Lambs (n 6) were abomasally infused with saline (control (C), 25 ml), echium oil low (EL, 25 ml), echium oil high (EH, 50 ml), linseed oil low (LL, 25 ml) or linseed oil high (LH, 50 ml) for 4 weeks. The basal ration used was identical across all treatments. EPA (20 : 5n-3) in meat increased from 6·5 mg in the C lambs to 16·8, 17·7, 13·5 and 11·7 (SEM 0·86) mg/100 g muscle in the EL, EH, LL and LH lambs, respectively. For muscle DPA (docosapentaenoic acid; 22 : 5n-3), the corresponding values were 14·3, 22·2, 18·6 18·2 and 19·4 (SEM 0·57) mg/100 g muscle. The DHA (22 : 6n-3) content of meat was 5·8 mg/100 g in the C lambs and ranged from 4·53 to 5·46 (SEM 0·27) mg/100 g muscle in the oil-infused groups. Total n-3 PUFA content of meat (including ALA and SDA) increased from 39 mg to 119, 129, 121 and 150 (SEM 12·3) mg/100 g muscle. We conclude that both oil types were effective in enhancing the EPA and DPA, but not DHA, content of meat. Furthermore, we conclude that, when balanced for precursor n-3 fatty acid supply, differences between linseed oil and echium oil in enriching meat with LC n-3 PUFA were of little, if any, nutritional significance.  相似文献   

16.
Considerable research supports cardiovascular benefits of consuming omega-3 PUFA, also known as (n-3) PUFA, from fish or fish oil. Whether individual long-chain (n-3) PUFA have shared or complementary effects is not well established. We reviewed evidence for dietary and endogenous sources and cardiovascular effects on biologic pathways, physiologic risk factors, and clinical endpoints of EPA [20:5(n-3)], docosapentaenoic acid [DPA, 22:5(n-3)], and DHA [22:6(n-3)]. DHA requires direct dietary consumption, with little synthesis from or retroconversion to DPA or EPA. Whereas EPA is also largely derived from direct consumption, EPA can also be synthesized in small amounts from plant (n-3) precursors, especially stearidonic acid. In contrast, DPA appears principally derived from endogenous elongation from EPA, and DPA can also undergo retroconversion back to EPA. In experimental and animal models, both EPA and DHA modulate several relevant biologic pathways, with evidence for some differential benefits. In humans, both fatty acids lower TG levels and, based on more limited studies, favorably affect cardiac diastolic filling, arterial compliance, and some metrics of inflammation and oxidative stress. All three (n-3) PUFA reduce ex vivo platelet aggregation and DHA also modestly increases LDL and HDL particle size; the clinical relevance of such findings is uncertain. Combined EPA+DHA or DPA+DHA levels are associated with lower risk of fatal cardiac events and DHA with lower risk of atrial fibrillation, suggesting direct or indirect benefits of DHA for cardiac arrhythmias (although not excluding similar benefits of EPA or DPA). Conversely, EPA and DPA, but not DHA, are associated with lower risk of nonfatal cardiovascular endpoints in some studies, and purified EPA reduced risk of nonfatal coronary syndromes in one large clinical trial. Overall, for many cardiovascular pathways and outcomes, identified studies of individual (n-3) PUFA were relatively limited, especially for DPA. Nonetheless, the present evidence suggests that EPA and DHA have both shared and complementary benefits. Based on current evidence, increasing consumption of either would be advantageous compared to little or no consumption. Focusing on their combined consumption remains most prudent given the potential for complementary effects and the existing more robust literature on cardiovascular benefits of their combined consumption as fish or fish oil for cardiovascular benefits.  相似文献   

17.
BACKGROUND: Dietary alpha-linolenic acid (ALA) can be converted to long-chain n-3 polyunsaturated fatty acids (PUFAs) in humans and may reproduce some of the beneficial effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cardiovascular disease risk factors. OBJECTIVE: This study aimed to compare the effects of increased dietary intakes of ALA and EPA+DHA on a range of atherogenic risk factors. DESIGN: This was a placebo-controlled, parallel study involving 150 moderately hyperlipidemic subjects randomly assigned to 1 of 5 interventions: 0.8 or 1.7 g EPA+DHA/d, 4.5 or 9.5 g ALA/d, or an n-6 PUFA control for 6 mo. Fatty acids were incorporated into 25 g of fat spread and 3 capsules to be consumed daily. RESULTS: The change in fasting or postprandial lipid, glucose, or insulin concentrations or in blood pressure was not significantly different after any of the n-3 PUFA interventions compared with the n-6 PUFA control. The mean (+/- SEM) change in fasting triacylglycerols after the 1.7-g/d EPA+DHA intervention (-7.7 +/- 4.99%) was significantly (P < 0.05) different from the change after the 9.5-g/d ALA intervention (10.9 +/- 4.5%). The ex vivo susceptibility of LDL to oxidation was higher after the 1.7-g/d EPA+DHA intervention than after the control and ALA interventions (P < 0.05). There was no significant change in plasma alpha-tocopherol concentrations or in whole plasma antioxidant status in any of the groups. CONCLUSION: At estimated biologically equivalent intakes, dietary ALA and EPA+DHA have different physiologic effects.  相似文献   

18.
BACKGROUND: The mechanisms involved in the increased mortality from coronary artery disease in British Indo-Asians are not well understood. OBJECTIVES: This study aimed to investigate whether British Indo-Asian Sikhs have higher plasma triacylglycerol concentrations, lower platelet phospholipid levels, and lower dietary intakes of long-chain n-3 polyunsaturated fatty acids (PUFAs) than do age- and weight-matched Europeans and whether moderate dietary fish-oil intake can reverse these differences. DESIGN: A randomized, double-blind, placebo-controlled, parallel, fish-oil intervention study was performed. After a 2-wk run-in period, 44 Europeans and 40 Indo-Asian Sikhs were randomly assigned to receive either 4.0 g fish oil [1.5 g eicosapentaenoic acid (EPA) and 1.0 g docosahexaenoic acid (DHA)] or 4.0 g olive oil (control) daily for 12 wk. RESULTS: At baseline, the Indo-Asians had significantly higher plasma triacylglycerol, small dense LDL, apolipoprotein B, and dietary and platelet phospholipid n-6 PUFA values and significantly lower long-chain n-3 PUFAs (EPA and DHA) than did the Europeans. A significant decrease in plasma triacylglycerol, plasma apolipoprotein B-48, and platelet phospholipid arachidonic acid concentrations and a significant increase in plasma HDL concentrations and platelet phospholipid EPA and DHA levels were observed after fish-oil supplementation. No significant effect of ethnicity on the responses to fish-oil supplementation was observed. CONCLUSIONS: Moderate fish-oil supplementation contributes to a reversal of lipid abnormalities and low n-3 PUFA levels in Indo-Asians and should be considered as an important, yet simple, dietary manipulation to reduce CAD risk in Indo-Asians with an atherogenic lipoprotein phenotype.  相似文献   

19.
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease of the joints and bones. The n-6 polyunsaturated fatty acid (PUFA) arachidonic acid (ARA) is the precursor of inflammatory eicosanoids which are involved in RA. Some therapies used in RA target ARA metabolism. Marine n-3 PUFAs (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) found in oily fish and fish oils decrease the ARA content of cells involved in immune responses and decrease the production of inflammatory eicosanoids from ARA. EPA gives rise to eicosanoid mediators that are less inflammatory than those produced from ARA and both EPA and DHA give rise to resolvins that are anti-inflammatory and inflammation resolving, although little is known about these latter mediators in RA. Marine n-3 PUFAs can affect other aspects of immunity and inflammation relevant to RA, including dendritic cell and T cell function and production of inflammatory cytokines and reactive oxygen species, although findings for these outcomes are not consistent. Fish oil has been shown to slow the development of arthritis in animal models and to reduce disease severity. A number of randomised controlled trials of marine n-3 PUFAs have been performed in patients with RA. A systematic review included 23 studies. Evidence is seen for a fairly consistent, but modest, benefit of marine n-3 PUFAs on joint swelling and pain, duration of morning stiffness, global assessments of pain and disease activity, and use of non-steroidal anti-inflammatory drugs.  相似文献   

20.
Flavonoids probably contribute to the health benefits associated with the consumption of fruit and vegetables. However, the mechanisms by which they exert their effects are not fully elucidated. PUFA of the (n-3) series also have health benefits. Epidemiological and clinical studies have suggested that wine flavonoids may interact with the metabolism of (n-3) PUFA and increase their blood and cell levels. The present studies in rats were designed to assess whether flavonoids actually increase plasma levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the main very long-chain (n-3) PUFA. Rats were fed a corn-derived anthocyanin (ACN)-rich (ACN-rich) or ACN-free diet with constant intakes of plant and marine (n-3) PUFA for 8 wk (Expt. 1). Plasma fatty acids were measured by GC. The ACN-rich diet contained ~0.24 ± 0.01 mg of ACN/g pellets. There were no significant differences between groups in the main saturated, monounsaturated, and (n-6) fatty acids. In contrast, plasma EPA and DHA were greater in the ACN-rich diet group than in the ACN-free diet group (P < 0.05). We obtained similar results in 2 subsequent experiments in which rats were administered palm oil (80 μL/d) and consumed the ACN-rich or ACN-free diet (Expt. 2) or were supplemented with fish oil (60 mg/d, providing 35 mg DHA and 12 mg EPA) and consumed the ACN-rich or ACN-free diet (Expt. 3). In both experiments, plasma EPA and DHA were significantly greater in the ACN-rich diet group. These studies demonstrate that the consumption of flavonoids increases plasma very long-chain (n-3) PUFA levels. These data confirm previous clinical and epidemiological studies and provide new insights into the health benefits of flavonoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号