首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inactivation of members of the nuclear factor-kappaB (NF-kappaB) family results in the decrease or defect of marginal zone B (MZB) cells. It is not known which inhibitors of the NF-kappaB family (IkappaB) are required for MZB cell development. Here, we show that mice with B cell-specific inactivation of the main NF-kappaB inhibitor IkappaBalpha have a marked decrease of MZB cells and their presumed precursors. They exhibited increased mortality rates after blood-borne bacterial infection, indicating the importance of MZB cells for bacterial clearance. In contrast, response to T cell-dependent and -independent antigens resulted only in minor changes in immunoglobulin production. Our data demonstrate the importance of the intact NF-kappaB/IkappaBalpha pathway for proper MZB cell development.  相似文献   

2.
The Notch ligand Delta-like 1 (Dll1) is critical for the generation of marginal zone (MZ) B cells in the spleen. However, the precise mechanism underlying the differentiation of MZB cells is unclear. To determine whether hematopoietic cells or non-hematopoietic cells provides the Dll1-mediated signals to primitive hematopoietic cells, we transplanted lineage(-)c-kit(+)Sca-1(+) (KSL) bone marrow cells derived from wild-type (Dll1(+/+)) GFP-transgenic mice into lethally irradiated Dll1 conditional knockout (cKO) mice. After transplantation, we examined the kinetics of hematopoietic reconstitution and found that although the frequency of stem/progenitor subsets and of more mature lymphoid, myeloid, and erythroid lineages were normal, the donor-derived hematopoietic cells failed to differentiate into MZB cells. We further demonstrated that while the splenic stromal cells of wild-type mice expressed Dll1 molecule, the splenic stromal cells of recipient Dll1 cKO mice deleted the expression of Dll1. These results suggesting that the expression of Dll1 in splenic non-hematopoietic stromal cells, but not hematopoietic cells, is essential for the development of MZB cells.  相似文献   

3.
The splenic marginal zone of adult humans contains B cells, of which most express CD27, an antigen only recently identified as a marker for somatically mutated memory B cells. We investigated whether and to which extent the developing marginal zone in infants and children is populated by either memory (CD27+) or naive (CD27-) B cells. Frozen sections of 32 spleens of infants and children ranging in age from 6 days to 15 years and 6 adult spleens were investigated. The expression of CD27 in combination with monoclonal antibodies against CD3, CD21, IgM, IgD and ASM-1 was analyzed by immunohistochemistry. The marginal zone was already present at 4 months after birth but CD21 expression was observed first after 2 years. CD27-positive marginal zone B cells were observed firstly 2 years after birth and increased in number to adult levels at the age of 5 years. We demonstrated that the MZ of infants and young children is populated by naive B cells, which are replaced by memory B cells in a time frame of 2 to 5 years. Before the age of 2 years, although present, memory B cells appear to be unable to colonize the marginal zone. Because of the absence of memory B cells in the marginal zone, the immune system of a child is not capable to initiate a rapid secondary humoral immune response comparable to the adult immune response.  相似文献   

4.
Most splenic B cells in mice that lack Aiolos are mature IgD(hi)IgM(lo) follicular lymphocytes, suggesting that maturation signals delivered via the BCR are enhanced in the absence of Aiolos. The enhanced maturation of follicular B cells is accompanied by the absence of MZ B lymphocytes and the downregulation of CD21 expression in follicular B cells, all of which depend on the generation of signals via Btk, which is in epistasis to Aiolos. The inverse relationship between the strength of BCR signaling and MZ B cell development is supported by an examination of MZ B cells in CD21 null mice. These data support the view that antigens (in contrast to "tonic" signals) drive the development of naive B cells.  相似文献   

5.
Development and selection of marginal zone B cells   总被引:11,自引:0,他引:11  
Summary:  It is now clear that functionally distinct subsets of mature peripheral B cells exist. Of these subsets, marginal zone (MZ) B cells in the spleen are strategically positioned at the blood–lymphoid interface and are programmed to initiate a fast and intense antibody response to blood-borne viral and bacterial agents. Their ability to respond vigorously to antigen and polyclonal activators make MZ B cells key players in the early response to pathogens in the bloodstream. The specialized functions of these innate-like lymphocytes bridge the gap between the early innate immune response and the slower adaptive antibody response, affected mainly by the more prolific follicular B cells. MZ B cells, like B1 cells, are important not only to combat infections but also in the maintenance of host homeostasis. Here we discuss some aspects of MZ B-cell selection and function in health and disease.  相似文献   

6.
7.
Marginal zone (MZ)-B cells participate in very early immune responses and play a pivotal role in the first-line of defense against blood-borne Ags including bacterial LPS. Since splenic B cells from c-fos transgenic (H2-c-fos) mice are hyper-sensitive to LPS stimulation, we examined LPS-sensitivity of MZ-B cells in the spleen of H2-c-fos mice. Here, we show that proliferation of MZ-B cells from H2-c-fos mice stimulated with LPS was larger than that from control mice. Proliferation and IgM production of the H2-c-fos MZ-B cells were also larger than those of splenic follicular (FO)-B cells from the H2-c-fos mice, suggesting that c-fos overexpression augments LPS-sensitivity of MZ-B cells more than that of FO-B cells. Furthermore, the number of MZ-B cells but not that of FO-B cells in the spleen of H2-c-fos mice was two- to three-fold larger than that in control littermates. The number of transitional type II (T2)-B cells in H2-c-fos mice was also larger than that of control littermates. However, the number of transitional type I (T1)-B cells in the spleen of H2-c-fos mice was not larger than that of control mice. Moreover, this c-fos effect on differentiation of MZ-B cells was intrinsic in B cells by the competitive repopulation assay with hematopoietic stem cells of H2-c-fos and control mice. These results suggest that c-fos overexpression in B cells augments differentiation and accumulation of MZ-B cells.  相似文献   

8.
In general, a long‐lasting immune response to viruses is achieved when they are infectious and replication competent. In the mouse, the neutralizing antibody response to Friend murine leukemia virus is contributed by an allelic form of the enzyme Apobec3 (abbreviated A3). This is counterintuitive because A3 directly controls viremia before the onset of adaptive antiviral immune responses. It suggests that A3 also affects the antibody response directly. Here, we studied the relative size of cell populations of the adaptive immune system as a function of A3 activity. We created a transgenic mouse that expresses all seven human A3 enzymes and compared it to WT and mouse A3‐deficient mice. A3 enzymes decreased the number of marginal zone B cells, but not the number of follicular B or T cells. When mouse A3 was knocked out, the retroelement hitchhiker‐1 and sialyl transferases encoded by genes close to it were overexpressed three and two orders of magnitude, respectively. We suggest that A3 shifts the balance, from the fast antibody response mediated by marginal zone B cells with little affinity maturation, to a more sustained germinal center B‐cell response, which drives affinity maturation and, thereby, a better neutralizing response.  相似文献   

9.
Marginal zone (MZ) B cells express high levels of CD1d molecules. In accordance, MZ B cells, like splenic conventional DCs (cDCs), efficiently trigger NKT-cell proliferation. Importantly, MZ B cells exclusively induced production of IL-4 and IL-13 by such cells whereas cDCs induced robust production of mainly IFN-γ. NKT-cell proliferation, IL-4 and IL-13 production induced by MZ B cells were dependent on ICOS/ICOS ligand interaction while IFN-γ and IL-17 induction by cDCs required glucocorticoid-induced TNF receptor/glucocorticoid-induced TNF receptor ligand interplay. Our data illustrate that both MZ B cells and cDCs act as efficient APCs for NKT cells and might differentially influence the quality of the subsequent immune response.  相似文献   

10.
B cells of the marginal zone (MZ) compartment are poised to combat infectious threats reaching the bloodstream. They owe this ability to their unique location at the ports of entry of blood-borne pathogens as well as to their distinct functional properties. MZ B cells respond to antigen encounters with rapid activation, local antibody secretion, and isotype switching. In addition, they are involved in antigen trapping, transport, and presentation. Herein, we review the current data on the functional characteristics that enable the MZ B-cell population to act as an efficient first line of defense against systemic infections.  相似文献   

11.
The maintenance of inner integrity of an organism is founded on the proper performance of two immunity branches, innate and adaptive immune responses. Recently, it became apparent that subset of splenic B cells named marginal zone B cells (MZB cells) exhibits unique developmental and functional features that bridge these two immunity branches. Strategically positioned at the site where blood and lymph are filtered, MZB cells represent a population of sentinels that rapidly proliferate and differentiate into IgM plasmablast cells when encountered with blood-borne, thymus-independent (TI) Ags. Moreover, MZB cells have intrinsic capability to induce potent CD4+ helper T cell response and cytokine production upon stimulation with soluble antigens. Due to their ability to overcome a time gap prior the establishment of the full adaptive response towards pathogens, MZB cells connect and direct innate and adaptive immunity. An additional interesting characteristic of MZB cells is capacity to function as regulatory cells in autoimmune processes. MZB cells may also contribute to the control of autoimmunity via the induction of tolerance by apoptotic cells. Importantly, in the clear association with inflammation and autoimmunity, MZB cells may transform into MALT lymphoma, representing a concurrence point for the infection, immunity and malignancy. This paper presents an insight into the complex biology of marginal zone B cells and their role in intertwining and directing innate and adaptive immune processes at the physiological and pathological level.  相似文献   

12.
The Notch genes play a key role in cellular differentiation. The significance of Notch1 during thymocyte development is well characterized, but the function of Notch2 is poorly understood. Here we demonstrate that Notch2 but no other Notch family member is preferentially expressed in mature B cells and that conditionally targeted deletion of Notch2 results in the defect of marginal zone B (MZB) cells and their presumed precursors, CD1d(hi) fraction of type 2 transitional B cells. Among Notch target genes, the expression level of Deltex1 is prominent in MZB cells and strictly dependent on that of Notch2, suggesting that Deltex1 may play a role in MZB cell differentiation.  相似文献   

13.
Marginal zone B cell lymphomas (MZBCLs) represent a category of non-Hodgkin's lymphoma which may arise in a wide variety of extranodal organs where they are termed low grade B cell lymphomas of mucosa-associated lymphoid tissue (MALT). MZBCLs may involve primarily lymph nodes and or spleen where they are designated monocytoid B cell lymphoma or splenic marginal zone lymphoma, respectively. Recognition of this category of lymphoma, in particular, extranodal MALT lymphoma, is clinically significant in determining optimal therapy. Although there have been recent case reports describing the cytologic findings in low grade MALT lymphoma in various extranodal organs, this category of lymphoma has not been widely recognized or discussed in the cytology literature. The cytologic findings in seven fine-needle aspirations and two bronchial washings of histologically confirmed marginal zone lymphoma (five extranodal MALT lymphomas and four nodal marginal zone lymphomas) are described. In all of the cases, the cytologic specimens showed a polymorphous proliferation comprising a predominant population of intermediate sized lymphoid cells with centrocyte-like or monocytoid features, transformed cells, and variable numbers of plasma cells. These findings, while highly suggestive of MALT lymphoma in extranodal proliferations, may be more difficult to distinguish from reactive conditions in lymph nodes.  相似文献   

14.
15.
Expression of B cell-activating factor (BAFF), a critical B cell survival factor, is elevated in autoimmune and lymphoproliferative disorders. Mice overproducing BAFF develop systemic lupus erythematosus (SLE)-like disease and exhibit B cell activation of classical and alternative NF-kappaB-signaling pathways. We used a genetic approach and found that both NF-kappaB-signaling pathways contributed to disease development but act through distinct mechanisms. Whereas BAFF enhanced long-term B cell survival primarily through the alternative, but not the classical, NF-kappaB pathway, it promoted immunoglobulin class switching and generation of pathogenic antibodies through the classical pathway. Activation of the alternative NF-kappaB pathway resulted in integrin upregulation, thereby retaining autoreactive B cells in the splenic marginal zone, a compartment that contributes to their survival. Thus, both classical and alternative NF-kappaB signaling are important for development of lupus-like disease associated with BAFF overproduction. The same mechanisms may be involved in the pathogenesis of human SLE.  相似文献   

16.
The spleen plays a pivotal role in the immune defense against encapsulated bacteria such as Streptococcus pneumoniae. Murine splenic marginal zone macrophages express the C-type lectin SIGNR1, which is crucial for the capture of S. pneumoniae from blood. In this study, we demonstrate that SIGNR1 is able to interact in vitro with the juxtaposing marginal zone B cell population, which is responsible for the production of the early IgM response against the S. pneumoniae-epitope phosphorylcholine. Strikingly, SIGNR1-deficient mice display a reduction in the marginal zone B cell population. In addition, ex vivo B cell stimulation assays demonstrate a decrease in phosphorylcholine specificity in the splenic B cell population derived from SIGNR1-deficient mice, whereas the total IgM response is unaffected. Therefore, we hypothesize that antigens are presented by SIGNR1 expressed by marginal zone macrophages to the developing marginal zone B cell population thereby influencing the repertoire of this B cell population, which is pivotal for the early immune response against encapsulated bacteria such as S. pneumoniae.  相似文献   

17.
Notch receptors and their ligands contribute to many developmental systems, but it is not apparent how they function after birth, as their null mutants develop severe defects during embryogenesis. Here we used the Cre-loxP system to delete the Delta-like 1 gene (Dll1) after birth and demonstrated the complete disappearance of splenic marginal zone B cells in Dll1-null mice. In contrast, T cell development was unaffected. These results demonstrated that Dll1 was dispensable as a ligand for Notch1 at the branch point of T cell-B cell development but was essential for the generation of marginal zone B cells. Thus, Notch signaling is essential for lymphocyte development in vivo, but there is a redundancy of Notch-Notch ligand signaling that can drive T cell development within the thymus.  相似文献   

18.
19.
Reduction of marginal zone B cells in CD22-deficient mice   总被引:9,自引:0,他引:9  
CD22 is a B cell-specific member of the immunoglobulin superfamily and binds to sialic acid. CD22 inhibits B cell receptor signaling. Mice deficient for CD22 show a largely normal B cell development. Here, we have performed a detailed analysis of the splenic B cell population and found that the subset of marginal zone (MZ) B cells was selectively reduced in CD22-deficient mice. CD22-deficient mice showed a lack of TNP-ficoll capturing cells in the MZ and a reduced response to TNP-ficoll, particularly when the antigen was applied intravenously. CD22-deficient B cells showed both enhanced motility as well as enhanced chemotaxis to certain chemokines. The altered chemokine responsiveness or the higher signaling capacity of CD22-deficient B cells may lead to the compromised MZ B cell compartment, as both processes have previously been shown to affect MZ composition.  相似文献   

20.
The marginal zone is a unique compartment that is only found in the spleen. Rat marginal zone B cells (MZ-B) can be distinguished from other B cells, e.g. recirculating follicular B cells (RF-B), by several phenotypic characteristics. Typically MZ-B cells are surface (s)IgMhi, sIgDlo and CD45R(B220)lo, whereas RF-B cells are sIgMlo, sIgDhi and CD45Rhi. In addition, MZ-B cells stain strongly with HIS57, a newly developed monoclonal antibody. The developmental pathway and origin of MZ-B cells are not exactly known. However, previous studies indicate that recirculating (i. e. thoracic duct) B cells can give rise to MZ-B cells. Here the origin of (naive) MZ-B cells was studied using adriamycin (doxorubicin)-induced B cell depletion. Using three-color flow cytometry and immunohistology we show that 2 days after a single i.v. injection of the anti-tumor drug adriamycin only RF-B cells can be detected, while all other B cell subpopulations are depleted, including all bone marrow precursor B cells. By studying the sequential reappearance of various B cell subsets and their precursors after adriamycin administration we show that MZ-B cells and the splenic marginal zone can be detected at a time point at which newly generated B cells (immature B cells) are not yet present. Given the observation that only RF-B cells were present at this time, we conclude that RF-B cells are the immediate MZ-B precursor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号