首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ataxia and peripheral neuropathy are the most common neurological manifestations of gluten sensitivity. Myopathy is a less common and poorly characterized additional neurological manifestation of gluten sensitivity. We present our experience with 13 patients who presented with symptoms and signs suggestive of a myopathy and in whom investigation led to the diagnosis of gluten sensitivity. Three of these patients had a neuropathy with or without ataxia in addition to the myopathy. The mean age at onset of the myopathic symptoms was 54 years. Ten patients had neurophysiological evidence of myopathy. Inflammatory myopathy was the most common finding on neuropathological examination. One patient had basophilic rimmed vacuoles suggestive of inclusion-body myositis. Six patients received immunosuppressive treatment in addition to starting on a gluten-free diet; five improved and one remained unchanged. Among seven patients not on immunosuppressive treatment, four showed clinical improvement of the myopathy with a gluten-free diet. The improvement was also associated with reduction or normalization of serum creatine kinase level. The myopathy progressed in one patient who refused the gluten-free diet. Myopathy may be another manifestation of gluten sensitivity and is likely to have an immune-mediated pathogenesis. A gluten-free diet may be a useful therapeutic intervention.  相似文献   

2.
The dystonias are a clinical heterogeneous group with a complex genetic background. To gain more insight in genetic risk factors in dystonia we used a pathway sequence approach in patients with an extreme dystonia phenotype (n = 26). We assessed all coding and non-coding variants in candidate genes in D1-like subclass of dopamine receptor genes (DRD1, DRD5) and the synaptic vesicle pathway linked to torsinA (TOR1A, STON2, SNAPIN, KLC1 and THAP1), spanning 96 Kb.Two rare missense variants in DRD1 were found: c.68G>A(p.Arg23His) in the screening group and c.776C>A(p.Ser259Tyr) in an additional screen of 15 selected dystonia patients. Genetic burden analysis of DRD1 rare variants in patients (4.8%) versus European American controls from ESP (0.72%) reveals an OR 5.35 (95% CI 1.29–23.1). No rare missense SNVs in the synaptic vesicle pathway were found. Sequencing of TOR1A showed variant enrichment in haplotype 2, possibly accountable for contradictive results in previous association studies. Two new rare SNVs were detected in THAP1, including a nonsense mutation (p.Gln167Ter) and a splice site variant (c.72-1G>A). Screening for rare SNV of candidate pathways in a phenotype extreme population appears to be a promising alternative method to identify genetic risk factors in complex disorders like primary torsion dystonia. These findings indicate a role for rare genetic variation in dopamine processing genes in dystonia pathophysiology.  相似文献   

3.
4.
IntroductionA recent study reported that rare variants in NUS1 were associated with Parkinson's disease (PD). We aimed to assess the relative contribution of rare and common coding/non-coding variants of NUS1 to late-onset PD patients (LOPD).MethodsWhole genome sequencing data were analyzed for target NUS1 regions, derived from a cohort of 1962 cases and 1279 controls. The genetic association analyses were performed using logistic regression analysis and Sequence Kernel association test. Expression quantitative trait loci (eQTL) analysis was conducted to further explore the association of variants with NUS1 expression based on the data from GTEx database.ResultsWe identified 18 rare coding variants. p.Y131C was first identified in LOPD. However, no significant burden of rare NUS1 coding variants in LOPD was found. The rare variant sets of two regulatory elements (GH06J117605 and GH06J117674) were significantly enriched in LOPD even after Bonferroni correction (adjusted P = 0.013; adjusted P = 0.010). Considering the joint effect of rare and common variants, all variant sets within GH06J117605 and GH06J117674 showed association with LOPD but were no longer significant after Bonferroni correction. None of the common variants within coding/non-coding regions were significant after Bonferroni correction. The eQTL results suggested these variants in GH06J117605 and GH06J117674 could potentially have eQTL effects on the brain tissues.ConclusionsThese findings provide novel insight into the role of NUS1 regulatory regions in the development of LOPD and indicate that the variants in regulatory elements of NUS1 may be associated with LOPD by influencing the gene expression level.  相似文献   

5.
6.
BackgroundWe describe herein the application of whole exome sequencing (WES) for the molecular genetic diagnosis of a large Korean family with dominantly inherited myopathy.ConclusionsThis is the first report of identification of COL6A1-mediated Bethlem myopathy in Korea, and indicates the utility of WES for the diagnosis of muscular dystrophy.  相似文献   

7.
8.
Biochemical and mitochondrial DNA analyses were performed in post-mortem brain tissue from seven patients with dementia of Alzheimer's type and age- and sex-matched controls. We analysed all complexes of the respiratory chain in four regions, i.e. temporal, parietal, entorhinal cortex and hippocampus. Although enzymes representing complex II, III and IV were reduced in activity, succinate cytochrome c reductase was significantly reduced only in the parietal and temporal cortex. However, Southern blot analyses with two restriction enzymes excluded any deletions larger than 500 by in parietal and entorhinal cortex. It is concluded that there seems to be no specific respiratory chain defect in Alzheimer's disease.  相似文献   

9.
Dusty core disease (DuCD) is a recently described form of congenital myopathy with clinicopathological implications. The presence of “dusty core fibers” is the defining myopathological feature of DuCD. Most cases have a recessive inheritance and harbor RYR1 mutations. I hereby describe a novel homozygous variant of RYR1 p.Ala3072Asp clinicopathologically compatible with DuCD. To the best of my knowledge, this is the first documented case of DuCD from India.  相似文献   

10.
Mutations in SCN2A gene cause a variety of epilepsy syndromes. We report a novel SCN2A‐associated epilepsy phenotype in monozygotic twins with tonic seizures soon after birth and a suppression‐burst electroencephalography (EEG) pattern. We reviewed the medical records, EEG tracings, magnetic resonance imaging (MRI), and neuropathologic findings, and performed whole genome sequencing (WGS) on Twin B's DNA and Sanger sequencing (SS) on candidate gene mutations. Extensive neurometabolic evaluation and early neuroimaging studies were normal. Twin A died of an iatrogenic cause at 2 weeks of life. His neuropathologic examination was remarkable for dentate‐olivary dysplasia and granule cell dispersion of the dentate gyrus. Twin B became seizure free at 8 months and was off antiepileptic drugs by 2 years. His brain MRI, normal at 2 months, revealed evolving brainstem and basal ganglia abnormalities at 8 and 15 months that resolved by 20 months. At 2.5 years, Twin B demonstrated significant developmental delay. Twin B's WGS revealed a heterozygous variant c.788C>T predicted to cause p.Ala263Val change in SCN2A and confirmed to be de novo in both twins by SS. In conclusion, we have identified a de novo SCN2A mutation as the etiology for Ohtahara syndrome in monozygotic twins associated with a unique dentate‐olivary dysplasia in the deceased twin.  相似文献   

11.
Parkinsonism has been described in patients with mutations in POLG1 gene. The W748S mutation is one of the most common mutations in this gene and it has been found to be a frequent cause of autosomal recessive ataxia in adults and the Alpers syndrome in children. We found the W748S mutation in a 65-year-old man with a late-onset syndrome consisting of ataxia, parkinsonism, ophthalmoplegia, peripheral neuropathy, and sensorineural hearing loss. Parkinsonism is one of the phenotypic features associated also with the W748S mutation.  相似文献   

12.
《Alzheimer's & dementia》2014,10(6):609-618.e11
BackgroundLess is known about the genetic basis of Alzheimer's disease (AD) in African Americans (AAs) than in non-Hispanic whites.MethodsWhole exome sequencing (WES) was performed on seven AA AD cases. Disease association with potentially AD-related variants from WES was assessed in an AA discovery cohort of 422 cases and 394 controls. Replication was sought in an AA sample of 1037 cases and 1869 controls from the Alzheimer Disease Genetics Consortium (ADGC).ResultsForty-four single nucleotide polymorphisms (SNPs) from WES passed filtering criteria and were successfully genotyped. Nominally significant (P < .05) association to AD was observed with two African-descent specific AKAP9 SNPs in tight linkage disequilibrium: rs144662445 (P = .014) and rs149979685 (P = .037). These associations were replicated in the ADGC sample (rs144662445: P = .0022, odds ratio [OR] = 2.75; rs149979685: P = .0022, OR = 3.61).ConclusionsBecause AKAP9 was not previously linked to AD risk, this study indicates a potential new disease mechanism.  相似文献   

13.
The congenital disorders of glycosylation are a group of clinically and biochemically heterogeneous diseases characterized by multisystem involvement due to glycosylation defect of protein and lipid. Here we report a 49-year-old man with exercise-induced fatigue and pain of muscle, tachypnea, cleft palate and bifid uvula. Exercise induced elevation of serum creatine kinase (CK), ammonia and lactic acid was recorded. The abnormal levels of myoglobin, CK-MB and LDH as well as S-T elevation in electrocardiogram were observed in repeated hospitalization recordings. Electromyography showed myopathic damage. Repetitive nerve stimulation test of low rates showed decrement in the left deltoid muscle. He was identified with a novel homozygous frameshift variant in Phosphoglucomutase type 1 gene (c.405delT p.N135Kfs*9) by whole exome sequencing. Muscle biopsy exhibited minimal variation in fiber size without abnormal glycogen accumulation. Compared with controls’, the patient's sample showed no signal at ~61?kDa using N- or C-terminus antibody of Phosphoglucomutase type 1 in western blotting. A signal at ~20?kDa was detected in patient using N-terminus antibody. Immunofluorescence revealed trace expression of C-terminus and a much lower expression of N-terminus on the sarcolemma than normal. Our findings indicate that c.405delT encodes a truncated protein with abnormal distribution and expression in skeletal muscle. In conclusion, genes associated with congenital disorders of glycosylation should be analyzed in patients with maxillofacial dysplasia, exertional weakness, cardiac involvement and exercise-induced-ammoniemia, without glycogen storage in skeletal muscle.  相似文献   

14.
15.
Diseases related to peripheral myelin protein 22 (PMP22) have been implicated to involve the central nervous system (CNS). This study aimed to detect central nerve impairment using somatosensory evoked potentials (SSEPs) in patients with Charcot-Marie-Tooth disease (CMT) 1A. A total of 30 CMT1A patients and 26 healthy volunteers were included. Baseline characteristics, brain MRI and segmental SSEPs were collected from the participants. The peak latencies of N9, N13 and N20 were recorded, and central conduction velocity (CCT) was calculated and compared between groups. Significant differences were found in the peak latencies and amplitudes of N9, N13 and N20 between the two groups. CCT was significantly prolonged in the CMT group (7.05 ± 2.09 ms) compared to the control group (5.40 ± 1.79 ms) (p = 0.003). Six of 30 CMT patients had abnormal MRI signals, but no correlation with CCT was found. The central somatosensory pathway that carries SSEPs was impaired in CMT1A patients, which implies an important underlying role of PMP22 in the CNS.  相似文献   

16.
In a previous study, we found that long non-coding genes in Alzheimer’s disease (AD) are a result of endogenous gene disorders caused by the recruitment of microRNA (miRNA) and mRNA, and that miR-200a-3p and other representative miRNAs can mediate cognitive impairment and thus serve as new biomarkers for AD. In this study, we investigated the abnormal expression of miRNA and mRNA and the pathogenesis of AD at the epigenetic level. To this aim, we performed RNA sequencing and an integrative analysis of the cerebral cortex of the widely used amyloid precursor protein and presenilin-1 double transgenic mouse model of AD. Overall, 129 mRNAs and 68 miRNAs were aberrantly expressed. Among these, eight down-regulated miRNAs and seven up-regulated miRNAs appeared as promising noninvasive biomarkers and therapeutic targets. The main enriched signaling pathways involved mitogen-activated kinase protein, phosphatidylinositol 3-kinase-protein kinase B, mechanistic target of rapamycin kinase, forkhead box O, and autophagy. An miRNA-mRNA network between dysregulated miRNAs and corresponding target genes connected with AD progression was also constructed. These miRNAs and mRNAs are potential biomarkers and therapeutic targets for new treatment strategies, early diagnosis, and prevention of AD. The present results provide a novel perspective on the role of miRNAs and mRNAs in AD. This study was approved by the Experimental Animal Care and Use Committee of Institute of Medicinal Biotechnology of Beijing, China (approval No. IMB-201909-D6) on September 6, 2019.

Chinese Library Classification No. R446.1; R741.04; Q344+.13  相似文献   

17.
Endothelin-1 (ET-1) is synthesized by endothelial cells and astrocytes in stroke and in brains of Alzheimer''s disease patients. Our transgenic mice with ET-1 overexpression in the endothelial cells (TET-1) showed more severe blood–brain barrier (BBB) breakdown, neuronal apoptosis, and glial reactivity after 2-hour transient middle cerebral artery occlusion (tMCAO) with 22-hour reperfusion and more severe cognitive deficits after 30 minutes tMCAO with 5 months reperfusion. However, the role of astrocytic ET-1 in contributing to poststroke cognitive deficits after tMCAO is largely unknown. Therefore, GET-1 mice were challenged with tMCAO to determine its effect on neurologic and cognitive deficit. The GET-1 mice transiently displayed a sensorimotor deficit after reperfusion that recovered shortly, then more severe deficit in spatial learning and memory was observed at 3 months after ischemia compared with that of the controls. Upregulation of TNF-α, cleaved caspase-3, and Thioflavin-S-positive aggregates was observed in the ipsilateral hemispheres of the GET-1 brains as early as 3 days after ischemia. In an in vitro study, ET-1 overexpressing astrocytic cells showed amyloid secretion after hypoxia/ischemia insult, which activated endothelin A (ETA) and endothelin B (ETB) receptors in a PI3K/AKT-dependent manner, suggesting role of astrocytic ET-1 in dementia associated with stroke by astrocyte-derived amyloid production.  相似文献   

18.
19.
In Parkinson's disease (PD), the dopamine (DA) neuronal cell death in the nigrostriatal system has been proposed to be mediated by reactive oxygen radicals such as hydroxyl radicals (.OH). This.OH production may cause lipid peroxidation of cell membranes leading to neuronal cell death. This paper report that the DA-selective neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP(+)), (1 nmol/microl per min for 1 h) infusion into the striatum of rats induces elevation of extracellular DA and.OH formation. These elevations seem to induce lipid peroxidation of striatum membranes, as detected by increases in non-enzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) levels. To test the involvement of DA release in the.OH generation and lipid peroxidation, the rats were pretreated with reserpine (5 mg/kg, i.v., 24 h before MPP(+) or without MPP(+)) to deplete presynaptic DA. Reserpine treatment alone did not change the levels of DA or 2,3-DHBA, while the combined treatment with both MPP(+) and reserpine clearly decreased 2,3-DHBA, as well as DA levels, compared to those in the group treated with MPP(+) alone. After injection into reserpinized rats, DA at various doses (2, 5 and 10 microM) small increased 2,3-DHBA levels dose-dependently, as compared to the MPP(+) alone-treated group. These results clearly indicate that MPP(+) perfusion into the striatum increases extracellular DA levels and this increase may concomitantly induce the formation of reactive free oxygen radicals, such as.OH free radicals. These events may contribute, at least in part, to the nigrostriatal neurons cell death after MPP(+).  相似文献   

20.
Inflammatory reactions are considered one of the important etiologic factors in the pathogenesis of Alzheimer's disease (AD). Prostaglandins such as PGE2 and PGA1 and free radicals are some of the agents released during inflammatory reactions, and they are neurotoxic. The mechanisms of their action are not well understood. Increased levels of beta-amyloid fragments (Abeta40 and Abeta42), generated through cleavage of amyloid precursor protein (APP), oxidative stress, and proteasome inhibition, are also associated with neurodegeneration in AD brains. Therefore, we investigated the effect of PGs and oxidative stress on the degeneration and viability of cyclic AMP-induced differentiated NB cells overexpressing wild-type APP (NBP2-PN46) under the control of the CMV promotor in comparison with differentiated vector (NBP2-PN1) or parent (NBP2) control cells. Results showed that differentiated NBP2-PN46 cells exhibited enhanced spontaneous degeneration and decreased viability in comparison with differentiated control cells, without changing the level of Abeta40 and Abeta42. PGA1 or PGE2 treatment of differentiated cells caused increased degeneration and reduced viability in all three cell lines. These effects of PGs are not due to alterations in the levels of vector-derived APP mRNA or human APP holoprotein, secreted levels of Abeta40 and Abeta42, or proteasome activity. H2O2 or SIN-1 (an NO donor) treatment did not change vector-derived APP mRNA levels, but H2O2 reduced the level of human APP protein more than SIN-1. Furthermore, SIN-1 increased the secreted level of Abeta40, but not of Abeta42, whereas H2O2 had no effect on the level of secreted Abeta fragments. Both H2O2 and SIN-1 inhibited proteasome activity in the intact cells. The failure of neurotoxins to alter APP mRNA levels could be due to the fact that they do not affect CMV promoter activity. These results suggest that the mechanisms of action of PGs on neurodegeneration are different from those of H2O2 and SIN-1 and that the mechanisms of neurotoxicity of H2O2 and SIN-1 are, at least in part, different from each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号