首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
5-hydroxymethylcytosine is a new epigenetic modification deriving from the oxidation of 5-methylcytosine by the TET hydroxylase enzymes. DNA hydroxymethylation drives DNA demethylation events and is involved in the control of gene expression. Deregulation of TET enzymes causes developmental defects and is associated with pathological conditions such as cancer. Little information thus far is available on the regulation of TET activity by post-translational modifications. Here we show that TET1 protein is able to interact with PARP-1/ARTD1 enzyme and is target of both noncovalent and covalent PARylation. In particular, we have demonstrated that the noncovalent binding of ADP-ribose polymers with TET1 catalytic domain decreases TET1 hydroxylase activity while the covalent PARylation stimulates TET1 enzyme. In addition, TET1 activates PARP-1/ARTD1 independently of DNA breaks. Collectively, our results highlight a complex interplay between PARylation and TET1 which may be helpful in coordinating the multiple biological roles played by 5-hydroxymethylcytosine and TET proteins.  相似文献   

2.
5-Methylcytosine (5 mC) in genomic DNA has important epigenetic functions in embryonic development and tumor biology. 5-Hydroxymethylcytosine (5 hmC) is generated from 5 mC by the action of the TET (Ten-Eleven-Translocation) enzymes and may be an intermediate to further oxidation and finally demethylation of 5 mC. We have used immunohistochemistry (IHC) and isotope-based liquid chromatography mass spectrometry (LC-MS) to investigate the presence and distribution of 5 hmC in human brain and brain tumors. In the normal adult brain, IHC identified 61.5% 5 hmC positive cells in the cortex and 32.4% 5 hmC in white matter (WM) areas. In tumors, positive staining of cells ranged from 1.1% in glioblastomas (GBMs) (WHO Grade IV) to 8.9% in Grade I gliomas (pilocytic astrocytomas). In the normal adult human brain, LC-MS also showed highest values in cortical areas (1.17% 5 hmC/dG [deoxyguanosine]), in the cerebral WM we measured around 0.70% 5 hmC/dG. levels were related to tumor differentiation, ranging from lowest values of 0.078% 5 hmC/dG in GBMs (WHO Grade IV) to 0.24% 5 hmC/dG in WHO Grade II diffuse astrocytomas. 5 hmC measurements were unrelated to 5 mC values. We find that the number of 5 hmC positive cells and the amount of 5 hmC/dG in the genome that has been proposed to be related to pluripotency and lineage commitment in embryonic stem cells is also associated with brain tumor differentiation and anaplasia.  相似文献   

3.
Xu W  Yang H  Liu Y  Yang Y  Wang P  Kim SH  Ito S  Yang C  Wang P  Xiao MT  Liu LX  Jiang WQ  Liu J  Zhang JY  Wang B  Frye S  Zhang Y  Xu YH  Lei QY  Guan KL  Zhao SM  Xiong Y 《Cancer cell》2011,19(1):17-30
IDH1 and IDH2 mutations occur frequently in gliomas and acute myeloid leukemia, leading to simultaneous loss and gain of activities in the production of α-ketoglutarate (α-KG) and 2-hydroxyglutarate (2-HG), respectively. Here we demonstrate that 2-HG is a competitive inhibitor of multiple α-KG-dependent dioxygenases, including histone demethylases and the TET family of 5-methlycytosine (5mC) hydroxylases. 2-HG occupies the same space as α-KG does in the active site of histone demethylases. Ectopic expression of tumor-derived IDH1 and IDH2 mutants inhibits histone demethylation and 5mC hydroxylation. In glioma, IDH1 mutations are associated with increased histone methylation and decreased 5-hydroxylmethylcytosine (5hmC). Hence, tumor-derived IDH1 and IDH2 mutations reduce α-KG and accumulate an α-KG antagonist, 2-HG, leading to genome-wide histone and DNA methylation alterations.  相似文献   

4.
Dysregulated DNA methylation followed by abnormal gene expression is an epigenetic hallmark in cancer. DNA methylation is catalyzed by DNA methyltransferases, and the aberrant expression or mutations of DNA methyltransferase genes are found in human neoplasm. The enzymes for demethylating 5-methylcytosine were recently identified, and the biological significance of DNA demethylation is a current focus of scientific attention in various research fields. Ten-eleven translocation (TET) proteins have an enzymatic activity for the conversion from 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC), which is an intermediate of DNA demethylation. The loss-of-function mutations of TET2 gene were reported in myeloid malignancies, suggesting that impaired TET-mediated DNA demethylation could play a crucial role in tumorigenesis. It is still unknown, however, whether DNA demethylation is involved in biological properties in solid cancers. Here, we show the loss of 5-hmC in a broad spectrum of solid tumors: for example, a significant reduction of 5-hmC was found in 72.7% of colorectal cancers (CRCs) and 75% of gastric cancers compared to background tissues. TET1 expression was decreased in half of CRCs, and a large part of them was followed by the loss of 5-hmC. These findings suggest that the amount of 5-hmC in tumors is often reduced via various mechanisms, including the downregulation of TET1. Consistently, in the in vitro experiments, the downregulation of TET1 was clearly induced by oncogene-dependent cellular transformation, and loss of 5-hmC was seen in the transformed cells. These results suggest the critical roles of aberrant DNA demethylation for oncogenic processes in solid tissues.  相似文献   

5.
DNA 5-methylcytosine (5-mC) methylation, a key epigenetic mark, is critical for biological and pathological processes. Aberrant DNA methylation occurs in all tumor types and correlates with tumor suppressor gene silencing. DNA methylation is thought to be very stable, and active DNA demethylation remains a long-standing enigma. Recently, the ten-eleven translocation (TET) family of oxygenases are found to oxidize 5-mC to 5-hydroxymethylcytosine (5-hmC), which is prerequisite for active DNA demethylation. Both TET1 expression and global 5-hmC content are significantly reduced in colorectal cancer (CRC), the top leading cause of cancer-related death in the world. However, the involving molecular mechanisms are still unclear. The oncogenic microRNA (miRNA) miR-21-5p has recently identified as a diagnostic and prognostic biomarker in CRC. In this study, TET1 was predicted as a novel target of miR-21-5p by using a web-based predictive software starBase v2.0. We found that the 3′-UTR region of TET1 gene contains a miR-21-5p-binding site. Examination of tumor tissues from CRC patients found that loss of TET1 was associated with the progression of CRC to advance stages. In addition, negative correlation of miR-21-5p and TET1 expression was also observed. Transfection of the synthetic miR-21-5p mimic or inhibitor into the colorectal cancer cells could inhibit or increase the TET1-3′-UTR luciferase activity, respectively. Our results demonstrate that TET1 is a potential target of miR-21-5p in CRC.  相似文献   

6.
Accounting for approximately 8% of the human genome, human endogenous retroviruses (HERVs) have been implicated in a variety of cancers including gliomas. In normal cells, tight epigenetic regulation of HERVs prevent aberrant expression; however, in cancer cells, HERVs expression remains pervasive, suggesting a role of HERVs in oncogenic transformation. HERVs may contribute to oncogenesis in several ways including insertional mutagenesis, chromosomal rearrangements, proto-oncogene formation, and maintenance of stemness. On the other hand, recent data has suggested that reversing epigenetic silencing of HERVs may induce robust anti-tumor immune responses, suggesting HERVs’ potential therapeutic utility in gliomas. By reversing epigenetic modifications that silence HERVs, DNA methyltransferase, and histone deacetylase inhibitors may stimulate a viral-mimicry cascade via HERV-derived dsRNA formation that induces interferon-mediated apoptosis. Leveraging this anti-tumor autoimmune response may be a unique avenue to target certain subsets of epigenetically-dysregulated gliomas. Nevertheless, the role of HERVs in gliomas as either arbitrators of oncogenesis or forerunners of the innate anti-tumor immune response remains unclear. Here, we review the role of HERVs in gliomas, their potential dichotomous function in propagating oncogenesis and stimulating the anti-tumor immune response, and identify future directions for research.  相似文献   

7.
8.
DNA methylation is one of the critical epigenetic modifications regulating various cellular processes such as differentiation or proliferation, and its dysregulation leads to disordered stem cell function or cellular transformation. The ten‐eleven translocation (TET) gene family, initially found as a chromosomal translocation partner in leukemia, turned out to be a key enzyme for DNA demethylation. TET genes hydroxylate 5‐methylcytosine to 5‐hydroxymethylcytosine, which is then converted to unmodified cytosine through multiple mechanisms. Somatic mutations of the TET2 gene were reported in a variety of human hematological malignancies such as leukemia, myelodysplastic syndrome, and malignant lymphoma, suggesting a critical role for TET2 in hematopoiesis. The importance of the TET‐mediated cytosine demethylation pathway is also underscored by a recurrent mutation of isocitrate dehydrogenase 1 (IDH1) and IDH2 in hematological malignancies, whose mutation inhibits TET function through a novel oncometabolite, 2‐hydroxyglutarate. Studies using mouse models revealed that TET2 is critical for the function of hematopoietic stem cells, and disruption of TET2 results in the expansion of multipotent as well as myeloid progenitors, leading to the accumulation of premalignant clones. In addition to cytosine demethylation, TET proteins are involved in chromatin modifications and other cellular processes through the interaction with O‐linked β‐N‐acetylglucosamine transferase. In summary, TET2 is a critical regulator for hematopoietic stem cell homeostasis whose functional impairment leads to hematological malignancies. Future studies will uncover the whole picture of epigenetic and signaling networks wired with TET2, which will help to develop ways to intervene in cellular pathways dysregulated by TET2 mutations.  相似文献   

9.
DNA methylation at the 5 position of cytosine (5-mC) has emerged as a key epigenetic marker that plays essential roles in various biological and pathological processes. 5-mC can be converted to 5-hydroxymethylcytosine (5-hmC) by the ten–eleven translocation (TET) family proteins, which is now widely recognized as the “sixth base” in the mammalian genome, following 5-mC, the “fifth base”. 5-hmC is detected to be abundant in brain and embryonic stem cells, and is also distributed in many different human tissues. Emerging evidence has shown that 5-hmC and TET family might serve unique biological roles in many biological processes such as gene control mechanisms, DNA methylation regulation, and involved in many diseases, especially cancers. In this paper we provide an overview of the role of 5-hmC as a new sight of epigenetics in human cancer.  相似文献   

10.
Prostate cancer is the most common noncutaneous malignancy and the second leading cause of cancer death among men in the United States. DNA methylation and histone modifications are important epigenetic mechanisms of gene regulation and play essential roles both independently and cooperatively in tumor initiation and progression. Aberrant epigenetic events such as DNA hypo- and hypermethylation and altered histone acetylation have both been observed in prostate cancer, in which they affect a large number of genes. Although the list of aberrantly epigenetically regulated genes continues to grow, only a few genes have, so far, given promising results as potential tumor biomarkers for early diagnosis and risk assessment of prostate cancer. Thus, large-scale screening of aberrant epigenetic events such as DNA hypermethylation is needed to identify prostate cancer-specific epigenetic fingerprints. The reversibility of epigenetic aberrations has made them attractive targets for cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases, leading to reactivation of silenced genes. More studies into the mechanism and consequence of demethylation are required before the cancer epigenome can be safely manipulated with therapeutics as a treatment modality. In this review, we examine the current literature on epigenetic changes in prostate cancer and discuss the clinical potential of cancer epigenetics for the diagnosis and treatment of this disease.  相似文献   

11.
12.
Epigenetics are defined, in broad-terms, as alterations in gene expression without changes in DNA sequence. While histone modifications and DNA methylation are two classical means to regulate gene expression, miRNA has also recently been documented to govern gene expression in normal as well as cancer cells. In this review, we will first describe briefly histone modifications, DNA methylation and miRNAs and the functions of these epigenetic marks during different cellular processes involving DNA metabolism. We will then highlight some epigenetic changes in glioblastomas, a malignant form of brain tumor, and potential application of epigenetic means for diagnosis, prognosis, and treatment of gliomas. We expect that novel therapies will be developed to counter epigenetic changes in this deadly disease.  相似文献   

13.
DNA methylation at the 5-position of cytosines (5 mC) represents an important epigenetic modification involved in tissue differentiation and is frequently altered in cancer. Recent evidence suggests that 5 mC can be converted to 5-hydroxymethylcytosine (5 hmC) in an enzymatic process involving members of the TET protein family. Such 5 hmC modifications are known to be prevalent in DNA of embryonic stem cells and in the brain, but the distribution of 5 hmC in the majority of embryonic and adult tissues has not been rigorously explored. Here, we describe an immunohistochemical detection method for 5 hmC and the application of this technique to study the distribution of 5 hmC in a large set of mouse and human tissues. We found that 5 hmC was abundant in the majority of embryonic and adult tissues. Additionally, the level of 5 hmC closely tracked with the differentiation state of cells in hierarchically organized tissues. The highest 5 hmC levels were observed in terminally differentiated cells, while less differentiated tissue stem/progenitor cell compartments had very low 5 hmC levels. Furthermore, 5 hmC levels were profoundly reduced in carcinoma of the prostate, breast and colon compared to normal tissues. Our findings suggest a distinct role for 5 hmC in tissue differentiation, and provide evidence for its large-scale loss in cancers.  相似文献   

14.
15.
Loss of 5-hydroxymethylcytosine (5hmC) has been associated with mutations of the ten–eleven translocation (TET) enzymes in several types of cancer. However, tumors with wild-type TET genes can also display low 5hmC levels, suggesting that other mechanisms involved in gene regulation might be implicated in the decline of this epigenetic mark. Here we show that DNA hypermethylation and loss of DNA hydroxymethylation, as well as a marked reduction of activating histone marks in the TET3 gene, impair TET3 expression and lead to a genome-wide reduction in 5hmC levels in glioma samples and cancer cell lines. Epigenetic drugs increased expression of TET3 in glioblastoma cells and ectopic overexpression of TET3 impaired in vitro cell growth and markedly reduced tumor formation in immunodeficient mice models. TET3 overexpression partially restored the genome-wide patterns of 5hmC characteristic of control brain samples in glioblastoma cell lines, while elevated TET3 mRNA levels were correlated with better prognosis in glioma samples. Our results suggest that epigenetic repression of TET3 might promote glioblastoma tumorigenesis through the genome-wide alteration of 5hmC.  相似文献   

16.
Multidrug transporters constitute major mechanisms of MDR in human cancers. The ABCB1 (MDR1) gene encodes a well-characterized transmembrane transporter, termed P-glycoprotein (P-gp), which is expressed in many normal human tissues and cancers. P-gp plays a major role in the distribution and excretion of drugs and is involved in intrinsic and acquired drug resistance of cancers. The regulation of ABCB1 expression is complex and has not been well studied in a clinical setting. In this review, we elucidate molecular signaling and epigenetic interactions that govern ABCB1 expression and the development of MDR in cancer. We focus on acquired expression of ABCB1 that is associated with genomic instability of cancer cells, including mutational events that alter chromatin structures, gene rearrangements, and mutations in tumor suppressor proteins (e.g., mutant p53), which guard the integrity of genome. In addition, epigenetic modifications of the ABCB1 proximal and far upstream promoters by either demethylation of DNA or acetylation of histone H3 play a pivotal role in inducing ABCB1 expression. We describe a molecular network that coordinates genetic and epigenetic events leading to the activation of ABCB1. These mechanistic insights provide additional translational targets and potential strategies to deal with clinical MDR.  相似文献   

17.
Aberrant DNA methylation is frequent in the myeloid malignancies, particularly myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML). Promoter CpG methylation is correlated with silencing of tumor-suppressor genes (TSGs) in specific pathways that are also targets of mutation or other mechanisms of inactivation, and is thought to contribute to disease progression and poor prognosis. Epigenetic contributions to myeloid pathogenesis are more complex. Examples include TSG inactivation and oncogenic activation associated with formation of altered chromatin separate from CpG methylation. Epigenetic dysregulation occurs at multiple disease stages and at non-CpG island genomic sites, and also includes genomic hypomethylation and small RNA mechanisms of epigenetic regulation. Identification of recurrent mutations in potential epigenetic regulators, including TET2, IDH1, IDH2, DNMT3A, UTX, and ASXL1, were recently described. Accordingly, therapeutics directed towards epigenetic mechanisms including methylation inhibitors and histone deacetylase (HDAC) inhibitors have had some clinical success when applied to MDS and AML. However, identification of the underlying mechanisms associated with clinical responses and drug resistance remain enigmatic. Remarkably, in spite of significant molecular and translational progress, there are currently no epigenetic biomarkers in widespread clinical use. In this review, we explore the potential applications of epigenetic biomarker discovery, including epigenetic profiling for myeloid malignancy pathogenesis understanding, diagnostic classification, and development of effective treatment paradigms for these generally considered poor prognosis disorders.  相似文献   

18.
Rius M  Lyko F 《Oncogene》2012,31(39):4257-4265
The fundamental role of altered epigenetic modification patterns in tumorigenesis establishes epigenetic regulatory enzymes as important targets for cancer therapy. Over the past few years, several drugs with an epigenetic activity have received approval for the treatment of cancer patients, which has led to a detailed characterization of their modes of action. The results showed that both established drug classes, the histone deacetylase (HDAC) inhibitors and the DNA methyltransferase inhibitors, show substantial limitations in their epigenetic specificity. HDAC inhibitors are highly specific drugs, but the enzymes have a broad substrate specificity and deacetylate numerous proteins that are not associated with epigenetic regulation. Similarly, the induction of global DNA demethylation by non-specific inhibition of DNA methyltransferases shows pleiotropic effects on epigenetic regulation with no apparent tumor-specificity. Second-generation azanucleoside drugs have integrated the knowledge about the cellular uptake and metabolization pathways, but do not show any increased specificity for cancer epigenotypes. As such, the traditional rationale of epigenetic cancer therapy appears to be in need of refinement, as we move from the global inhibition of epigenetic modifications toward the identification and targeting of tumor-specific epigenetic programs. Recent studies have identified epigenetic mechanisms that promote self-renewal and developmental plasticity in cancer cells. Druggable somatic mutations in the corresponding epigenetic regulators are beginning to be identified and should facilitate the development of epigenetic therapy approaches with improved tumor specificity.  相似文献   

19.
何小婷  赵丽 《肿瘤防治研究》2014,41(10):1144-1147
DNA甲基化异常在恶性肿瘤中是一种最常见的表观遗传学改变,它在基因表达调控、基因组稳定性中起着重要作用,与白血病的发生、发展密切相关。肿瘤相关基因甲基化状态的分析可作为一种生物标志物用于白血病微小残留病的检测及复发风险的评估。因此,诱导抑癌基因去甲基化在抗肿瘤药物研究中具有重要意义。本文就近年来在DNA甲基化与白血病发生的关系及白血病去甲基化相关治疗的研究进展作一综述。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号