首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H3K27M and H3.3G34R/V mutations have been identified in pediatric high-grade gliomas (pHGG), though extraneural metastases are rarely reported and poorly characterized. Three pHGG patients from two institutions were identified with extraneural metastasis, harboring histone mutations. Their clinical, imaging and molecular characteristics are reported here. A 17-year old female presented with supratentorial H3.3G34R-mutant glioma with metastatic osseous lesions in the spine, pelvis, bone marrow, pleural effusion and soft tissue of pelvis. Bone marrow biopsy and soft tissue of pelvis biopsy showed neoplastic cells positive for P53. A 20-year old female was diagnosed with H3F3A H3K27Mmutant thalamic glioma. She developed diffuse sclerotic osseous lesions. Biopsy of an osseous lesion was non-diagnostic. A 17-year old female presented with a H3F3A H3K27M-mutant diffuse midline glioma with diffuse spinal cord metastasis. She further developed multifocal chest lymphadenopathy, pleural effusions, and a soft tissue mass in the abdominal wall. The latter was positive for H3K27M mutation. We present the first case series of pHGG with H3F3A mutation and diffuse extraneural dissemination, describing their clinical and molecular profile.  相似文献   

2.
Recurrent mutations affecting the histone H3.3 residues Lys27 or indirectly Lys36 are frequent drivers of pediatric high-grade gliomas (over 30 % of HGGs). To identify additional driver mutations in HGGs, we investigated a cohort of 60 pediatric HGGs using whole-exome sequencing (WES) and compared them to 543 exomes from non-cancer control samples. We identified mutations in SETD2, a H3K36 trimethyltransferase, in 15 % of pediatric HGGs, a result that was genome-wide significant (FDR = 0.029). Most SETD2 alterations were truncating mutations. Sequencing the gene in this cohort and another validation cohort (123 gliomas from all ages and grades) showed SETD2 mutations to be specific to high-grade tumors affecting 15 % of pediatric HGGs (11/73) and 8 % of adult HGGs (5/65) while no SETD2 mutations were identified in low-grade diffuse gliomas (0/45). Furthermore, SETD2 mutations were mutually exclusive with H3F3A mutations in HGGs (P = 0.0492) while they partly overlapped with IDH1 mutations (4/14), and SETD2-mutant tumors were found exclusively in the cerebral hemispheres (P = 0.0055). SETD2 is the only H3K36 trimethyltransferase in humans, and SETD2-mutant tumors showed a substantial decrease in H3K36me3 levels (P < 0.001), indicating that the mutations are loss-of-function. These data suggest that loss-of-function SETD2 mutations occur in older children and young adults and are specific to HGG of the cerebral cortex, similar to the H3.3 G34R/V and IDH mutations. Taken together, our results suggest that mutations disrupting the histone code at H3K36, including H3.3 G34R/V, IDH1 and/or SETD2 mutations, are central to the genesis of hemispheric HGGs in older children and young adults.  相似文献   

3.
4.

Background

H3K27M mutated diffuse midline gliomas (DMGs) are extremely aggressive and the leading cause of cancer-related deaths in pediatric brain tumors with 5-year survival <1%. Radiotherapy is the only established adjuvant treatment of H3K27M DMGs; however, the radio-resistance is commonly observed.

Methods

We summarized current understandings of the molecular responses of H3K27M DMGs to radiotherapy and provide crucial insights into current advances in radiosensitivity enhancement.

Results

Ionizing radiation (IR) can mainly inhibit tumor cell growth by inducing DNA damage regulated by the cell cycle checkpoints and DNA damage repair (DDR) system. In H3K27M DMGs, the aberrant genetic and epigenetic changes, stemness genotype, and epithelial-mesenchymal transition (EMT) disrupt the cell cycle checkpoints and DDR system by altering the associated regulatory signaling pathways, which leads to the development of radio-resistance.

Conclusions

The advances in mechanisms of radio-resistance in H3K27M DMGs promote the potential targets to enhance the sensitivity to radiotherapy.  相似文献   

5.
Alterations in global histone methylation regulate gene expression and participate in cancer onset and progression. The profile of histone methylation marks in pediatric astrocytomas is currently understudied with limited data on their distribution among grades. The global expression patterns of repressive histone marks H3K9me3, H3K27me3, and H4K20me3 and active H3K4me3 and H3K36me3 along with their writers SUV39H1, SETDB1, EZH2, MLL2, and SETD2 were investigated in 46 pediatric astrocytomas and normal brain tissues. Associations between histone marks and modifying enzymes with clinicopathological characteristics and disease-specific survival were studied along with their functional impact in proliferation and migration of pediatric astrocytoma cell lines using selective inhibitors in vitro. Upregulation of histone methyltransferase gene expression and deregulation of histone code were detected in astrocytomas compared to normal brain tissues, with higher levels of SUV39H1, SETDB1, and SETD2 as well as H4K20me3 and H3K4me3 histone marks. Pilocytic astrocytomas exhibited lower MLL2 levels compared to diffusely infiltrating tumors indicating a differential pattern of epigenetic regulator expression between the two types of astrocytic neoplasms. Moreover, higher H3K9me3, H3K36me3, and SETDB1 expression was detected in grade IIΙ/IV compared to grade II astrocytomas. In univariate analysis, elevated H3K9me3 and MLL2 and diminished SUV39H1 expression adversely affected survival. Upon multivariate survival analysis, only SUV39H1 expression was revealed as an independent prognostic factor of adverse significance. Treatment of pediatric astrocytoma cell lines with SUV39H1 inhibitor reduced proliferation and cell migration. Our data implicate H3K9me3 and SUV39H1 in the pathobiology of pediatric astrocytomas, with SUV39H1 yielding prognostic information independent of other clinicopathologic variables.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13311-021-01090-x.  相似文献   

6.
Pediatric glioblastomas (GBM) are highly aggressive and lethal tumors. Recent sequencing studies have shown that ~30 % of pediatric GBM and ~80 % of diffuse intrinsic pontine gliomas show K27M mutations in the H3F3A gene, a variant encoding histone H3.3. H3F3A K27M mutations lead to global reduction in H3K27me3. Our goal was to develop biomarkers for the histopathologic detection of these tumors. Therefore, we evaluated the utility of measuring H3K27me3 global reduction as a histopathologic and prognostic biomarker and tested an antibody directed specifically against the H3.3 K27M mutation in 290 samples. The study cohort included 203 pediatric (including 38 pediatric high-grade astrocytomas) and 38 adult brain tumors of various subtypes and grades and 49 non-neoplastic reactive brain tissues. Detection of H3.3 K27M by immunohistochemistry showed 100 % sensitivity and specificity and was superior to global reduction in H3K27me3 as a biomarker in diagnosing H3F3A K27M mutations. Moreover, cases that stained positive for H3.3 K27M showed a significantly poor prognosis compared to corresponding negative tumors. These results suggest that immunohistochemical detection of H3.3 K27M is a sensitive and specific surrogate for the H3F3A K27M mutation and defines a prognostically poor subset of pediatric GBM.  相似文献   

7.
Pediatric glioblastomas (GBM) including diffuse intrinsic pontine gliomas (DIPG) are devastating brain tumors with no effective therapy. Here, we investigated clinical and biological impacts of histone H3.3 mutations. Forty-two DIPGs were tested for H3.3 mutations. Wild-type versus mutated (K27M-H3.3) subgroups were compared for HIST1H3B, IDH, ATRX and TP53 mutations, copy number alterations and clinical outcome. K27M-H3.3 occurred in 71 %, TP53 mutations in 77 % and ATRX mutations in 9 % of DIPGs. ATRX mutations were more frequent in older children (p < 0.0001). No G34V/R-H3.3, IDH1/2 or H3.1 mutations were identified. K27M-H3.3 DIPGs showed specific copy number changes, including all gains/amplifications of PDGFRA and MYC/PVT1 loci. Notably, all long-term survivors were H3.3 wild type and this group of patients had better overall survival. K27M-H3.3 mutation defines clinically and biologically distinct subgroups and is prevalent in DIPG, which will impact future therapeutic trial design. K27M- and G34V-H3.3 have location-based incidence (brainstem/cortex) and potentially play distinct roles in pediatric GBM pathogenesis. K27M-H3.3 is universally associated with short survival in DIPG, while patients wild-type for H3.3 show improved survival. Based on prognostic and therapeutic implications, our findings argue for H3.3-mutation testing at diagnosis, which should be rapidly integrated into the clinical decision-making algorithm, particularly in atypical DIPG.  相似文献   

8.
The 2016 edition of the World Health Organization Classification of Tumors of the Central Nervous System introduced “diffuse midline glioma H3 K27M mutant” as a new diagnostic entity. These tumors predominately affect pediatric patients and arise from midline structures such as the brainstem, thalamus and spinal cord. Here, we report a rare patient with spinal ganglioglioma carrying an H3 K27M mutation. A 10‐year‐old boy presented with an intramedullary tumor in the cervical spinal cord. The lesion was partially removed and histologically diagnosed as ganglioglioma. After the remnant tumor grew within 3 months after surgery, the patient underwent radiotherapy. Genetic analyses revealed an H3F3A K27M mutation but no other genetic alterations such as IDH and BRAF mutations. This case may point to pathological heterogeneity in gliomas with H3 K27M mutations.  相似文献   

9.
Studies in pediatric high-grade astrocytomas (HGA) by our group and others have uncovered recurrent somatic mutations affecting highly conserved residues in histone 3 (H3) variants. One of these mutations leads to analogous p.Lys27Met (K27M) mutations in both H3.3 and H3.1 variants, is associated with rapid fatal outcome, and occurs specifically in HGA of the midline in children and young adults. This includes diffuse intrinsic pontine gliomas (80 %) and thalamic or spinal HGA (>90 %), which are surgically challenging locations with often limited tumor material available and critical need for specific histopathological markers. Here, we analyzed formalin-fixed paraffin-embedded tissues from 143 pediatric HGA and 297 other primary brain tumors or normal brain. Immunohistochemical staining for H3K27M was compared to tumor genotype, and also compared to H3 tri-methylated lysine 27 (H3K27me3) staining, previously shown to be drastically decreased in samples carrying this mutation. There was a 100 % concordance between genotype and immunohistochemical analysis of H3K27M in tumor samples. Mutant H3K27M was expressed in the majority of tumor cells, indicating limited intra-tumor heterogeneity for this specific mutation within the limits of our dataset. Both H3.1 and H3.3K27M mutants were recognized by this antibody while non-neoplastic elements, such as endothelial and vascular smooth muscle cells or lymphocytes, did not stain. H3K27me3 immunoreactivity was largely mutually exclusive with H3K27M positivity. These results demonstrate that mutant H3K27M can be specifically identified with high specificity and sensitivity using an H3K27M antibody and immunohistochemistry. Use of this antibody in the clinical setting will prove very useful for diagnosis, especially in the context of small biopsies in challenging midline tumors and will help orient care in the context of the extremely poor prognosis associated with this mutation.  相似文献   

10.
目的 探讨组蛋白修饰与人脑胶质瘤发生及病理分级的关系.方法 选取西京医院神经外科自2006年至2008年病理确诊的胶质瘤患者肿瘤组织标本67例,采用免疫组织化学方法,检测组蛋白3个位点(H4K12Ac、H4R3monoMe、H4K20triMe)的修饰水平,并对结果进行统计学分析.结果 组蛋白3个位点在胶质瘤中均有修饰,有2个位点(H4K12Ac、H4R3monoMe)的修饰水平随胶质瘤病理级别的增高而升高,差异有统计学意义(P<0.05),H4K20triMe的修饰水平则与肿瘤的病理级别无明显相关.结论 组蛋白修饰与人脑胶质瘤的发生有关,且修饰水平的变化与病理级别相关.  相似文献   

11.
12.
Thermotolerance acquisition involves neuronal network remodeling and, hence, alteration in the repertoire of expressed proteins. We have previously demonstrated the role of histone H3 methylation at lysine 27 (H3K27) by EZH2 methyltransferase in the regulation of gene expression during the critical period for the establishment of thermal control in chicks. Here we describe another level of biological regulation, demonstrating the inhibitory role of microRNAs (miRNAs) in the regulation of EZH2 expression in thermoregulatory system development and functioning. During heat conditioning in the critical period for the establishment of thermal control, a decrease in expression of the EZH2‐targeting miR‐138 occurred simultaneously with an increase in EZH2 levels in the preoptic anterior hypothalamus. Intracranial injection of miR‐138 during the critical period led to a transient reduction in EZH2 levels, which was accompanied by a decrease in H3K27 methylation. Injection of miR‐138 followed by heat conditioning also abolished EZH2 induction during heat conditioning. Moreover, this miR‐138‐induced inhibition of EZH2 during the critical period resulted in a long‐term effect on EZH2 expression. A week after the treatment, the EZH2 protein levels in conditioned and in nonconditioned chicks were different from those in their saline‐injected counterparts and the directions of change were opposite to each other. Finally, miR‐138 injection during the critical period disrupted the establishment of thermoregulation, manifested as a defective body temperature response to heat. These data demonstrate a role for miRNAs in regulating the expression of histone‐modifying enzymes, and thus emphasize the multilevel regulation mechanism which includes both epigenetic and miRNA regulatory mechanisms in neuronal network organization during the critical period of sensory development.  相似文献   

13.
14.
MYC amplification is common in Group 3 medulloblastoma and is associated with poor survival. Group 3 and Group 4 medulloblastomas are also known to have elevated levels of histone H3‐lysine 27‐tri‐methylation (H3K27me3), at least in part due to high expression of the H3K27 methyltransferase enhancer of zest homologue 2 (EZH2), which can be regulated by MYC. We therefore examined whether MYC expression is associated with elevated EZH2 and H3K27me3 in medulloblastoma, and if high‐MYC medulloblastomas are particularly sensitive to pharmacological EZH2 blockade. Western blot analysis of low (DAOY, UW228, CB SV40) and high (DAOY‐MYC, UW228‐MYC, CB‐MYC, D425) MYC cell lines showed that higher levels of EZH2 and H3K27me3 were associated with elevated MYC. In fixed medulloblastoma samples examined using immunohistochemistry, most MYC positive tumors also had high H3K27me3, but many MYC negative ones did as well, and the correlation was not statistically significant. All high MYC lines tested were sensitive to the EZH2 inhibitor EPZ6438. Many low MYC lines also grew more slowly in the presence of EPZ6438, although DAOY‐MYC cells responded more strongly than parent DAOY cultures with lower MYC levels. We find that higher MYC levels are associated with increased EZH2, and pharmacological blockade of EZH2 is a potential therapeutic strategy for aggressive medulloblastoma with elevated MYC.  相似文献   

15.
Environmental enrichment is an experimental paradigm that increases brain‐derived neurotrophic factor (BDNF) gene expression accompanied by neurogenesis in the hippocampus of rodents. In the present study, we investigated whether an enriched environment could cause epigenetic modification at the BDNF gene in the hippocampus of mice. Exposure to an enriched environment for 3–4 weeks caused a dramatic increase in the mRNA expression of BDNF, but not platelet‐derived growth factor A (PDGF‐A), PDGF‐B, vascular endothelial growth factor (VEGF), nerve growth factor (NGF), epidermal growth factor (EGF), or glial fibrillary acidic protein (GFAP), in the hippocampus of mice. Under these conditions, exposure to an enriched environment induced a significant increase in histone H3 lysine 4 (H3K4) trimethylation at the BDNF P3 and P6 promoters, in contrast to significant decreases in histone H3 lysine 9 (H3K9) trimethylation at the BDNF P4 promoter and histone H3 lysine 27 (H3K27) trimethylation at the BDNF P3 and P4 promoters without any changes in the expression of their associated histone methylases and demethylases in the hippocampus. The expression levels of several microRNAs in the hippocampus were not changed by an enriched environment. These results suggest that an enriched environment increases BDNF mRNA expression via sustained epigenetic modification in the mouse hippocampus. © 2010 Wiley‐Liss, Inc..  相似文献   

16.
Environmental lead (Pb) exposure and prenatal stress (PS) are co-occurring risk factors for impaired cognition and other disorders/diseases in adulthood and target common biological substrates in the brain. Sex-dependent differences characterize the neurochemical and behavioral responses of the brain to Pb and PS and sexually dimorphic histone modifications have been reported to occur in at-risk brain regions (cortex and hippocampus) during development. The present study sought to examine levels and developmental timing of sexually dimorphic histone modifications (i.e., H3K9/14Ac and H3K9Me3) and the extent to which they may be altered by Pb ± PS. Female C57/Bl6 mice were randomly assigned to receive distilled deionized drinking water containing 0 or 100 ppm Pb acetate for 2 months prior to breeding and throughout lactation. Half of the dams in each group were exposed to restraint stress (PS, three restraint sessions in plastic cylindrical devices 3×/day at for 30 min/day (1000, 1300, and 1600 h)) from gestational day 11–19 or no stress (NS). At delivery (PND0) and postnatal day 6 (PND6), pups were euthanized and frontal cortex and hippocampus were removed, homogenized, and assayed for levels of H3K9/14Ac and H3K9Me3. Sex-dependent differences in both levels of histone modifications as well as the developmental trajectory of changes in these levels were observed in both structures and these parameters were differentially affected by Pb ± PS in a sex and brain-region-dependent manner. Disruptions of these epigenetic processes by developmental Pb ± PS may underlie some of the sex-dependent neurobehavioral differences previously observed in these animals.  相似文献   

17.
目的检测胶质瘤组织中Nanog启动子区组蛋白修饰与Nanog的表达,并探讨其在胶质瘤发展中的作用。方法Westernblot检测胶质瘤及正常脑组织中抗组蛋白H3乙酰化(H3ac)及抗H3K9三甲基化(H3K9me3)蛋白的表达.染色质免疫共沉淀.(ChIP)Real—timePCR技术检测Nanog启动子区域组蛋白H3乙酰化及H3K9甲基化水平,Real—timePCR检测相应组织中NanogmRNA表达情况。结果Westernblot结果显示:胶质瘤组织中H3ac的表达量较正常脑组织显著增高(F=72.80,P=0.00),H3K9me3的表达量较正常脑组织显著下调(F=84.79,P=0.00)。ChIP—Real—timePCR检测显示:胶质瘤中Nanog启动子区组蛋白H3乙酰化水平高于正常脑组织(F=59.34,P=0.00),H3K9甲基化程度低于正常脑组织(F=74.88,P=0.00)。Real—timePCR结果显示:高级别胶质瘤中NanogmRNA相对表达量高于低级别胶质瘤(t=11.41,P=0.00)。结论Nanog启动子区的组蛋白修饰可调节其蛋白的表达,并且是影响脑胶质瘤的发生和发展的重要机制之一。  相似文献   

18.
The elucidation of epigenetic alterations in the autism brain has potential to provide new insights into the molecular mechanisms underlying abnormal gene expression in this disorder. Given strong evidence that engrailed-2 (EN-2) is a developmentally expressed gene relevant to cerebellar abnormalities and autism, the epigenetic evaluation of this candidate gene was undertaken in 26 case and control post-mortem cerebellar samples. Assessments included global DNA methylation, EN-2 promoter methylation, EN-2 gene expression and EN-2 protein levels. Chromatin immunoprecipitation was used to evaluate trimethylation status of histone H3 lysine 27 (H3K27) associated with gene downregulation and histone H3 lysine 4 (H3K4) associated with gene activation. The results revealed an unusual pattern of global and EN-2 promoter region DNA hypermethylation accompanied by significant increases in EN-2 gene expression and protein levels. Consistent with EN-2 overexpression, histone H3K27 trimethylation mark in the EN-2 promoter was significantly decreased in the autism samples relative to matched controls. Supporting a link between reduced histone H3K27 trimethylation and increased EN-2 gene expression, the mean level of histone H3K4 trimethylation was elevated in the autism cerebellar samples. Together, these results suggest that the normal EN-2 downregulation that signals Purkinje cell maturation during late prenatal and early-postnatal development may not have occurred in some individuals with autism and that the postnatal persistence of EN-2 overexpression may contribute to autism cerebellar abnormalities.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号