首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collagen containing bone morphogenetic protein-2 (BMP-2) expression vector, which is called "gene-activated matrix," promotes bone regeneration when transplanted to the bone defect. We speculated that hydroxyapatite fiber (HF) would be an ideal matrix for "gene-activated matrix" especially for bone regeneration, because it is oseteoconductive and has high affinity to DNA. The purpose of this study is to clarify whether HF containing BMP-2 expression vector induces ectopic bone formation. We prepared HF containing 0, 10, 50, and 100 microg BMP-2 expression vector. Wistar male rats (8 weeks) were used and each rat received two HF implants in the left and right dorsal muscle. The rats were sacrificed 4, 8, and 12 weeks after the operation, and implants were analyzed radiographically by softex, dual-energy X-ray absorptiometry, and they were histologically examined. At 4 weeks, HF containing 50 or 100 microg BMP-2 expression vector showed high bone mineral contents and large radiopaque volume compared to the other implants. At 8 and 12 weeks, HF containing 50 microg BMP-2 expression vector exerted the highest values in the radiographic analyses. Bonelike tissue was histologically observed in HF containing 50 and 100 microg BMP-2 expression vector groups but not detected in the other implants. The present results suggest that HF is potential as a matrix for "gene-activated matrix" for bone tissue engineering.  相似文献   

2.
3.
New strategies such as combined utilization of growth factors may provide a better treatment for difficult fractures. We have demonstrated enhanced angiogenesis and osteogenesis through the actions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) on the osteogenic differentiation of a cloned mouse osteoprogenitor cell in vitro and ectopic bone formation in vivo. Human VEGF and BMP-6 genes expressed together produced a significant increase in alkaline phosphatase activity, expression of the RunX2 and osteocalcin genes and mineralization. Microcomputed tomographic analysis of subcutaneous implants consisting of cells transfected with VEGF and BMP-6 cDNA and delivered on a 3D poly (lactic-co-glycolic acid) scaffold confirmed the additive effects between VEGF and BMP-6. Ectopic bone formation in the VEGF plus BMP-6 group was greatest compared to that in either VEGF or BMP-6 alone. This is the first study that demonstrates osteogenesis in vitro and in vivo through the additive effects of VEGF and BMP-6.  相似文献   

4.
The osteoinductive growth factor, bone morphogenetic protein-2 (BMP-2), is capable of inducing de novo bone formation after implantation. A nanoparticulate (NP) system was developed for BMP-2 delivery based on NPs fabricated from bovine serum albumin (BSA) and stabilized by polyethylenimine (PEI) coating. In this study, the pharmacokinetics and osteoinductivity of BMP-2 delivered with different BSA NP formulations were determined by subcutaneous implantation in rats. A 7-day pharmacokinetics study showed that PEI coating on NPs effectively reduced the initial burst release of BMP-2 and prolonged the BMP-2 retention at implantation site. However, the uncoated BMP-2 NPs (BMP-2 loading of 1.44% w/w) were able to induce a robust ectopic bone formation, while no bone formation was found by the BMP-2 NPs coated with PEI. The toxicity of the PEI used for NP coating was determined to be the reason for lack of osteoinduction. Increasing BMP-2 loading (up to 5.76% w/w) was then employed to formulate NPs with lower PEI content; the higher BMP-2 loading was found to better promote induction of de novo bone. Our findings indicated that PEI coating on BSA NPs was effective for controlling BMP-2 release from NPs, but the toxicity of cationic PEI was a concern for the osteoinductive activity, which should be alleviated by further optimization of NP formulations.  相似文献   

5.
Current treatment of fractures often involves the use of bone graft or bone morphogenetic proteins (BMP) to induce fracture healing, especially in patients with a compromised healing capacity. BMP has to be delivered in conjunction with a carrier. Unfortunately, there are drawbacks and limitations with current carriers, including their bovine origin which carries the risk of an immunological response. The physical properties also limit the use to open surgical procedures, as it cannot be injected. New carriers with improved properties are therefore needed. The aim of this study was to assess the ectopic bone forming capability of various calcium phosphate compounds when used in conjunction with a hydrogel as the carrier for BMP-2. Five different ceramic additives were tested, including β-tricalcium phosphate and four types of hydroxyapatite (HAP) (nanoHAP, HAP, clods of HAP >100 μm, and the biomimetic HAP Ostim35?). The compounds were injected into the thigh muscle of rats, where it formed a gel in situ. After 4 weeks bone formation was evaluated by peripheral quantitative computed tomography and histology. The major finding was that the 20 nm nanoHAP yielded a higher bone density than the other additives (P=0.0008, ANOVA with Tukey's multiple comparison test). We hypothesize that the higher bone density induced by nanoHAP might be due to nanocrystals of calcium phosphate acting as direct building blocks for biomineralization.  相似文献   

6.
目的了解精氨酸-甘氨酸-天冬氨酸多肽表面修饰的羟基磷灰石(hydroxyapatite,HA)修复节段性骨缺损局部骨形态发生蛋白-2(bone morphogenefic protein-2,BMP-)的表达。方法以骨髓基质干细胞(marrow stromal cels,MSCs)复合Arg-Gly-Asp(RGD)多肽表面修饰的HA或单纯材料培养制备组织工程骨,选择60只新西兰白兔。制作15mm长的桡骨节段性骨缺损模型,根据植入不同的材料分为A、B、C、D组。A组:骨缺损区植入MSCs复合RGD多肽表面修饰的HA培养制备的组织工程骨;B组:骨缺损区植入MSCs复合HA培养制备的组织工程骨;C组:骨缺损区植入RGD多肽表面修饰的HA;D组:骨缺损区植入HA。术后4周取材,行修复区局部BMP-2免疫组化分析。结果术后4周各组骨缺损区均有新骨生成,修复区局部BMP-2表达水平依次为:A〉B〉C〉D(P〈0.05)。结论RGD多肽表面修饰对以HA为支架材料组织工程骨的修复作用有明显优化作用。  相似文献   

7.
脱细胞松质骨复合骨形态发生蛋白2异位成骨的实验研究   总被引:1,自引:0,他引:1  
目的制备脱细胞松质骨作为骨形态发生蛋白2(BMP-2)载体。观察其异位成骨状况。方法取猪椎体松质骨,做脱细胞、脱脂处理。以兔为实验动物,将BMP-2与脱细胞松质骨复合,植入皮下组织.复合兔自体新鲜红骨髓及单纯脱细胞骨植入作为对照。另将脱细胞松质骨小柱复合BMP-2植入兔听泡内.以不含BMP-2脱细胞松质骨作为对照。术后3个月取标本行病理学检查。结果术后兔健康状况良好.术后3个月材料形状无明显变化.周围组织有少量血管增生.无明显免疫排斥现象,实验组病理学检查发现有新骨形成.对照组中复合自体红骨髓材料中有少量新生骨.单纯材料组仅有纤维结缔组织充填。植入听泡的复合BMP-2脱细胞松质骨与听泡骨壁接触部位结合紧密.表面被再生黏膜覆盖.病理学检查发现有新骨形成,而对照耳仅有黏膜覆盖,无新骨形成。结论脱细胞松质骨复合/BMP-2具有诱导成骨能力.并可在听泡空腔特殊部位诱导成骨.是一种很好的异位诱导成骨方法。  相似文献   

8.
Prolonged ectopic calcification induced by BMP-2-derived synthetic peptide   总被引:4,自引:0,他引:4  
Bone morphogenetic protein-2 (BMP-2) promotes the formation and regeneration of bone and cartilage, and therefore constitutes the most promising candidate for a bone repair material. However, it also has a wide range of functions, such as in organogenesis and apoptosis. Therefore, we investigated a novel synthetic peptide corresponding to residues 73-92 of BMP-2. This peptide bound to a BMP-2-specific receptor and elevated both alkaline phosphatase activity and osteocalcin mRNA in the murine cell line, C3H10T1/2. The 73-92 peptide also induced ectopic calcification when conjugated to a covalently crosslinked alginate gel. Here we report that the 73-92 peptide-conjugated alginate gel showed prolonged ectopic calcification for up to 7 weeks in rat calf muscle. In contrast, rhBMP-2-impregnated collagen gel showed maximum ectopic calcification at 3 weeks, and the calcified products that had formed disappeared after 5 weeks. Histological examination showed that the 73-92 peptide-conjugated alginate gel induced many osteoblast-like cells and few osteoclasts. In contrast, rhBMP-2-impregnated collagen gel induced many osteoclasts. These results suggest that the 73-92 peptide on alginate gel remains active at the implanted site, continuously induces differentiation of osteoblast precursor cells into osteoblasts, and activates osteoblasts to promote ectopic calcification.  相似文献   

9.
Adenovirus-mediated recombinant human BMP-2 (RAdBMP-2) gene transfer has been found to have significant osteoinductive properties. The hypothesis of the current study was that bioactive glass surface could provide favorable osteoconductive conditions for cellular action of osteoinductive RAdBMP-2 gene transfer. In the rat proximal tibia, a portion of the medullary cavity was evacuated and filled with bioactive glass microspheres and injected with adenovirus carrying the human BMP-2 gene (BG/RAdBMP-2). Control defects filled with BG microspheres were injected with adenovirus carrying the LacZ reporter gene (BG/RAdLacZ) or saline (BG). Empty control defects were also used. Bone healing response was analyzed at 4 days, and at 2 and 8 weeks by radiography, peripheral quantitative computed tomography (pQCT), histomorphometry, and backscattered electron imaging of scanning electron microscopy (BEI-SEM) equipped with energy dispersive X-ray analysis (EDXA). In empty controls, the amount of intramedullary new bone peaked at 2 weeks, whereas defects filled with bioactive glass with and without RAdBMP-2 gene transfer showed a constant time-related increase of intramedullary new bone. At 8 weeks, there was significantly more new bone in defects treated with BG and RAdBMP-2 than in defects left to heal without filling (p < 0.001). Compared with the other controls (BG only or BG/RAdLacZ), the difference was not significant. In the current model, the osteopromotive effect of bioactive glass microspheres appears synergistic with the osteoinductive action of BMP-2 gene transfer, or one overshadows the other, as no additive effect was observed.  相似文献   

10.
Bone regeneration is a coordinated cascade of events regulated by several cytokines and growth factors. Angiogenic growth factors are predominantly expressed during the early phases for re-establishment of the vascularity, whereas osteogenic growth factors are continuously expressed during bone formation and remodeling. Since vascular endothelial growth factor (VEGF) and bone morphogenetic proteins (BMPs) are key regulators of angiogenesis and osteogenesis during bone regeneration, the aim of this study was to investigate if their sequential release could enhance BMP-2-induced bone formation. A composite consisting of poly(lactic-co-glycolic acid) microspheres loaded with BMP-2 embedded in a poly(propylene) scaffold surrounded by a gelatin hydrogel loaded with VEGF was used for the sequential release of the growth factors. Empty composites or composites loaded with VEGF and/or BMP-2 were implanted ectopically and orthotopically in Sprague–Dawley rats (n = 9). Following implantation, the local release profiles were determined by measuring the activity of 125I-labeled growth factors using scintillation probes. After 8 weeks blood vessel and bone formation were analyzed using microangiography, μCT and histology. The scaffolds exhibited a large initial burst release of VEGF within the first 3 days and a sustained release of BMP-2 over the full 56-day implantation period. Although VEGF did not induce bone formation, it did increase the formation of the supportive vascular network (p = 0.03) in ectopic implants. In combination with local sustained BMP-2 release, VEGF significantly enhanced ectopic bone formation compared to BMP-2 alone (p = 0.008). In the orthotopic defects, no effect of VEGF on vascularisation was found, nor was bone formation higher by the combination of growth factors, compared to BMP-2 alone. This study demonstrates that a sequential angiogenic and osteogenic growth factor release may be beneficial for the enhancement of bone regeneration.  相似文献   

11.
This study describes an injectable, thermo-responsive hyaluronic acid-g-chitosan-g-poly(N-isopropylacrylamide) (HA-CPN) copolymer for bone tissue engineering. The wettability, temperature-dependent change of water content, and volume of HA-CPN hydrogel were measured, together with its biocompatibility in vitro and in vivo. The dried hydrogel morphology shows a three-dimensional, porous structure with interconnected pores. Canine bone marrow-derived mesenchymal stem cells (cBMSCs) were encapsulated in HA-CPN hydrogel and osteoinduction was assessed by comparing samples with different osteogenic differentiation induction times but with the same total cell culture time. Cell proliferation and time-dependent osteogenic differentiation, evident from secretion of extracellular matrix and formation of mineral deposits, were observed. The cells showed better proliferation in HA-CPN hydrogel than on tissue culture polystyrene after osteo-induced for 21 days and higher alkaline phosphatase activity regardless of osteo-induction times. Mineralization extent of cBMSCs in HA-CPN followed by Alizarin red stains showed positive stained nodules after osteo-induced longer than 7 days. The cells/hydrogel construct also showed increased mechanical strength and elasticity after osteogenic differentiation, and the increase could be correlated with osteo-induction time. In vivo studies confirmed the biocompatibility and bioresorption of the HA-CPN hydrogel and ectopic bone formation when the hydrogel was used as a cell carrier for osteo-induced cBMSCs and implanted in nude mice subcutaneously. Taken together, the results indicate the feasibility and efficacy of HA-CPN hydrogel as an injectable bone tissue engineering scaffold with cBMSCs.  相似文献   

12.
Aims: To study the stromal variation and role of stromal–tumour cell interaction in impaired bone formation as well as enhanced bone resorption in ameloblastoma. Methods and results: Four types of stroma were observed histologically; fibrous, desmoplastic, myxoid and myxoid with hyalinization. Osteoblast and osteoclast were counted using haematoxylin and eosin sections and immunohistochemistry with CD68. After histomorphometric analysis, only fibrous and myxoid types of stroma were distinctly identified. Secreted frizzled‐related peptide (sFRP)‐2, transforming growth factor‐beta 1 and receptor activator of nuclear factor‐κB ligand (RANKL) revealed strong expression in myxoid type compared with the normal stroma. Bone morphogenetic protein (BMP)‐2 was negative in myxoid type, but positive in normal stroma. Fibrous‐type stroma showed weak expression of all antigens except RANKL compared with myxoid type. Conclusions: The results suggest that stroma does not act only in bone resorption, but also in the suppression of new bone formation. sFRP‐2 is the main factor for impaired bone formation. The expression of markers related to osteoclastogenesis and suppression of osteoblast formation is higher in myxoid‐type than in fibrous‐type stroma. Tumour cells create a favourable environment for impaired bone formation by secreting sFRP‐2 as well as bone resorption by secreting RANKL and interleukin‐6.  相似文献   

13.
Jeon O  Song SJ  Kang SW  Putnam AJ  Kim BS 《Biomaterials》2007,28(17):2763-2771
In this study, a heparin-conjugated poly(l-lactic-co-glycolic acid) (HP-PLGA) scaffold was developed for the sustained delivery of bone morphogenetic protein-2 (BMP-2), and then used to address the hypothesis that BMP-2 delivered from this scaffold could enhance ectopic bone formation. We found the amount of heparin conjugated to the PLGA scaffolds could be increased up to 3.2-fold by using scaffolds made from star-shaped PLGA, as compared to scaffolds made from linear PLGA, and that the release of BMP-2 from the HP-PLGA scaffold was sustained for at least 14 days in vitro. The BMP-2 released from the HP-PLGA scaffold stimulated an increase in alkaline phosphatase (ALP) activity of osteoblasts for 14 days in vitro, suggesting that the HP-PLGA scaffold delivery system releases BMP-2 in a bioactive form for a prolonged period. By contrast, BMP-2 release from unmodified (no heparin) PLGA scaffolds induced a transient increase in ALP activity for the first 3 days and a decrease thereafter. In vivo bone formation studies showed the BMP-2-loaded HP-PLGA scaffolds induced bone formation to a much greater extent than did either BMP-2-loaded unmodified PLGA scaffolds or unloaded (no BMP-2) HP-PLGA scaffolds, with 9-fold greater bone formation area and 4-fold greater calcium content in the BMP-2-loaded HP-PLGA scaffold group compared to the BMP-2-loaded unmodified PLGA scaffold group. Collectively, these results demonstrate that the HP-PLGA delivery system is capable of potentiating the osteogenic efficacy of BMP-2, and underscore its importance as a possible bone regeneration strategy.  相似文献   

14.
Successful bone-implant osseointegration in large peri-implant bone defects is often difficult, even through autologous bone grafting. Recently, cell-mediated regional gene therapy was introduced to deliver potent morphogens or growth factors in regenerative medicine. We applied liposomal vectors carrying bone morphogenetic protein (BMP)-2 cDNA directly into freshly created peri-implant bone defects on pig calvariae, with or without autologous bone graft. The BMP-2 gene was efficiently introduced into immigrating cells and trabecular cells lining the marginal bone surrounding the bony defect. After 1 week, abundant BMP-2 protein was detected throughout the peri-implant bone defect by immunohistochemistry. At 4 weeks, BMP-producing cells were still present in the defect and peri-implant area, which significantly enhanced new bone formation, compared with the control groups. Interestingly within a week of BMP-2 gene delivery with bone grafts, most osteoblastic cells lining the grafted bone chips also produced BMP-2. Particulated bone was immediately reorganized into newly formed trabecular bone. Grafted bone without BMP-2 gene delivery was still scattered and new bone matrix formation was not detected until 4 weeks after bone grafting. In conclusion, direct application of the BMP-2 gene using a liposomal vector enhanced bone regeneration in a bony defect and gene delivery combined with bone graft could induce a rapid osseointegration of the bone-implant interface at earlier stage.  相似文献   

15.
Yamamoto M  Takahashi Y  Tabata Y 《Biomaterials》2003,24(24):4375-4383
The objective of this study is to develop a carrier for the controlled release of bone morphogenetic protein-2 (BMP-2) suitable for enhancement of the bone regeneration activity. Hydrogels with different water contents were prepared through glutaraldehyde crosslinking of gelatin with an isoelectric point of 9.0 under varied reaction conditions. Following subcutaneous implantation of the gelatin hydrogels incorporating 125I-labeled BMP-2 into the back of mice, the in vivo retention period of BMP-2 prolonged with a decrease in the water content of hydrogels used, although every time period was much longer than that of BMP-2 solution injection. Ectopic bone formation studies demonstrated that the alkaline phosphatase (ALP) activity and osteocalcin content around the implanted site of BMP-2-incorporated gelatin hydrogels were significantly high compared with those around the injected site of BMP-2 solution. The values became maximum for the gelatin hydrogel incorporating BMP-2 with a middle period of BMP-2 retention, while bone formation was histologically observed around the hydrogel incorporating BMP-2. The ALP activity was significantly higher than that of the collagen sponge incorporating BMP-2. We concluded that the controlled release technology of BMP-2 for a certain time period was essential to induce the potential activity for bone formation.  相似文献   

16.
We previously demonstrated that recombinant human interleukin-11 (rHuIL-11) induced osteoblast differentiation of C3H10T1/2 progenitor cells and also acted synergistically with recombinant human bone morphogenetic protein-2 (rHuBMP-2) in performing the same function. In this study, we investigated the effect of rHuIL-11 and rHuBMP-2 on bone formation in a rat ectopic model. When placed in rats, implants consisting of polymer-coated gelatin sponges containing various concentrations of rHuBMP-2 showed a dose-dependent increase in calcium content. This was confirmed by radiographic analysis of the implants. Although implants containing rHuIL-11 alone did not accumulate calcium, implants containing a combination of rHuBMP-2 and rHuIL-11 had significantly higher calcium levels than those containing rHuBMP-2 alone. This increase was rHuIL-11 dose dependent. The synergistic effect of 20 micrograms rHuIL-11 and 6 micrograms rHuBMP-2 on bone formation was estimated to be 1 week in advance of that of 6 micrograms rHuBMP-2 alone. Histologic examination revealed that the combination of rHuIL-11 and rHuBMP-2 caused spindle cells to accumulate around implants and induced cell infiltration into implants. Bone formation occurred faster in implants with the combination of rHuIL-11 and rHuBMP-2 compared with rHuBMP-2 alone. These results suggest that rHuIL-11 acts synergistically with rHuBMP-2 to more rapidly stimulate bone formation compared with rHuBMP-2 alone. This novel combined therapy may be of great clinical benefit in bone healing.  相似文献   

17.
Small-sized magnetic liposomes with incorporated recombinant human bone morphogenetic protein-2 (rhBMP-2) were prepared, and the efficiency for bone formation after topical injection was evaluated in a rat bone-defect model. A critical-sized segmental bone defect was created in the mid-part of the femoral shaft, and a permanent magnet was attached. Topical injection onto the defects was performed with different liposomal preparations (nonmagnetic and magnetic liposomes) using different treatment modalities (different doses and different treatment timing of rhBMP-2). Weekly evaluations were made radiographically and microcomputed tomographically, histologically, and/or by mechanical testing at 9 weeks after surgery. A single topical application of magnetic liposomes with an appropriate amount of rhBMP-2 (approximately 3 microg) incorporated under magnetic induction immediately after surgery was effective for new bone formation. The combined treatment of topical magnetic rhBMP-2 liposomes and magnetic implantation at the injury site was effective for the treatment of bone defects. This injectable carrier for BMP is expected to have many advantages over solid carriers because it can be prepared easily and can be less invasively applied to the injured site at any time after surgery.  相似文献   

18.
Bone morphogenetic protein-2 (BMP-2) is a well-known osteoinductive protein, which requires a carrier for local application. As an alternative to the previously described carriers, an in situ hardening, resorbable, and osteoconductive beta-tricalcium phosphate cement (TCP) is tested. Trepanation defects in the bovine distal femoral epiphysis are filled with a composite consisting of TCP and 200 microg rhBMP-2 per cm3 TCP, autologous bone graft, pure TCP, or left empty. A radiological follow-up is performed after 7 weeks and 3 months. The sheep are euthanized and bone samples are analyzed by microradiography, histology, and histomorphometry. Microradiography and histology show similar results for pure TCP and the composite. The defects are filled with trabecular bone and newly formed bone is in close contact with the remaining TCP-particles. The majority of the cement is resorbed, in the composite group the amount of remaining cement particles is reduced. Defects treated with autologous bone graft are filled completely, while untreated defects shows only a small amount of bone originating from the rim of the defect. Histomorphometry of the defects treated with pure TCP shows a significantly increased bone content in comparison to defects treated with the composite or autologous bone graft. Analysis of the remaining cement particles shows significantly less cement in the TCP/rhBMP-2 group in comparison to pure TCP. The sum of bone and cement content in the rhBMP-2 group shows amounts comparable to the calcified structures found following autologous bone grafting. The addition of rhBMP-2 to the TCP leads to faster remodeling of the defect comparable to autologous bone graft, while defects treated with pure TCP are not completely remodeled.  相似文献   

19.
We examined the molecular progression of ectopic bone development upon application of recombinant human bone morphogenetic protein-2 (rhBMP2), using a commercial collagen type I carrier, in the hind quarter muscles of mice. We performed a gene expression study using mRNA in situ hybridisation to compare embryonic cartilage and bone formation with BMP2-induced ectopic bone formation. As bone growth can be induced postnatally or in adult animals, we examined the expression of molecules regulating embryonic bone development. We found that the mRNAs of the same molecules, such as Indian hedgehog (IHH), parathyroid hormone (PTH)/PTH-related peptide receptor (PPR) and BMPs, that regulate embryonic cartilage and bone development, are expressed during BMP-induced ectopic bone formation, suggesting parallels in the mechanisms controlling these processes. Our studies support by molecular means the previous findings in rats that BMP2-induced ectopic bone formation in mice undergoes bone development involving both modes, endochondral and intramembranous ossification, simultaneously at different sites of the implant.  相似文献   

20.
Stem cell-based strategies for bone regeneration, which use calcium phosphate (CaP)-based biomaterials in combination with developmentally relevant progenitor populations, have significant potential for clinical repair of skeletal defects. However, the exact mechanism of action and the stem cell-host-material interactions are still poorly understood. We studied if pre-conditioning of human periosteum-derived cells (hPDCs) in vitro could enhance, in combination with a CaP-based biomaterial carrier, ectopic bone formation in vivo. By culturing hPDCs in a biomimetic calcium (Ca(2+)) and phosphate (P(i)) enriched culture conditions, we observed an enhanced cell proliferation, decreased expression of mesenchymal stem cell (MSC) markers and upregulation of osteogenic genes including osterix, Runx2, osteocalcin, osteopontin, and BMP-2. However, the in vitro pre-conditioning protocols were non-predictive for in vivo ectopic bone formation. Surprisingly, culturing in the presence of Ca(2+) and P(i) supplements resulted in partial or complete abrogation of in vivo ectopic bone formation. Through histological, immunohistochemical and microfocus X-ray computed tomography (μCT) analysis of the explants, we found that in situ proliferation, collagen matrix deposition and the mediation of osteoclastic activity by hPDCs are associated to their ectopic bone forming capacity. These data were validated by the multivariate analysis and partial least square regression modelling confirming the non-predictability of in vitro parameters on in vivo ectopic bone formation. Our series of experiments provided further insights on the stem cell-host-material interactions that govern in vivo ectopic bone induction driven by hPDCs on CaP-based biomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号