首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biochemical and functional studies have demonstrated major histocompatibility complex (MHC) class II-restricted presentation of peptides derived from cytosolic proteins, but the underlying processing and presentation pathways have remained elusive. Here we show that endogenous presentation of an epitope derived from the cytosolic protein neomycin phosphotransferase II (NeoR) on MHC class II is mediated by autophagy. This presentation pathway involves the sequestration of NeoR into autophagosomes, and subsequent delivery into the lytic compartment. These results identify endosomes/lysosomes as the processing compartment for cytosolic antigens and furthermore link endogenous antigen presentation on MHC class II with the process of cellular protein turnover by autophagy.  相似文献   

2.
Autophagy describes catabolic pathways that deliver cytoplasmic constituents for lysosomal degradation. Since major histocompatibility complex (MHC) molecules sample protein degradation products and present them to T cells for adaptive immunity, it is maybe not too surprising that autophagy contributes to this protein antigen processing for MHC presentation. However, the recently recognized breath of pathways, by which autophagy contributes to MHC antigen processing, is exciting. Macroautophagy does not only seem to deliver intracellular but facilitates also extracellular antigen processing by lysosomal hydrolysis for MHC class II presentation. Moreover, even MHC class I molecules that usually display proteasomal products are regulated by macroautophagy, probably using a pool of these molecules outside the endoplasmic reticulum, where MHC class I molecules are loaded with peptide during canonical MHC class I antigen processing. This review aims to summarize these recent developments and point out gaps of knowledge, which should be filled by further investigation, in order to harness the different antigen-processing pathways via autophagy for vaccine improvement.  相似文献   

3.
Roles of heat-shock proteins in antigen presentation and cross-presentation.   总被引:19,自引:0,他引:19  
Heat-shock proteins chaperone antigenic peptides that are generated within cells. Such chaperoning is a part of the endogenous pathway of antigen presentation by MHC class I molecules. In addition, peptides that are chaperoned by heat-shock proteins, or are released by cell stress or death, are taken up by antigen-presenting cells and re-presented by their MHC molecules.  相似文献   

4.
《Seminars in immunology》2015,27(2):125-137
The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.  相似文献   

5.
Investigation of MHC class I endogenous antigen processing and presentation is important for understanding non-self immune recognition, vaccine design, immune evasion by pathogens and tumours, and elucidation of the mechanisms of certain auto-immune diseases. To study the MHC class I antigen-processing pathway, the protein antigen of interest has to be expressed inside the cells. To express a desired protein antigen, delivery of protein coding genes into the cell using transfection or infection by a virus carrying the gene of the antigen is a popular method. But there is no satisfactory method using the intact protein as antigen directly for investigation of MHC antigen processing and presentation that can give a quantitative result for the efficiency of antigen processing. Here we describe a novel method to deliver protein antigen directly into the cytosol of cells for quantitative analysis of the efficiency of antigen processing. Adherent mouse fibroblasts, mouse lymphoma cell line RMA, spleen cells and dendritic cells were permeabilized with streptolysin O, and chicken ovalbumin (OVA), a model protein antigen, was successfully introduced into the cells. Mouse fibroblast and RMA cells were able to properly process OVA protein, and OVA-derived peptide OVA(258-265) (or SIINFEKL) was successfully presented via the MHC class I molecule (K(b)) to SIINFEKL-K(b)-specific T cell hybridoma B3Z. As expected, delivery of OVA protein into RMA-S, a cell line with a deficiency in MHC class I antigen processing due to a TAP defect, failed to present the SIINFEKL epitope to B3Z.  相似文献   

6.
MHC class I antigen presentation refers to the co-ordinated activities of many intracellular pathways that promote the cell surface appearance of MHC class I/beta2m heterodimers loaded with a spectrum of self or foreign peptides. These MHC class I peptide complexes form ligands for CD8 positive T cells and NK cells. MHC class I heterodimers are loaded within the endoplasmic reticulum (ER) with peptides derived from intracellular proteins. Alternatively, MHC class I molecules may be loaded with peptides derived from extracellular proteins in a process called MHC class I cross presentation. This pathway is less well defined but can overlap those pathways operating in classical MHC class I presentation and has recently been reviewed elsewhere (1). This review will address the current concepts regarding the intracellular assembly of MHC class I molecules with their peptide cargo within the ER and their subsequent progress to the cell surface.  相似文献   

7.
RMA-S is an antigen processing-defective cell line, obtained from a Rauscher virus-induced tumor. The cells express only a low level of cell surface major histocompatibility complex (MHC) class I molecules, which are supposed to be devoid of internally derived antigenic peptides. We investigated Rauscher virus expression and Rauscher peptide presentation to virus-specific cytotoxic T lymphocytes (CTL) by this cell line. Viral proteins are expressed properly, both intracellularly and at the cell surface of RMA-S. Rauscher peptides are presented to virus-specific CTL in the groove of both the class I H-2Kb and Db molecules, but at a low level. Culture of RMA-S cells at room temperature increases their susceptibility to CTL. The RMA-S defect thus affects, but not totally abrogates, Rauscher peptide presentation by MHC class I molecules via the endogenous pathway. This indicates that the RMA-S antigen processing deficit is not absolute.  相似文献   

8.
The central event in the cellular immune response to invading pathogens is the presentation of non-self antigenic peptides by major histocompatibility complex (MHC) class I molecules to cytotoxic T lymphocytes (CTLs). As peptide binding and transport proteins, MHC class I molecules have evolved distinct biochemical and cellular strategies for acquiring antigenic peptides, providing CTLs an extracellular representation of the intracellular antigen content. Whereas efficient generation of MHC class I binding peptides depends on the intracellular, immunoproteasome-mediated proteolysis machinery, translocation of peptides into the lumen of the endoplasmic reticulum requires the endoplasmic reticulum-resident, adenosine 5'-triphosphate (ATP) binding cassette transporter associated with antigen processing (TAP). Here we show, for the first time, that immunoproteasomes, TAP complexes, and MHC class I molecules are physically associated, providing an effective means of transporting MHC class I binding peptides from their sites of generation into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. In this review, we assess the current understanding of the functional regulation of immunoproteasomes and transporter associated with antigen processing.  相似文献   

9.
Protein sorting within the mhc class II antigen-processing pathway   总被引:1,自引:0,他引:1  
Major histocompatibility complex (MHC) class II molecules are required for the presentation of antigenic peptides that are derived predominantly from internalized proteins. The assembly of MHC class II/peptide complexes occurs within endosomal compartments of antigen-presenting cells (APCs). Therefore, for assembly to occur, MHC class II molecules, foreign proteins, and accessory molecules must be sorted to appropriate intracellular sites. My laboratory is trying to understand how proteins are sorted to various antigen-processing compartments as well as to conventional endosomal organelles. Using chimeric marker proteins and a variety of biochemical and genetic approaches, we are addressing the specificity of protein sorting and the mechanisms by which sorting signals are deciphered. By using a similar chimeric protein approach to target endogenous proteins to distinct compartments, we hope to address the role of processing events in each compartment in the generation of MHC class II ligands.  相似文献   

10.
Peptides recognized by CD8+ cytotoxic T lymphocytes in the context of major histocompatibility complex (MHC) class I molecules are usually derived from endogenous proteins synthesized within the cell. Exogenous 22-nm hepatitis B surface antigen (HBsAg) particles are taken up by many cells, and are processed in a novel peptide-transporter-independent, endosomal or lysosomal pathway for class I (Ld)-restricted epitope presentation. Here, we present evidence that ‘empty’ Ld molecules derived from the cell surface are involved in presenting antigenic peptides from endocytosed HBsAg particles. Intracellular assembly of presentation-competent, trimeric Ld molecules required endocytosis of the exogenous antigen and ‘empty’m Ld molecules. These data assign a functional role to surface-associated, ‘empty’ MHC class I molecules.  相似文献   

11.
Cytotoxic T lymphocyte (CTL)-mediated immune responses rely on the efficiency of MHC class I ligand generation and presentation by antigen presenting cells (APCs). Whereas the abnormal expression of MHC molecules and transporters associated with antigen processing (TAPs) are commonly discussed as factors that modulate antigen presentation, much less is known about possible regulatory mechanisms at the level of proteolysis responsible for the generation of antigenic peptides. The ubiquitin-proteasome system is recognized as the major component responsible for this process in the cytosol and its activity can be regulated by cytokines, such as IFN-gamma. However, new evidence suggests the involvement of other proteases that can contribute to cytosolic proteolysis and therefore, to the quality and quantity of antigen production. Here, we review recent findings on an increasing number of proteolytic enzymes linked to antigen presentation, and we discuss how regulation of cytosolic protease activities might have implications for immune escape mechanisms that could be used by tumor cells and pathogens.  相似文献   

12.
Autophagy delivers cytoplasmic constituents for lysosomal degradation. Recent studies have demonstrated that this pathway mediates resistance to pathogens and is targeted for immune evasion by viruses and bacteria. Lysosomal degradation products, including pathogenic determinants, are then surveyed by the adaptive immune system to elicit antigen-specific T cell responses. CD4+ T helper cells have been shown to recognize nuclear and cytosolic antigens via presentation by major histocompatibility complex (MHC) class II molecules after autophagy. Furthermore, some sources of natural MHC class II ligands display characteristics of autophagy substrates, and autophagosomes fuse with late endosomes, in which MHC class II loading is thought to occur. Although MHC class II antigen processing via autophagy has so far mainly been described for professional antigen-presenting cells like B cells, macrophages, and dendritic cells, it might be even more important for cells with less endocytic potential, like epithelial cells, when these express MHC class II at sites of inflammation. Therefore, autophagy might contribute to immune surveillance of intracellular pathogens via MHC class II presentation of intracellular pathogen-derived peptides.  相似文献   

13.
Summary: Listeria monocytogenes (L. monocytogenes) secretes proteins associated with its virulence into the cytosol of infected cells. These secreted proteins are degraded by host cell proteasomes and processed into peptides that are bound by MHC class I molecules in the endoplasmic reticulum. We have found that the MHC class I antigen-processing pathway is very efficient at generating the epitopes that are presented to cytolytic T lymphocytes (CTL). Depending on which antigen is investigated, from 3 to 30 % of degraded antigens are processed into nonamer peptides that are bound by MHC class I molecules. Surprisingly, neither the efficiency of epitope generation nor the absolute number of epitopes per infected cell determines the magnitude of the in vivo CTL response. One of the least prevalent epitopes, derived from an antigen that is virtually undetectable in infected cells, primes the immunodominant CTL response in L. monocytogenes -infected mice. Our studies suggest that immunodominant and subdominant T-cell responses cannot be predicted by the prevalence of antigens or epitopes alone, and that additional factors, yet to be determined, are involved.  相似文献   

14.
Complexes of the heat shock protein gp96 and antigenic peptides are taken up by antigen-presenting cells and presented by MHC class I molecules. In order to explain the unusual efficiency of this process, the uptake of gp96 had been postulated to occur through a receptor, identified recently as CD91. We show here that complexes of peptides with heat shock proteins hsp90, calreticulin, and hsp70 are also taken up by macrophages and dendritic cells and re-presented by MHC class I molecules. All heat shock proteins utilize the CD91 receptor, even though some of the proteins have no homology with each other. Postuptake processing of gp96-chaperoned peptides requires proteasomes and the transporters associated with antigen processing, utilizing the classical endogenous antigen presentation pathway.  相似文献   

15.
Dendritic cells (DCs) act as a first-line recognition system for invading pathogens, such as influenza A. The interaction of DC with influenza A virus results in DC activation via endosomal Toll-like receptors and also leads to presentation of viral peptides on MHC class II molecules. Prior work demonstrated that influenza A virus (A/HKx31; H3N2) infection of BALB/c mice activates lung DCs for antigen presentation, and that the enhanced function of these cells persists long after viral clearance and resolution of the virus-induced inflammatory response. Whether influenza A virus has acute or longer-lasting effects on the endo/lysosomal antigen-processing machinery of DCs has not been studied. Here, we show that antigen presentation from intact protein antigen, but not peptide presentation, results in increased T cell stimulation by influenza-exposed lung DCs, suggesting increased antigen processing/loading in these DCs. We find that cathepsin (Cat) B levels and activity are substantially up-regulated in murine lung DCs, harvested 30 days after A/HKx31 infection. CatB levels and activity are also increased in murine splenic and bone marrow-derived DCs, following short-term in vitro exposure to UV-inactivated influenza A virus. Modest effects on CatX are also seen during in vivo and in vitro exposure to influenza A virus. Using a cell permeable Cat inhibitor, we show Cats in influenza-exposed DCs to be functional and required for generation of a T cell epitope from intact ovalbumin. Our findings indicate that influenza A virus affects the MHC class II antigen-processing pathway, an essential pathway for CD4(+) T cell activation.  相似文献   

16.
T cells detect infected and transformed cells via antigen presentation by major histocompatibility complex (MHC) molecules on the cell surface. For T cell stimulation, these MHC molecules present fragments of proteins that are expressed or taken up by the cell. These fragments are generated by distinct proteolytic mechanisms for presentation on MHC class I molecules to cytotoxic CD8+ and on MHC class II molecules to helper CD4+ T cells. Proteasomes are primarily involved in MHC class I ligand and lysosomes, in MHC class II ligand generation. Autophagy delivers cytoplasmic material to lysosomes and, therefore, contributes to cytoplasmic antigen presentation by MHC class II molecules. In addition, it has been recently realized that this process also supports extracellular antigen processing for MHC class II presentation and cross-presentation on MHC class I molecules. Although the exact mechanisms for the regulation of these antigen processing pathways by autophagy are still unknown, recent studies, summarized in this review, suggest that they contribute to immune responses against infections and to maintain tolerance. Moreover, they are targeted by viruses for immune escape and could maybe be harnessed for immunotherapy.  相似文献   

17.
Summary: Major histocompatibihty complex (MHC)-encoded glycoproteins bind peptide antigens through non-covalent interactions to generate complexes that are displayed on tbe surface of antigen-presenting cells (APC) for recognition by T ceils, Peptide-binding site occupancy is necessary for stable assembly of newly synthesized MHC proteins and export from the endoplasmic reticulum (ER), The MHC class II antigen-processing pathway provides a mechanism for presentation of peptides generated in the endosomal pathway of APC, The chaperone protein, invariant chain, includes a surrogate peptide that stahilizes newly synthesized class II molecules during transport to endosomal compartments. The invariant chain-derived peptide must be replaced through a peptide exchange reaction that is promoted by acidic pH and the MHC-encoded co-factor HLA-DM, Peptide exchange reactions are not required for presentation of antigens by MHC class I molecules because they bind antigens during initial assembly in the ER, However, exchange reactions may play an important role in editing the repertoire of peptides presented by both class II and class I molecules, thus influencing the specificity of immunity and tolerance.  相似文献   

18.
MHC class I molecules present short peptides, usually 8-10 amino acids in length, to CD8+ T cells. These peptides are typically generated from full-length endogenously synthesized proteins degraded by the antigen processing machinery of the target cell. However, exogenous proteins, whether originating from intracellular bacteria or parasites or via phagocytosis during cross-presentation, can also be processed for presentation by MHC class I molecules. It is currently not known whether endogenously synthesized proteins and proteins acquired from exogenous sources follow the same presentation pathway. One clue that the processing pathways followed by endogenous and exogenous proteins may not be identical is the vastly different presentation efficiencies reported for viral versus bacterial antigens. Because class I antigen processing involves multiple steps, we sought to determine where in the processing pathway these differences in efficiency occur. To accomplish this, we expressed identical minimal peptide determinants from viral and bacterial vectors using a minigene expression system and determined the rate of peptide-MHC generation per molecule of minigene product synthesized. We found that peptides expressed from either the viral or bacterial vector were presented with virtually identical efficiencies. These results suggest that differences in the processing pathways followed by endogenous versus exogenous proteins most likely occur at a point prior to where free peptide is liberated from full-length protein.  相似文献   

19.
Summary: Peptide fragments from proteins of intracellular pathogens such as viruses are displayed at the cell surface hy MHC class I molecules thus enabling surveillance by cytotoxic T cells. Peptides are produced in the cytosol by proteasomal degradation and translocated into the endoplasmic reticulum by the peptide transporter TAP Empty MHC dass I molecules associate with TAP prior to their acquisition of peptides, a process which is assisted and controlled by a series of chaperones. The first part of this review summarizes our current knowledge of this assembly pathway and describes recent observations that tapasin functions as an endoplasmic reticulum retention molecule for empty MHC class I molecules. To defeat the presentation of virus-derived peptides, several DNA viruses have devised strategies to interfere with MHC class I assembly. Although these evasion strategies have evolved independently and differ mechanistically they often target the same step in this pathway. We compare escape mechanisms of different viruses with particular emphasis on the retention of newly synthesized MHC class 1 molecules in the endoplasmic reticulum and the inhibition of peptide transport by viral proteins.  相似文献   

20.
The convergent roles of tapasin and HLA-DM in antigen presentation   总被引:1,自引:0,他引:1  
Cytotoxic and helper T cells respond to peptides derived from endogenous and exogenous sources that bind to major histocompatibility complex (MHC) class I and class II molecules and are presented on antigen-presenting cells. MHC class I and class II structures and maturation pathways have evolved to optimize antigen presentation to their respective T cells. The accessory proteins tapasin and HLA-DM (DM) crucially influence the selection of peptides that bind to the MHC molecules. We discuss here the dynamic interactions of tapasin and DM with their corresponding MHC molecules that indicate striking parallels. Utilization of a common mode of peptide selection by two different, but related, biological systems argue for its mechanistic validity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号