首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xenotransplantation of porcine cells, tissues, and organs may be associated with the transmission of porcine microorganisms to the human recipient. A previous, 2009, version of this consensus statement focused on strategies to prevent transmission of porcine endogenous retroviruses (PERVs). This version addresses potential transmission of all porcine microorganisms including monitoring of the recipient and provides suggested approaches to the monitoring and prevention of disease transmission. Prior analyses assumed that most microorganisms other than the endogenous retroviruses could be eliminated from donor animals under appropriate conditions which have been called “designated pathogen‐free” (DPF) source animal production. PERVs integrated as proviruses in the genome of all pigs cannot be eliminated in that manner and represent a unique risk. Certain microorganisms are by nature difficult to eliminate even under DPF conditions; any such clinically relevant microorganisms should be included in pig screening programs. With the use of porcine islets in clinical trials, special consideration has to be given to the presence of microorganisms in the isolated islet tissue to be used and also to the potential use of encapsulation. It is proposed that microorganisms absent in the donor animals by sensitive microbiological examination do not need to be monitored in the transplant recipient; this will reduce costs and screening requirements. Valid detection assays for donor and manufacturing‐derived microorganisms must be established. Special consideration is needed to preempt potential unknown pathogens which may pose a risk to the recipient. This statement summarizes the main achievements in the field since 2009 and focus on issues and solutions with microorganisms other than PERV.  相似文献   

2.
The International Xenotransplantation Association has updated its original “Consensus Statement on Conditions for Undertaking Clinical Trials of Porcine Islet Products in Type 1 Diabetes,” which was published in Xenotransplantation in 2009. This update is timely and important in light of scientific progress and changes in the regulatory framework pertinent to islet xenotransplantation. Except for the chapter on “informed consent,” which has remained relevant in its 2009 version, all other chapters included in the initial consensus statement have been revised for inclusion in this update. These chapters will not provide complete revisions of the original chapters; rather, they restate the key points made in 2009, emphasize new and under‐appreciated topics not fully addressed in 2009, suggest relevant revisions, and communicate opinions that complement the consensus opinion. Chapter 1 provides an update on national regulatory frameworks addressing xenotransplantation. Chapter 2 a, previously Chapter 2, suggests several important revisions regarding the generation of suitable source pigs from the perspective of the prevention of xenozoonoses. The newly added Chapter 2b discusses conditions for the use of genetically modified source pigs in clinical islet xenotransplantation. Chapter 3 reviews porcine islet product manufacturing and release testing. Chapter 4 revisits the critically important topic of preclinical efficacy and safety data required to justify a clinical trial. The main achievements in the field of transmission of all porcine microorganisms, the rationale for more proportionate recipient monitoring, and response plans are reviewed in Chapter 5. Patient selection criteria and circumstances where trials of islet xenotransplantation would be both medically and ethically justified are examined in Chapter 6 in the context of recent advances in available and emerging alternative therapies for serious and potentially life‐threatening complications of diabetes. It is hoped that this first update of the International Xenotransplantation Association porcine islet transplant consensus statement will assist the islet xenotransplant scientific community, sponsors, regulators, and other stakeholders actively involved in the clinical translation of islet xenotransplantation.  相似文献   

3.
4.
Jin S‐M, Shin JS, Kim KS, Gong C‐H, Park SK, Kim J‐S, Yeom S‐C, Hwang ES, Lee CT, Kim S‐J, Park C‐G. Islet isolation from adult designated pathogen‐free pigs: use of the newer bovine nervous tissue–free enzymes and a revised donor selection strategy would improve the islet graft function. Xenotransplantation 2011; 18: 369–379. © 2011 John Wiley & Sons A/S. Abstract: Background: In clinical trials using adult porcine islet products, islets should be isolated from the designated pathogen‐free (DPF) pigs under the current good manufacturing practice (GMP) regulations. Our previous studies suggested that male DPF pigs are better donors than retired breeder pigs and histomorphometrical parameters of donor pancreas predict the porcine islet quality. We aimed to investigate whether the use of the newer bovine nervous tissue–free enzymes and a revised donor selection strategy could improve the islet graft function in the context of islet isolation with DPF pigs. Methods: Using 30 DPF pigs within a closed herd, we compared the islet yield of porcine islets isolated with Liberase PI (n = 11, as a historical control group), Liberase MTF C/T, which is a GMP‐grade enzyme (n = 12), and CIzyme collagenase MA/BP protease (n = 7). We analyzed the relationship between the diabetes reversal rate of recipient NOD/SCID mice (n = 75) and histomorphometric parameters of each donor pancreas as well as donor characteristics. Results: Proportion of islets larger than 200 μm from the biopsied donor pancreas (P = 0.006) better predicted islet yield than age (P = 0.760) or body weight (P = 0.371) of donor. The proportion of islets larger than 200 μm from the biopsied donor pancreas was not related to the sex of the donor miniature pig (P = 0.358). The islet yield obtained with the three enzymes did not differ, even after stratification of the donor with the histomorphometric parameters of the biopsied donor pancreas and the sex of donor. The use of the newer bovine nervous tissue–free enzymes (P < 0.001), a higher proportion of large islets in donor pancreas (P = 0.006), and a male sex of the donor (P = 0.025) were independent predictors of earlier diabetes reversal. Conclusions: Use of the newer bovine nervous tissue–free enzymes including a GMP‐grade enzyme resulted in better islet quality than that of islet isolated using Liberase PI. To obtain high‐quality islet from DPF pigs, the donor should be male pig and histomorphometrical parameters from donor pancreas should be considered.  相似文献   

5.
BACKGROUND: Porcine pancreas is a potential source of material for islet xenotransplantation. However, the difficulty in isolating islets, because of their fragility and the variability of isolation outcome in donor age and breed, represents a major obstacle to porcine islet xenotransplantation. In this study, we compared the islet isolation yield of specific pathogen-free (SPF) Chicago Medical School (CMS) miniature pigs with that of another miniature pig breed and market pigs from a local slaughterhouse. METHODS: Nine adult CMS miniature (ACM) pigs (>12 months), six young CMS miniature (YCM) pigs (6-7 months), four adult Prestige World Genetics (PWG) miniature (APM) pigs (>12 months), and 13 adult market (AM) pigs from a local slaughterhouse were used for islet isolation. RESULTS: The islet yield per gram of pancreas from ACM pigs (9589 +/- 2823 IEQ/g) was significantly higher than that from APM pigs (1752 +/- 874 IEQ/g, P < 0.05), AM pigs (1931 +/- 947 IEQ/g, P < 0.05), or YCM pigs (3460 +/- 1985 IEQ/g, P < 0.05). Isolated islets from ACM pigs were significantly larger than those from AM pigs or YCM pigs. The in vitro and in vivo function of isolated islets showed no difference among experimental groups. The pancreases of ACM pigs contained higher mean islet volume density percentages and larger size of islets than those of AM or APM pigs. CONCLUSIONS: We isolated extremely high yields of well-functioning islets from ACM pigs bred under SPF conditions. SPF CMS miniature pigs should be one of the best porcine islet donors for clinical porcine islet xenotransplantation.  相似文献   

6.
Introduction: Xenotransplantation using pig cells and tissues may be associated with the transmission of porcine microorganisms including bacteria, parasites, fungi and viruses to the human recipient and may result in zoonones. Porcine endogenous retroviruses (PERVs) represent a special risk since PERV‐A and PERV‐B are present in the genome of all pigs and infect human cells. PERV‐C is not present in all pigs and does not infect human cells. However, recombinants between PERV‐A and PERV‐C have been observed in normal pigs characterised by higher replication rates compared with PERV‐A, and they are also able to infect human cells (1). Methods: In the past years numerous assays based on the PCR technology have been developed to screen for the prevalence and expression of PERV and other porcine microorganisms in the donor pig (2). Whereas most microorganisms may be eliminated by designated pathogen‐free breeding, PERVs cannot be removed this way. In addition, assays have been developed to analyse the recipient for the transmission of PERV and other microorganisms, either using PCR methods or immunological assays to detect an antibody production as a result of infection (3). Results: Using these assays, no transmission of PERV as well as of other porcine microorganisms has been observed in first preclinical and clinical xenotransplantations or animal infection experiments. This was especially true for the first clinical transplantation of pig islet cells approved by the New Zealand government (4). Until now there is no susceptible animal model to study PERV transmission and transplantations of porcine cells or organs to non‐human primates as they are associated with limitations concerning the safety aspect, which do not allow transmitting the negative findings to humans (5). Different experimental approaches are under development to reduce the probability of PERV transmission, e.g. the generation of transgenic pigs expressing PERV‐specific siRNA inhibiting PERV expression by RNA interference (6), genotypic selection of pigs with a low prevalence and expression of PERV and neutralising antibodies against the envelope proteins inhibiting PERV infection (7). Conclusion: Investigations of the last years resulted in highly sensitive and specific methods to study PERV and other microorganisms in donor pigs and human recipients of xenotransplants. These methods showed absence of PERV transmission in all investigated cases, both in more than 200 human xenotransplant recipients, mostly recipients of cellular xenotransplants, as well as in non‐human primates and small animals. New technologies under development may further decrease the probability of transmission. References: 1. Denner J. Recombinant porcine endogenous retroviruses (PERV‐A/C): A new risk for xenotransplantation? Arch Virol 2008; 153: 1421–1426. 2. Kaulitz D, Mihica D, Dorna J, Costa MR, Petersen B, Niemann H, TÖnjes RR, Denner J. Development of sensitive methods for detection of porcine endogenous retrovirus‐C (PERV‐C) in the genome of pigs J Virol Methods 2011; 175(1): 60–65. 3. Denner, J. Infectious risk in xenotransplantation – what post‐transplant screening for the human recipient? Xenotransplantation 2011; 18(3): 151–157. 4. Wynyard S, Garkavenko O, Nathu D, Denner J, Elliott R. Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand, submitted. 5. Mattiuzzo G, Takeuchi Y. Suboptimal porcine endogenous retrovirus infection in non‐human primate cells: implication for preclinical xenotransplantation. PLoS One 2010; 5(10): e13203. 6. Semaan M, Kaulitz D, Petersen B, Niemann H, Denner J. Long‐term effects of PERV‐specific RNA interference in transgenic pigs. Xenotransplantation 2012; 19(2): 112–21. 7. Kaulitz D, Fiebig U, Eschricht M, Wurzbacher C, Kurth R, Denner J. Generation of neutralising antibodies against porcine endogenous retroviruses (PERVs). Virology 2011; 411(1): 78–86.  相似文献   

7.
8.
Pig endogenous retroviruses and xenotransplantation   总被引:6,自引:0,他引:6  
Xenotransplantation of porcine organs might provide an unlimited source of donor organs to treat endstage organ failure diseases in humans. However, pigs harbour retroviruses with unknown pathogenic potential as an integral part of their genome. While until recently the risk of interspecies transmission of these porcine endogenous retroviruses (PERV) during xenotransplantation has been thought to be negligible, several reports on infection of human cells in vitro and spread of PERV from transplanted porcine islets in murine model systems have somewhat challenged this view. Here, we compile available data on PERV biology and diagnostics, and discuss the significance of the results with regard to the safety of clinical xenotransplantation.  相似文献   

9.
10.
BACKGROUND: The aim of this study was to investigate whether transmission of porcine endogenous retrovirus (PERV) occurs in a model of diabetes reversal by the xenotransplantation of adult porcine islets (APIs) into immunoincompetent diabetic rodents. METHODS: Black-6 nu/nu mice and Lewis rats were immunosuppressed with cyclosporin A (CsA) and FTY 720, and rendered diabetic with streptozotocin. Purified APIs were transplanted into the renal subcapsular space; 5,000 islet equivalents (IEQs) were used in the nude mice (n = 4) and 40,000 IEQs in the rats (n = 4). The nude mice were sacrificed at 75 days after transplantation. In order to confirm chronic xenograft function, the graft-bearing kidney was removed prior to sacrifice. The rats were followed until xenograft rejection, at which time they were sacrificed. Immediately after sacrifice, tissue samples (liver, spleen, and small intestine) were taken for analysis. Quantitative polymerase chain reaction (PCR) was used to assess evidence of PERV transmission, and porcine cell chimerism. RESULTS: All animals became normoglycemic within 48 h of transplantation. The nude mice remained normoglycemic during the 75-day study period, with removal of the graft-bearing kidney resulting in prompt hyperglycemia. The rats remained normoglycemic until xenograft rejection, which occurred at 66 +/- 28 days. Despite the evidence of porcine cell microchimerism in recipients, real-time PCR detected no evidence of PERV transmission in any of the tissue specimens tested. CONCLUSIONS: There was no evidence of PERV transmission following transplantation of pig islets into diabetic nude mice and immunosuppressed rats.  相似文献   

11.
Hurdles exist to clinical xenotransplantation including potential infectious transmission from nonhuman species to xenograft recipients. In anticipation of clinical trials of xenotransplantation, the associated infectious risks have been investigated. Swine and immunocompromised humans share some potential pathogens. Swine herpesviruses including porcine cytomegalovirus (PCMV) and porcine lymphotropic herpesvirus (PLHV) are largely species‐specific and do not, generally, infect human cells. Human cellular receptors exist for porcine endogenous retrovirus (PERV), which infects certain human‐derived cell lines in vitro. PERV‐inactivated pigs have been produced recently. Human infection due to PERV has not been described. A screening paradigm can be applied to exclude potential human pathogens from “designated pathogen free” breeding colonies. Various microbiological assays have been developed for screening and diagnosis including antibody‐based tests and qualitative and quantitative molecular assays for viruses. Additional assays may be required to diagnose pig‐specific organisms in human xenograft recipients. Significant progress has been made in the evaluation of the potential infectious risks of clinical xenotransplantation. Infectious risk would be amplified by intensive immunosuppression. The available data suggest that risks of xenotransplant‐associated recipient infection are manageable and that clinical trials can be performed safely. Possible infectious risks of xenotransplantation to the community at large are undefined but merit consideration.  相似文献   

12.
Abstract: An islet xenotransplantation product includes live cells from a non‐human source, in this study, a pig source. A live product cannot be subjected to conventional disinfection, and therefore the source pig must be depleted of infectious agents that can transmit to the recipient and cause disease. Among other requirements, regulatory guidances specify that donor animals fulfill the designated pathogen‐free (DPF) status. Donor pigs fulfilling DPF status are generally bred and maintained in biosecure facilities, where they are shielded from the outside by filtered air, disinfected water, and irradiated food that is certified free of any mammalian protein. All materials are autoclaved upon entry, and personnel enter by shower‐in/shower‐out, and are wearing special clothes. The operation of such facilities is in compliance with Current Good Manufacturing Practices. To ensure DPF status, pigs are brought into such facilities via Cesarean section, and the source pigs are kept as a closed herd. The DPF status cannot be realized for endogenous viruses, such as porcine endogenous retrovirus. Therefore, regulatory authorities require patient monitoring after xenotransplantation. Considering the infectious pathogen status and necessary regulatory compliance, it is recommended that organ procurement be conducted at the animal facility and that cell manufacturing facilities be located nearby. To enable assessment of as‐yet unknown pathogens long after xenotransplantation, regulatory guidances mandate archiving donor materials for at least 50 yr. As this is essentially a public health issue, governmental institutions are urged to be responsible for the archive.

Table of Contents

  • ? Introduction
  • ? Designated pathogen‐free status
  • ? Biosecure barrier facility
  • ? Organ retrieval and islet manufacturing
  • ? Alternatives
  相似文献   

13.
Apoptosis during engraftment and inflammation induce poor islet xenograft survival. We aimed to determine whether overexpression of human heme oxygenase‐1 (HO‐1) or soluble tumor necrosis factor‐α receptor type I with human IgG1 Fc (sTNF‐αR‐Fc) in porcine islets could improve islet xenograft survival. Adult porcine islets were transduced with adenovirus containing human HO‐1, sTNF‐αR‐Fc, sTNF‐αR‐Fc/HO‐1 or green fluorescent protein (control). Humanized mice were generated by injecting human cord blood–derived CD34+ stem cells into NOD‐scid‐IL‐2Rγnull mice. Both HO‐1 and sTNF‐αR‐Fc reduced islet apoptosis under in vitro hypoxia or cytokine stimuli and suppressed RANTES induction without compromising insulin secretion. Introduction of either gene into islets prolonged islet xenograft survival in pig‐to‐humanized mice transplantation. The sTNF‐αR‐Fc/HO‐1 group showed the best glucose tolerance. Target genes were successfully expressed in islet xenografts. Perigraft infiltration of macrophages and T cells was suppressed with decreased expression of RANTES, tumor necrosis factor‐α and IL‐6 in treatment groups; however, frequency of pig‐specific interferon‐γ–producing T cells was not decreased, and humoral response was not significant in any group. Early apoptosis of islet cells was suppressed in the treatment groups. In conclusion, overexpression of HO‐1 or sTNF‐αR‐Fc in porcine islets improved islet xenograft survival by suppressing both apoptosis and inflammation. HO‐1 or sTNF‐αR‐Fc transgenic pigs have potential for islet xenotransplantation.  相似文献   

14.
15.
Abstract: Background: Xenotransplantation using porcine cells, tissues or organs may be associated with the transmission of porcine endogenous retroviruses (PERVs). More than 50 viral copies have been identified in the pig genome and three different subtypes of PERV were released from pig cells, two of them were able to infect human cells in vitro. RNA interference is a promising option to inhibit PERV transmission. Methods: We recently selected an efficient si (small interfering) RNA corresponding to a highly conserved region in the PERV DNA, which is able to inhibit expression of all PERV subtypes in PERV‐infected human cells as well as in primary pig cells. Pig fibroblasts were transfected using a lentiviral vector expressing a corresponding sh (short hairpin) RNA and transgenic pigs were produced by somatic nuclear transfer cloning. Integration of the vector was proven by PCR, expression of shRNA and PERV was studied by in‐solution hybridization analysis and real‐time RT PCR, respectively. Results: All seven born piglets had integrated the transgene. Expression of the shRNA was found in all tissues investigated and PERV expression was significantly inhibited when compared with wild‐type control animals. Conclusion: This strategy may lead to animals compatible with PERV safe xenotransplantation.  相似文献   

16.
Abstract:  The International Xenotransplantation Association islet xenotransplantation consensus statement describes the conditions for undertaking clinical trials of porcine islet products in type 1 diabetes. Chapter 1 reviews the key ethical requirements and progress toward the definition of an international regulatory framework for clinical trials of xenotransplantation. Chapters 2 to 7 provide in depth and agreed-upon recommendations on source pigs, pig islet product manufacturing and release testing, preclinical efficacy and complication data required to justify a clinical trial, strategies to prevent transmission of porcine endogenous retrovirus, patient selection for clinical trials, and informed consent. It is planned to update this initial consensus statement in a year's time in light of progress in research, changes in the regulatory framework, and comments submitted after publication.  相似文献   

17.
Hilling DE, Rijkelijkhuizen JKRA, Töns HAM, Terpstra OT, Bouwman E. Porcine islet isolation outcome is not affected by the amount and distribution of collagen in the pancreas.
Xenotransplantation 2010; 17: 250–255. © 2010 John Wiley & Sons A/S. Abstract: Variable islet yields in porcine islet isolation may be caused by the collagen substrate within the pancreas. The aim of the present study was to determine the total amount and distribution of collagen within porcine pancreata and their relationship to islet isolation outcome. A total of 64 juvenile and 76 adult porcine pancreata of eight purebred breeds were histologically examined. The amount of collagen was quantitatively assessed in tissue samples stained with Sirius Red. Collagen distribution was semi‐quantitatively determined by assessing the presence of collagen in the endocrine–exocrine interface and within the islet, in tissue samples stained with Sirius Red and anti‐insulin. Islet isolation was performed in 58 pancreata of the adult group. Total collagen content and islet encapsulation ranged widely in both adult and juvenile pigs. However, the majority of islets in adult and juvenile pigs had no or only a limited collagen capsule. The difference in collagen content between adult and juvenile pigs could not be explained by age. Furthermore, no differences between adult and juvenile pigs were found in islet encapsulation or the amount of intra‐islet collagen. In adult pigs, no significant relationships were found between obtained islet yield and total collagen content, islet encapsulation or amount of collagen within the islet. Considering the limitations in experimental design (staining method) and study material, isolation outcome does not seem to be affected by the total collagen content or collagen distribution. The influence of other matrix elements and collagen subtypes should be investigated.  相似文献   

18.
Semaan M, Kaulitz D, Petersen B, Niemann H, Denner J. Long‐term effects of PERV‐specific RNA interference in transgenic pigs. Xenotransplantation 2012; 19: 112–121. © 2012 John Wiley & Sons A/S. Abstract: Background: Porcine endogenous retroviruses (PERVs) represent a risk of xenotransplantation using porcine cells, tissues, or organs, as they are integrated in the porcine genome and have been shown to be able to infect human cells in vitro. To increase viral safety by RNA interference, transgenic pigs expressing a PERV‐specific small hairpin (sh)RNA targeted to a highly conserved sequence in the pol gene (pol2) were generated in which expression of PERVs was reduced (Xenotransplantation, 15, 2008, 38). However, it remains to be shown how long expression of the shRNA and the RNA interference is effective in reducing PERV expression. Methods: To analyze the long‐term duration of RNA interference, expression of the PERV‐specific pol2 shRNA and inhibition of PERV expression was studied repeatedly in fibroblasts and peripheral blood mononuclear cells (PBMCs) of transgenic pigs over a period of 3 yr, when animals were sacrificed and expression was studied in different organs. Expression of the PERV‐specific shRNA was measured using a newly developed real‐time PCR, and expression of PERV was measured using a PERV‐specific real‐time PCR. Results: Over a period of 3 yr, PERV‐specific shRNA and green fluorescent protein (GFP) as reporter of the vector system were consistently expressed in transgenic animals. PERV expression was significantly reduced during the entire period. Levels of PERV and shRNA expression were different in the various organs. PERV expression was highest in the spleen and the lungs and lowest in liver and heart. However, in all organs of the transgenic pigs, PERV expression was inhibited compared with the vector control animals. Conclusions: Transgenic pigs expressing PERV‐specific shRNA maintained their specific RNA interference long term, suggesting that PERV expression in the xenotransplants will be suppressed over extended periods of time.  相似文献   

19.
The clinical application of xenotransplantation evokes immunological and microbiological as well as virological challenges. Porcine pathogens that do not show any symptoms in their natural host could exhibit a risk of fatal infections to humans. The presence of pig infectious agents including zoonotic and dissimilar agents should be reduced by specific pathogen free (spf) breeding of donor animals. However, the genetic information of porcine endogenous retroviruses (PERV) is integrated in the pig genome and can not be eradicated by spf breeding. The concerns about PERV for human xenograft recipients are based on data of in vitro replication of PERV in some human cell lines. So far, viral replication of PERV has been difficult to demonstrate in non‐human primate cell lines and in preclinical studies of non‐human primates receiving porcine xenografts, respectively. In this regard, natural and effective mechanisms of human and porcine cells counteracting productive infections caused by PERV are important to investigate. Intracellular proteins and components of the innate immune system including endogenous “antiretroviral restriction factors” act at various steps in retroviral replication. The cellular front is composed by several constitutively expressed genes which prevent or suppress retroviral infections. Some of these factors such as members of the tripartite motif (TRIM) and the apolipoprotein B mRNA‐editing polypeptide (APOBEC) families as well as tetherin and zinc‐finger antiviral protein (ZAP) could be useful in the management of PERV in xenotransplantation. The risks of infection and the potential role of antiretroviral restriction factors in xenotransplantation are presented in detail.  相似文献   

20.
Most islet xenotransplantation laboratories have focused on porcine islets, which are both costly and difficult to isolate. Teleost (bony) fish, such as tilapia, possess macroscopically visible distinct islet organs called Brockmann bodies which can be inexpensively harvested. When transplanted into diabetic nude mice, tilapia islets maintain long‐term normoglycemia and provide human‐like glucose tolerance profiles. Like porcine islets, when transplanted into euthymic mice, they are rejected in a CD4 T‐cell‐dependent manner. However, unlike pigs, tilapia are so phylogenetically primitive that their cells do not express α(1,3)Gal and, because tilapia are highly evolved to live in warm stagnant waters nearly devoid of dissolved oxygen, their islet cells are exceedingly resistant to hypoxia, making them ideal for transplantation within encapsulation devices. Encapsulation, especially when combined with co‐stimulatory blockade, markedly prolongs tilapia islet xenograft survival in small animal recipients, and a collaborator has shown function in diabetic cynomolgus monkeys. In anticipation of preclinical xenotransplantation studies, we have extensively characterized tilapia islets (morphology, embryologic development, cell biology, peptides, etc.) and their regulation of glucose homeostasis. Because tilapia insulin differs structurally from human insulin by 17 amino acids, we have produced transgenic tilapia whose islets stably express physiological levels of humanized insulin and have now bred these to homozygosity. These transgenic fish can serve as a platform for further development into a cell therapy product for diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号