首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In earlier studies we have identified FKBP20-2 and CYP38 as soluble proteins of the chloroplast thylakoid lumen that are required for the formation of photosystem II supercomplexes (PSII SCs). Subsequent work has identified another potential candidate functional in SC formation (PSB27). We have followed up on this possibility and isolated mutants defective in the PSB27 gene. In addition to lack of PSII SCs, mutant plants were severely stunted when cultivated with light of variable intensity. The stunted growth was associated with lower PSII efficiency and defective starch accumulation. In response to high light exposure, the mutant plants also displayed enhanced ROS production, leading to decreased biosynthesis of anthocyanin. Unexpectedly, we detected a second defect in the mutant, namely in CP26, an antenna protein known to be required for the formation of PSII SCs that has been linked to state transitions. Lack of PSII SCs was found to be independent of PSB27, but was due to a mutation in the previously described cp26 gene that we found had no effect on light adaptation. The present results suggest that PSII SCs, despite being required for state transitions, are not associated with acclimation to changing light intensity. Our results are consistent with the conclusion that PSB27 plays an essential role in enabling plants to adapt to fluctuating light intensity through a mechanism distinct from photosystem II supercomplexes and state transitions.Photosynthetic light reactions entail the coordinated function of several large membrane complexes: photosystem I (PSI), photosystem II (PSII), cytochrome b6f complex, and CF0-CF1 complex. PSII catalyzes the initial step of photosynthesis, the light-dependent oxidation of water that yields molecular oxygen and reduced plastoquinone. The native form of PSII residing in the thylakoid membrane is believed to be organized into several types of supercomplexes (SCs), including the PSII core and the peripheral light harvesting complex II (LHCII), that play a primary role in the harvesting of light, transfer of excitation energy to the reaction center and regulation of light utilization. Several monomeric antenna proteins including CP24, CP26, and CP29 regulate the interaction of the PSII core with LHCII trimers (14). Regulation is achieved through photoprotective mechanisms that dissipate absorbed excess energy as heat in response to stress conditions such as high light intensity (5, 6).In natural settings, both the intensity and the spectral quality of light vary extensively, sometimes within very short periods. The changes in light intensity result in imbalanced excitation of PSI and PSII, and with that may lower the efficiency of the photosynthetic light reactions. In acclimating to the changing conditions, plants modify their thylakoid proteins and reorganize their photosynthetic machinery (7, 8). In a rapid response, designated state transitions (9), LHCII associates reversibly with PSII or PSI. Under high light intensity, excessive activation of PSII increases the reduced plastoquinone pool and thereby activates protein kinase STN7 which, in turn, phosphorylates LHCII and prompts the migration of LHCII from PSII (state 1) to PSI (state 2) (10, 11). Oxidation of the plastoquinone pool by the higher activity of PSI then activates protein phosphatase PPH1 that dephosphorylates LHCII and promotes a return to the original association of LHCII with PSII (state 1) (12, 13). In this context, the formation of LHCII-PSII SCs is expected to be a prerequisite for state transitions and, therefore, essential for adaptation to changing light intensity. However, it remains to be rigorously tested if state transitions play a crucial role in plant adaptation to changing light intensity.In the present study, we have identified an Arabidopsis mutant that lacked PSII supercomplexes and grew poorly under changing light intensity. The mutant harbored a T-DNA insertion in the gene encoding the thylakoid lumen protein, PSB27, implicating its function in both the assembly of PSII SCs and adaptation to changing light. A detailed comparative genetic and biochemical analysis confirmed the requirement for PSB27 in enabling plants to adapt to changing light, but, surprisingly, revealed that this adaptation is independent of PSII SC assembly. A second, previously unrecognized defect was localized in CP26, a protein unrelated to PSB27, that is linked to PSII SC assembly. These results prompt the conclusion that PSB27 plays a fundamental role in enabling plants to adapt to changes in light intensity independently of the formation of PSII SCs.  相似文献   

2.
Plants and green algae optimize photosynthesis in changing light conditions by balancing the amount of light absorbed by photosystems I and II. These photosystems work in series to extract electrons from water and reduce NADP+ to NADPH. Light-harvesting complexes (LHCs) are held responsible for maintaining the balance by moving from one photosystem to the other in a process called state transitions. In the green alga Chlamydomonas reinhardtii, a photosynthetic model organism, state transitions are thought to involve 80% of the LHCs. Here, we demonstrate with picosecond-fluorescence spectroscopy on C. reinhardtii cells that, although LHCs indeed detach from photosystem II in state 2 conditions, only a fraction attaches to photosystem I. The detached antenna complexes become protected against photodamage via shortening of the excited-state lifetime. It is discussed how the transition from state 1 to state 2 can protect C. reinhardtii in high-light conditions and how this differs from the situation in plants.Oxygenic photosynthesis is the most important process for fueling life on earth. Light capture and subsequent charge separation processes occur in the so-called photosystems I and II (PSI and PSII). In plants and green algae, both PSs consist of a pigment–protein core complex surrounded by outer light-harvesting complexes (LHCs). Electronic excitations induced by the absorption of sunlight lead to charge separation in the reaction centers (RCs) of PSI and PSII, located in the cores of the PSs. These PSs work in series to extract electrons from water and reduce NADP+ to NADPH. For optimal linear electron transport from water to NADP+, a balance is needed for the amount of light absorbed by the pigments in the two PSs.Besides carotenoids, the PSII core contains 35 chlorophylls a (Chls a), whereas this number is close to 100 for PSI (1). The outer LHCs consist of various components: The major light-harvesting complex LHCII (a trimer) harbors 12 carotenoids (Cars) and 42 chlorophylls (Chls), 24 of which are Chls a (2), the pigments that are largely responsible for excitation energy transfer (EET) to the PSII RC. In higher plants, there are also three monomeric minor LHCs per core, called CP24, CP26, and CP29, which show high sequence homology with LHCII (see, e.g., ref. 3). In nonstressed conditions, between 85% and 90% of the excitations in PSII lead to charge separation in the RC (4). PSI in plants binds four LHCs (Lhca1–4) (5). The amount of LHCII in the plant membranes is variable and usually ranges from approximately two to approximately four trimers per PSII core, most of which are functionally connected to PSII, although part is also associated with PSI (6). In Chlamydomonas reinhardtii, PSI antenna size differs and there are nine Lhcas per PSI (7). Nine LhcbM genes, plus CP29 and CP26, codify for the antenna complexes of PSII (8), and it was recently shown that, in addition to CP26 and CP29, the PSII supercomplex contains three LHCII trimers per monomeric core (9). In addition, there are usually three to four extra LHCII trimers present per monomeric core (10) (see also below).Although both PSI and PSII contain Chls and Cars, their absorption spectra differ, with PSII being more effective in absorbing blue light and PSI in absorbing far-red light (1113). Because intensity and spectral composition can vary, organisms need to rapidly adjust the relative absorption cross-sections of both PSs. This regulation occurs via so-called state transitions, and it involves the relocation of Lhcs between PSII and PSI (14).In higher plants, all LHCII is bound to PSII in state 1, whereas in state 2, which can be induced by overexciting PSII, part of LHCII (around 15%) moves to PSI (14, 15). State transitions are regulated by the state of the plastoquinone (PQ) pool via the reversible phosphorylation of LHCII (14, 1619). The green alga C. reinhardtii, which has widely been used as a model system in photosynthesis research and which might also become important for the production of food and feed ingredients and future biofuels (20), is thought to exhibit state transitions to a far larger extent than higher plants. The widely accepted view is that, during the transition from state 1 to state 2, 80% of the major antenna complexes dissociates from PSII and attaches to PSI (21). This picture is based on results that were obtained with photoacoustic measurements that were used to determine the quantum yield of both PSs in different states. This view has been supported by the finding that the PSII supercomplex is largely disassembled in state 2 (22). However, although a PSI–LHCII supercomplex from C. reinhardtii has been isolated (23), the amount of LHCII associated with it has not been quantified and it has also not been shown that the additional LHCII is capable of transferring energy to the PSI core. More recently, it was argued based on biochemical analysis that also CP26 and CP29 are participating in state transitions in C. reinhardtii (2225), but again a quantitative analysis is missing.Besides biochemical techniques, time-resolved fluorescence spectroscopy can be helpful to study state transitions and to enlighten the EET processes. The main advantage of this technique is that it can provide both quantitative and functional information for the different states in vivo (6). However, the number of time-resolved fluorescence studies on green algae and especially their state transitions is limited (2629). Wendler and Holzwarth (27) studied state transitions in the green alga Scenedesmus obliquus using time-resolved fluorescence spectroscopy. They interpreted their data at that time in terms of reversible migration of LHCs between PSII α- and β-centers during state transitions, whereas it was concluded that the size of PSI was not measurably changing (27). Another study was performed by Iwai et al. (28), who used fluorescence lifetime imaging microscopy (FLIM) to visualize state transitions in C. reinhardtii. The authors reported the dissociation of LHCII from PSII during the first part of the transition from state 1 to state 2, but they did not investigate what was happening during the later phase (28). Recently, Wientjes et al. (6) performed a study on light acclimation and state transitions in the plant Arabidopsis thaliana, and among others it was demonstrated quantitatively how time-resolved fluorescence properties of thylakoid membranes change when the relative amount of LHCII attached to PSI and PSII changes (6): When LHCII attaches to PSI, the amplitude of a component with fluorescence lifetime below 100 ps increases significantly, whereas the contribution of the components with lifetimes of several hundreds of picoseconds concomitantly decreases, and the corresponding lifetimes become shorter (6). The former component is mainly due to PSI (with or without LHCII connected) and the latter are due to PSII (with varying amounts of LHCII connected). It is important to point out that the amplitudes of the decay components are directly proportional to the number of pigments that correspond to these decay components (6, 30). Therefore, if during state transitions LHCs are moving from PSII to PSI, then the amplitude(s) of the PSI decay components will increase, whereas those of PSII will decrease. In general, such a reorganization will also lead to some changes in the fluorescence lifetimes. If in addition also quenching processes are introduced, this will lead to an additional change in the lifetime but not in the amplitude (31).Here, we applied time-resolved fluorescence spectroscopy to study changes in PSI and PSII antenna size in response to state transitions for wild-type (WT) C. reinhardtii in vivo. The cells were locked in different states, using the same method as used for previous photoacoustic measurements (21, 32), and fluorescence decay curves were recorded at room temperature. The results lead us to challenge some of the generally accepted views, especially concerning the structure of the PSI supercomplex in state 2 and the fate of the detached LHCII. The main changes during state transitions occur in PSII, whereas changes in the PSI supercomplex turn out to be less pronounced. In addition, it appears that both in state 1 and 2 a pool of LHCII exists that is neither connected to PSI nor to PSII, whereas its size is larger in state 2.  相似文献   

3.
Plants and green algae maintain efficient photosynthesis under changing light environments by adjusting their light-harvesting capacity. It has been suggested that energy redistribution is brought about by shuttling the light-harvesting antenna complex II (LHCII) between photosystem II (PSII) and photosystem I (PSI) (state transitions), but such molecular remodeling has never been demonstrated in vivo. Here, using chlorophyll fluorescence lifetime imaging microscopy, we visualized phospho-LHCII dissociation from PSII in live cells of the green alga Chlamydomonas reinhardtii. Induction of energy redistribution in wild-type cells led to an increase in, and spreading of, a 250-ps lifetime chlorophyll fluorescence component, which was not observed in the stt7 mutant incapable of state transitions. The 250-ps component was also the dominant component in a mutant containing the light-harvesting antenna complexes but no photosystems. The appearance of the 250-ps component was accompanied by activation of LHCII phosphorylation, supporting the visualization of phospho-LHCII dissociation. Possible implications of the unbound phospho-LHCII on energy dissipation are discussed.  相似文献   

4.
Prochlorophytes are a class of cyanobacteria that do not use phycobiliproteins as light-harvesting systems, but contain chlorophyll (Chl) a/b-binding Pcb proteins. Recently it was shown that Pcb proteins form an 18-subunit light-harvesting antenna ring around the photosystem I (PSI) trimeric reaction center complex of the prochlorophyte Prochlorococcus marinus SS120. Here we have investigated whether the symbiotic prochlorophyte Prochloron didemni also contains the same supermolecular complex. Using cells isolated directly from its ascidian host, we found no evidence for the presence of the Pcb-PSI supercomplex. Instead we have identified and characterized a supercomplex composed of photosystem II (PSII) and Pcb proteins. We show that 10-Pcb subunits associate with the PSII dimeric reaction center core to form a giant complex having an estimated Mr of 1,500 kDa with dimensions of 210 x 290 A. Five-Pcb subunits flank each long side of the dimer and assuming each binds 13 Chl molecules, increase the antenna size of PSII by approximately 200%. Fluorescence emission studies indicate that energy transfer occurs efficiently from the Pcb antenna. Modeling using the x-ray structure of cyanobacterial PSII suggests that energy transfer to the PSII reaction center is via the Chls bound to the CP47 and CP43 proteins.  相似文献   

5.
The ability of plants to adapt to changing light conditions depends on a protein kinase network in the chloroplast that leads to the reversible phosphorylation of key proteins in the photosynthetic membrane. Phosphorylation regulates, in a process called state transition, a profound reorganization of the electron transfer chain and remodeling of the thylakoid membranes. Phosphorylation governs the association of the mobile part of the light-harvesting antenna LHCII with either photosystem I or photosystem II. Recent work has identified the redox-regulated protein kinase STN7 as a major actor in state transitions, but the nature of the corresponding phosphatases remained unknown. Here we identify a phosphatase of Arabidopsis thaliana, called PPH1, which is specifically required for the dephosphorylation of light-harvesting complex II (LHCII). We show that this single phosphatase is largely responsible for the dephosphorylation of Lhcb1 and Lhcb2 but not of the photosystem II core proteins. PPH1, which belongs to the family of monomeric PP2C type phosphatases, is a chloroplast protein and is mainly associated with the stroma lamellae of the thylakoid membranes. We demonstrate that loss of PPH1 leads to an increase in the antenna size of photosystem I and to a strong impairment of state transitions. Thus phosphorylation and dephosphorylation of LHCII appear to be specifically mediated by the kinase/phosphatase pair STN7 and PPH1. These two proteins emerge as key players in the adaptation of the photosynthetic apparatus to changes in light quality and quantity.  相似文献   

6.
Light-dependent activation of thylakoid protein phosphorylation regulates the energy distribution between photosystems I and II of oxygen-evolving photosynthetic eukaryotes as well as the turnover of photosystem II proteins. So far the only known effect of light on the phosphorylation process is the redox-dependent regulation of the membrane-bound protein kinase(s) activity via plastoquinol bound to the cytochrome bf complex and the redox state of thylakoid dithiols. By using a partially purified thylakoid protein kinase and isolated native chlorophyll (chl) a/b light-harvesting complex II (LHCII), as well as recombinant LHCII, we find that illumination of the chl-protein substrate exposes the phosphorylation site to the kinase. Light does not activate the phosphorylation of the LHCII apoprotein nor the recombinant pigment-reconstituted complex lacking the N-terminal domain that contains the phosphothreonine site. The suggested light-induced conformational change exposing the N-terminal domain of LHCII to the kinase is evidenced also by an increase in its accessibility to tryptic cleavage after light exposure. Light activates preferentially the trimeric form of LHCII, and the process is paralleled by chl fluorescence quenching. Both phenomena are slowly reversible in darkness. Light-induced exposure of the LHCII N-terminal domain to the endogenous protein kinase(s) and tryptic cleavage occurs also in thylakoid membranes. These results demonstrate that light may regulate thylakoid protein phosphorylation not only via the signal transduction chain connecting redox reactions to the protein kinase activation, but also by affecting the conformation of the chl-protein substrate.  相似文献   

7.
Light induces phosphorylation of photosystem II (PSII) proteins in chloroplasts by activating the protein kinase(s) via reduction of plastoquinone and the cytochrome b(6)f complex. The recent finding of high-light-induced inactivation of the phosphorylation of chlorophyll a/b-binding proteins (LHCII) of the PSII antenna in floated leaf discs, but not in vitro, disclosed a second regulatory mechanism for LHCII phosphorylation. Here we show that this regulation of LHCII phosphorylation is likely to be mediated by the chloroplast ferredoxin-thioredoxin system. We present a cooperative model for the function of the two regulation mechanisms that determine the phosphorylation level of the LHCII proteins in vivo, based on the following results: (i) Chloroplast thioredoxins f and m efficiently inhibit LHCII phosphorylation. (ii) A disulfide bond in the LHCII kinase, rather than in its substrate, may be a target component regulated by thioredoxin. (iii) The target disulfide bond in inactive LHCII kinase from dark-adapted leaves is exposed and easily reduced by external thiol mediators, whereas in the activated LHCII kinase the regulatory disulfide bond is hidden. This finding suggests that the activation of the kinase induces a conformational change in the enzyme. The active state of LHCII kinase prevails in chloroplasts under low-light conditions, inducing maximal phosphorylation of LHCII proteins in vivo. (iv) Upon high-light illumination of leaves, the target disulfide bond becomes exposed and thus is made available for reduction by thioredoxin, resulting in a stable inactivation of LHCII kinase.  相似文献   

8.
Photosystem II (PSII) complexes, isolated from spinach and the thermophilic cyanobacterium Synechococcus elongatus, were characterized by electron microscopy and single-particle image-averaging analyses. Oxygen-evolving core complexes from spinach and Synechococcus having molecular masses of about 450 kDa and dimensions of approximately 17.2 x 9.7 nm showed twofold symmetry indicative of a dimeric organization. Confirmation of this came from image analysis of oxygen-evolving monomeric cores of PSII isolated from spinach and Synechococcus having a mass of approximately 240 kDa. Washing with Tris at pH 8.0 and analysis of side-view projections indicated the possible position of the 33-kDa extrinsic manganese-stabilizing protein. A larger complex was isolated that contained the light-harvesting complex II (LHC-II) and other chlorophyll a/b-binding proteins, CP29, CP26, and CP24. This LHC-II-PSII complex had a mass of about 700 kDa, and electron microscopy revealed it also to be a dimer having dimensions of about 26.8 and 12.3 nm. From comparison with the dimeric core complex, it was deduced that the latter is located in the center of the larger particle, with additional peripheral regions accommodating the chlorophyll a/b-binding proteins. It is suggested that two LHC-II trimers are present in each dimeric LHC-II-PSII complex and that each trimer is linked to the reaction center core complex by CP24, CP26, and CP29. The results also suggest that PSII may exist as a dimer in vivo.  相似文献   

9.
10.
An Arabidopsis thaliana chlorophyll(ide) a oxygenase gene (cao), which is responsible for chlorophyll b synthesis from chlorophyll a, was introduced and expressed in a photosystem I-less strain of the cyanobacterium Synechocystis sp. PCC 6803. In this strain, most chlorophyll is associated with the photosystem II complex. In line with observations by Satoh et al. [Satoh, S., Ikeuchi, M., Mimuro, M. & Tanaka, A. (2001) J. Biol. Chem. 276, 4293-4297], chlorophyll b was made but accounted for less than 10% of total chlorophyll. However, when lhcb encoding light-harvesting complex (LHC)II from pea was present in the same strain (lhcb(+)/cao(+)), chlorophyll b accumulated in the cell to levels exceeding those of chlorophyll a, although LHCII did not accumulate. In the lhcb(+)/cao(+) strain, the total amount of chlorophyll, the number of chlorophylls per photosystem II center, and the oxygen-evolving activity on a per-chlorophyll basis were similar to those in the photosystem I-less strain. Furthermore, the chlorophyll a/b ratio of photosystem II core particles (retaining CP47 and CP43) and of whole cells of the lhcb(+)/cao(+) strain was essentially identical, and PS II activity could be obtained efficiently by chlorophyll b excitation. These data indicate that chlorophyll b functionally substitutes for chlorophyll a in photosystem II. Therefore, the availability of chlorophylls, rather than their binding specificity, may determine which chlorophyll is incorporated at many positions of photosystem II. We propose that the transient presence of a LHCII/chlorophyll(ide) a oxygenase complex in the lhcb(+)/cao(+) strain leads to a high abundance of available chlorophyll b that is subsequently incorporated into photosystem II complexes. The apparent LHCII requirement for high chlorophyll(ide) a oxygenase activity may be instrumental to limit the occurrence of chlorophyll b in plants to LHC proteins.  相似文献   

11.
A mutant strain of the cyanobacterium Synechocystis 6803, TolE4B, was constructed by genetic deletion of the protein that links phycobilisomes to thylakoid membranes and of the CP43 and CP47 proteins of photosystem II (PSII), leaving the photosystem I (PSI) center as the sole chromophore in the photosynthetic membranes. Both intact membrane and detergent-isolated samples of PSI were characterized by time-resolved and steady-state fluorescence methods. A decay component of approximately 25 ps dominates (99% of the amplitude) the fluorescence of the membrane sample. This result indicates that an intermediate lifetime is not associated with the intact membrane preparation and the charge separation in PSI is irreversible. The decay time of the detergent-isolated sample is similar. The 600-nm excited steady-state fluorescence spectrum displays a red fluorescence peak at approximately 703 nm at room temperature. The 450-nm excited steady-state fluorescence spectrum is dominated by a single peak around 700 nm without 680-nm "bulk" fluorescence. The experimental results were compared with several computer simulations. Assuming an antenna size of 130 chlorophyll molecules, an apparent charge separation time of approximately 1 ps is estimated. Alternatively, the kinetics could be modeled on the basis of a two-domain antenna for PSI, consistent with the available structural data, each containing approximately 65 chlorophyll a molecules. If excitation can migrate freely within each domain and communication between domains occurs only close to the reaction center, a charge separation time of 3-4 ps is obtained instead.  相似文献   

12.
The D1 protein of the photosystem II (PSII) complex in the thylakoid membrane of oxygenic photosynthetic organisms is synthesized as a precursor polypeptide (pD1) with a C-terminal extension. Posttranslational processing of the pD1 protein is essential to establish water oxidation activity of the PSII complex. We have recently identified a gene, ctpA, a mutation in which resulted in a loss of PSII activity in the cyanobacterium Synechocystis sp. PCC 6803. To study the function of the CtpA protein, we inactivated the ctpA gene by inserting a kanamycin-resistance gene into its coding sequence. The resultant mutant strain, T564, had no PSII-mediated water oxidation activity, but it had normal cytochrome b6f and photosystem I activities. Measurements of thermoluminescence profiles and rates of reduction of 2,6-dichlorophenolindophenol indicated that PSII complexes in the mutant cells had functional reaction centers that were unable to accept electrons from water. Immunoblot analysis showed that D1, D2, CP47, CP43, and the alpha subunit of cytochrome b559, five integral membrane proteins of PSII, were present in T564 cells. Interestingly, the D1 protein in the mutant cells was 2 kDa larger than that in wild-type cells, due to the presence of a C-terminal extension. We conclude that the CtpA protein is a processing enzyme that cleaves off the C-terminal extension of the D1 protein. Interestingly, the CtpA protein shows significant sequence similarity to the interphotoreceptor retinoid-binding proteins in the bovine, human, and insect eye systems.  相似文献   

13.
The cytochrome b6/f complex operates in photosynthetic electron transfer either in linear electron flow from photosystem II to photosystem I or in cyclic flow around photosystem I. Using membrane fractionation and immunocytochemistry, we show a change in lateral distribution of cytochrome b6/f complexes along the thylakoid membranes during state transitions. This change is seen in maize as well as in the green algae Chlamydomonas reinhardtii. When either of the two organisms were adapted to state II in vivo, the proportion of cytochrome b6/f complexes found in the photosystem I-enriched stroma lamellae regions was significantly larger than after adaptation to state I. A similar observation was made upon state I to state II transitions done in vitro by illuminating, in the presence of ATP, broken maize chloroplasts prepared from dark-adapted leaves. This reorganization of the electron-transfer chain is concurrent with the change in light-energy distribution between the two photosystems, which requires lateral displacement of light-harvesting complex II. That the changes in lateral distribution of both cytochrome b6/f and light-harvesting II complexes seen upon state transition in vitro similarly required addition of exogenous ATP, suggests that the change in cytochrome b6/f organization also depends on kinase activity. The increased concentration of cytochrome b6/f complexes in the vicinity of photosystem I in state II is discussed in terms of an increase in cyclic electron flow, thus favoring ATP production. Because transition to state II can be triggered in vivo by ATP depletion, we conclude that state transitions should be regarded not only as a light-adaptation mechanism but also as a rerouting of photosynthetic electron flow, enabling photosynthetic organisms to adapt to changes in the cell demand for ATP.  相似文献   

14.
In oxygenic photosynthetic eukaryotes, the hydroxylated carotenoid zeaxanthin is produced from preexisting violaxanthin upon exposure to excess light conditions. Zeaxanthin binding to components of the photosystem II (PSII) antenna system has been investigated thoroughly and shown to help in the dissipation of excess chlorophyll-excited states and scavenging of oxygen radicals. However, the functional consequences of the accumulation of the light-harvesting complex I (LHCI) proteins in the photosystem I (PSI) antenna have remained unclarified so far. In this work we investigated the effect of zeaxanthin binding on photoprotection of PSI–LHCI by comparing preparations isolated from wild-type Arabidopsis thaliana (i.e., with violaxanthin) and those isolated from the A. thaliana nonphotochemical quenching 2 mutant, in which violaxanthin is replaced by zeaxanthin. Time-resolved fluorescence measurements showed that zeaxanthin binding leads to a previously unrecognized quenching effect on PSI–LHCI fluorescence. The efficiency of energy transfer from the LHCI moiety of the complex to the PSI reaction center was down-regulated, and an enhanced PSI resistance to photoinhibition was observed both in vitro and in vivo. Thus, zeaxanthin was shown to be effective in inducing dissipative states in PSI, similar to its well-known effect on PSII. We propose that, upon acclimation to high light, PSI–LHCI changes its light-harvesting efficiency by a zeaxanthin-dependent quenching of the absorbed excitation energy, whereas in PSII the stoichiometry of LHC antenna proteins per reaction center is reduced directly.In eukaryotic photosynthetic organisms, photosystem I (PSI) and photosystem II (PSII) comprise a core complex hosting cofactors involved in electron transport and an outer antenna system made of light-harvesting complexes (LHCs): Lhcas for PSI and Lhcbs for PSII. The core complexes bind chlorophyll a (Chl a) and β-carotene, whereas the outer antenna system, in addition to Chl a, binds chlorophyll b (Chl b) and xanthophylls. Despite their overall similarity, PSI and PSII differ in the rate at which they trap excitation energy at the reaction center (RC), with PSI being faster than PSII (19). They also differ in their structure (1012). PSI is monomeric and carries its antenna moiety on only one side as a half-moon–shaped structure whose size is not modulated by growth conditions (13, 14). PSII, on the other hand, is found mainly as a dimeric core surrounded by an inner layer of antenna proteins (Lhcb4–6) and an outer layer of heterotrimeric LHCII complexes (Lhcb 1–3) whose stoichiometry varies depending on the growth conditions (7, 12, 13, 15). Acclimation to high irradiance leads to a lower number of trimers per PSII RC accompanied by loss of the monomeric Lhcb6. These slow acclimative responses regulate the excitation pressure on the PSII RC, preventing saturation of the electron transport chain (16) and the oxidative stress in high light (HL), leading to photoinhibition. The response to rapid changes in light level is managed by turning on some photoprotective mechanisms, such as the nonphotochemical quenching (NPQ) of the excess energy absorbed by PSII (16), which is activated by the acidification of the thylakoid lumen and protonation of the trigger protein PsbS or LhcSR. Low luminal pH also activates violaxanthin de-epoxidase (VDE), catalyzing the de-epoxidation of the xanthophyll violaxanthin to zeaxanthin (17, 18), a scavenger of reactive oxygen species (ROS) produced by excess light (9, 13). Zeaxanthin also enhances NPQ, as observed in vivo by a decrease of PSII fluorescence (19). The short-term effects of exposure to HL on PSI have been disregarded thus far. Because of its rapid photochemistry, PSI shows low fluorescence emission, implying a low 1Chl* concentration and a low probability that chlorophyll triplet states will be formed by intersystem crossing. This characteristic suggests that the formation of oxygen singlet excited states (1O*2) is reduced and that NPQ phenomena in photoprotection are less relevant in PSI (20, 21). Nevertheless, several reports have shown that, especially in the cold (2229), PSI can exhibit photo-inhibition, with its Lhca proteins being the primary target (24, 30). Upon synthesis in HL, zeaxanthin binding could be traced to two different types of binding site. One, designated “V1,” is located in the periphery of LHCII trimers (3133). The second, designated “L2,” has an inner location in the dimeric Lhca1–4 and the monomeric Lhcb4–6 members of the LHC family (3437). Experimental determination of the efficiency of the violaxanthin-to-zeaxanthin exchange yielded a maximal score in the Lhca3 and Lhca4 subunits (24, 25). Interestingly, Lhca1/4 and Lhca2/3 are bound to the PSI core as dimers that can be isolated in fractions identified as “LHCI-730” and “LHCI-680,” respectively, both accumulating zeaxanthin to a de-epoxidation index of ∼0.2 (20, 38). Lhca3 and Lhca4 carry low-absorption-energy chlorophyll forms known as “red forms” (39, 40) that are responsible for the red-shifted PSI emission peak at 730–740 nm at 77 K. The molecular basis for red forms is an excitonic interaction of two chromophores: chlorophylls 603 and 609 located a few angstroms from the xanthophyll in site L2, which can be either violaxanthin or zeaxanthin depending on light conditions (41, 42). It is unclear whether the binding of zeaxanthin to the PSI–LHCI complex has specific physiological function(s) or is simply a result of its common origin with Lhcb proteins.The goal of this study was to understand whether zeaxanthin plays a role in PSI–LHCI photoprotection. To investigate the role of zeaxanthin bound to Lhca proteins, we analyzed the changes in antenna size and Chl a fluorescence dynamics in PSI supercomplexes binding either violaxanthin or zeaxanthin. We found a zeaxanthin-dependent regulation of PSI antenna size and an enhanced resistance to excess light upon zeaxanthin binding. These results show that dynamic changes in the efficiency of light use and in photoprotection capacity are not exclusive to PSII, as previously thought; instead, eukaryotic photosynthetic organisms modulate the function of both photosystems in a coordinated manner.  相似文献   

15.
An immunolabeling approach was developed for quantitative in situ labeling of photosystems I and II (PSI and PSII). Photosynthetic membranes from the phycobilisome-containing red alga Porphyridium cruentum were isolated from cells in which different photosystem compositions were predetermined by growing cells in green light (GL) or red light (RL). Based on phycobilisome densities per membrane area of 390 per m2 (GL) and 450 per m2 (RL) and the PSI reaction center (P700) and PSII reaction center (QA) content, the photosystem densities per m2 of membrane were calculated to be 2520 PSI in GL and 1580 in RL and 630 PSII in GL and 1890 in RL. PSI was detected in the membranes with 10-nm Au particles conjugated to affinity-purified anti-PSI, and PSII was detected with 15-nm Au particles conjugated to anti-PSII. Distribution of Au particles appeared relatively uniform, and the degree of labeling was consistent with the calculated photosystem densities. However, the absolute numbers of Au-labeled sites were lower than would be obtained if all reaction center monomers were labeled. Specific labeling of PSI was 25% in GL and RL membranes, and PSII labeling was 33% in GL but only 17% in RL membranes. An IgG-Au particle is larger than a monomer of either photosystem and could shield several closely packed photosystems. We suggest that clustering of photosystems exists and that the cluster size of PSI is the same in GL and RL cells, but the PSII cluster size is 2 times greater in RL than in GL cells. Such variations may reflect changes in functional domains whereby increased clustering can maximize the cooperativity between the photosystems, resulting in enhancement of the quantum yield.  相似文献   

16.
The efficiency of photosynthetic electron transport depends on the coordinated interaction of photosystem II (PSII) and photosystem I (PSI) in the electron-transport chain. Each photosystem contains distinct pigment-protein complexes that harvest light from different regions of the visible spectrum. The light energy is utilized in an endergonic electron-transport reaction at each photosystem. Recent evidence has shown a large variability in the PSII/PSI stoichiometry in plants grown under different environmental irradiance conditions. Results in this work are consistent with the notion of a dynamic, rather than static, thylakoid membrane in which the stoichiometry of the two photosystems is adjusted and optimized in response to different light quality conditions. Direct evidence is provided that photosystem stoichiometry adjustments in chloroplasts are a compensation strategy designed to correct unbalanced absorption of light by the two photosystems. Such adjustments allow the plant to maintain a high quantum efficiency of photosynthesis under diverse light quality conditions and constitute acclimation that confers to plants a significant evolutionary advantage over that of a fixed photosystem stoichiometry in thylakoid membranes.  相似文献   

17.
Photosynthetic oxygen production by photosystem II (PSII) is responsible for the maintenance of aerobic life on earth. The production of oxygen occurs at the PSII oxygen-evolving complex (OEC), which contains a tetranuclear manganese (Mn) cluster. Photo-induced electron transfer events in the reaction center lead to the accumulation of oxidizing equivalents on the OEC. Four sequential photooxidation reactions are required for oxygen production. The oxidizing complex cycles among five oxidation states, called the S(n) states, where n refers to the number of oxidizing equivalents stored. Oxygen release occurs during the S(3)-to-S(0) transition from an unstable intermediate, known as the S(4) state. In this report, we present data providing evidence for the production of an intermediate during each S state transition. These protein-derived intermediates are produced on the microsecond to millisecond time scale and are detected by time-resolved vibrational spectroscopy on the microsecond time scale. Our results suggest that a protein-derived conformational change or proton transfer reaction precedes Mn redox reactions during the S(2)-to-S(3) and S(3)-to-S(0) transitions.  相似文献   

18.
State transitions correspond to a major regulation process for photosynthesis, whereby chlorophyll protein complexes responsible for light harvesting migrate between photosystem II and photosystem I in response to changes in the redox poise of the intersystem electron carriers. Here we disclose their physiological significance in Chlamydomonas reinhardtii using a genetic approach. Using single and double mutants defective for state transitions and/or mitochondrial respiration, we show that photosynthetic growth, and therefore biomass production, critically depends on state transitions in respiratory-defective conditions. When extra ATP cannot be provided by respiration, enhanced photosystem I turnover elicited by transition to state 2 is required for photosynthetic activity. Concomitant impairment of state transitions and respiration decreases the overall yield of photosynthesis, ultimately leading to reduced fitness. We thus provide experimental evidence that the combined energetic contributions of state transitions and respiration are required for efficient carbon assimilation in this alga.  相似文献   

19.
The carrier of photosynthetically generated reducing power is the iron-sulfur protein ferredoxin, which provides directly, or via NADP+, reducing equivalents needed for CO2 assimilation and other metabolic reactions in the cell. It is now widely held that, in oxygenic photosynthesis, the generation of reduced ferredoxin-NADP+ requires the collaboration in series of two photosystems: photosystem II (PSII), which energizes electrons to an intermediate reducing potential and transfers them to photosystem I (PSI), which in turn is solely competent to energize electrons to the strong reducing potential required for the reduction of ferredoxin-NADP+ (the Z scheme). This investigation tested the premise of an alternative scheme, which envisions that PSII, without the involvement of PSI, is also capable of photoreducing ferredoxin-NADP+. We report here unexpected findings consistent with the alternative scheme. Isolated PSII reaction centers (completely free of PSI components), when supplemented with ferredoxin, ferredoxin-NADP+ oxidoreductase, and a PSII electron donor,1,5-diphenylcarbazide, gave a significant photoreduction of NADP+. A striking feature of this electron transfer from a PSII donor to the perceived terminal acceptor of PSI was its total dependence on catalytic quantities of plastocyanin, a copper-containing electron-transport protein hitherto known only as an electron donor to PSI.  相似文献   

20.
At the heart of photosynthetic reaction centers (RCs) are pairs of chlorophyll a (Chla), P700 in photosystem I (PSI) and P680 in photosystem II (PSII) of cyanobacteria, algae, or plants, and a pair of bacteriochlorophyll a (BChla), P870 in purple bacterial RCs (PbRCs). These pairs differ greatly in their redox potentials for one-electron oxidation, E(m). For P680, E(m) is 1,100-1,200 mV, but for P700 and P870, E(m) is only 500 mV. Calculations with the linearized Poisson-Boltzmann equation reproduce these measured E(m) differences successfully. Analyzing the origin for these differences, we found as major factors in PSII the unique Mn(4)Ca cluster (relative to PSI and PbRC), the position of P680 close to the luminal edge of transmembrane alpha-helix d (relative to PSI), local variations in the cd loop (relative to PbRC), and the intrinsically higher E(m) of Chla compared with BChla (relative to PbRC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号