首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Squamous cell carcinoma (SCC) cells of the head and neck specifically express collagenase-3 (matrix metalloproteinase-13 (MMP-13)), the expression of which correlates with their invasion capacity. Transforming growth factor-beta (TGF-beta) enhances MMP-13 and collagenase-1 (MMP-1) expression and invasion of SCC cells via p38 mitogen-activated protein kinase. Here, we have examined the role of Smad signaling in regulating MMP-13 expression and in invasion of head and neck SCC cells. Treatment with TGF-beta resulted in activation of Smad2 and Smad3 in SCC cells, but had no effect on their proliferation or viability. Basal activation of Smad3 and p38 was noted in SCC cells without exogenous TGF-beta stimulation, and adenoviral delivery of Smad7 and dominant-negative Smad3 inhibited p38 activation in these cells. Adenoviral overexpression of Smad3 augmented the upregulatory effect of TGF-beta on MMP-13 expression by SCC cells. Disruption of Smad signaling by adenoviral expression of kinase-defective TGF-beta type I receptor (activin-receptor-like kinase-5), Smad7, and dominant-negative Smad3 potently suppressed the basal and TGF-beta-induced expression of MMP-13 and MMP-1 in SCC cells, and inhibited their basal and TGF-beta-induced invasion through Matrigel and type I collagen. Adenoviral overexpression of Smad7 in cutaneous and oral SCC cells significantly inhibited their implantation in skin of SCID mice and growth of xenografts in vivo, as compared to LacZ adenovirus-transduced control cells. Together, these results show that Smad signaling plays an important role in promoting the invasive phenotype of human head and neck SCC cells by upregulating their collagenase expression.  相似文献   

2.
Hong S  Lee C  Kim SJ 《Cancer research》2007,67(19):9577-9583
Although tumor necrosis factor (TNF) induces apoptosis and cell death in many tumor cells, some cancer cells are still resistant to the TNF-induced death signal. In this report, we showed that Smad7, an inhibitory Smad of transforming growth factor-beta (TGF-beta) signaling, can overcome the TNF resistance in human breast and gastric cancer cells. Overexpression of Smad7 induces the degradation of poly(ADP-ribose) polymerase and the activation of caspase cascade. Although c-Jun NH2-terminal kinase (JNK) signaling is involved in TNF-induced cell death, the expression of Smad7 does not synergize the activation of JNK. However, the activation of nuclear factor-kappaB (NF-kappaB), the cell survival factor, is markedly decreased in Smad7-stable cells. Furthermore, the expression of antiapoptotic target genes of NF-kappaB is significantly reduced in accordance with the level of Smad7. In addition, Smad7 mediates the inhibitory activity of TGF-beta on TNF-induced NF-kappaB activation and the synergistic activity of TGF-beta on TNF-induced apoptosis. These findings suggest that Smad7 sensitizes the tumor cells to TNF-induced apoptosis through the inhibition of expression of antiapoptotic NF-kappaB target genes.  相似文献   

3.
The oncogenic protein Ski associates with Smad proteins and counteracts their activation of gene expression and growth inhibition in response to transforming growth factor beta (TGF-beta). Here we show that Ski protein levels are increased in all 44 human melanoma tumor tissues analyzed in vivo. In addition, Ski subcellular localization changes from nuclear, in preinvasive melanomas (melanomas in situ), to nuclear and cytoplasmic in primary invasive and metastatic melanomas. Furthermore, Ski/Smad association in the cytoplasm seems to prevent Smad3 nuclear translocation in response to TGF-beta. The biological significance of Ski overexpression in melanomas was established by showing that down-regulation of Ski levels, by antisense Ski vectors, restored TGF-beta-mediated growth inhibition. Such inhibition is apparently mediated by up-regulation of the cyclin-dependent kinase-I p21(Waf-1) and inhibition of cyclin-dependent kinase 2 activity. Our results suggest that high levels of Ski in human melanomas produce a disruption of TGF-beta signaling phenotypically similar to that in cells harboring mutations in TGF-beta receptors or Smad proteins, and this may represent a significant event in the progression of melanomas in vivo.  相似文献   

4.
Normal cells are controlled by several exocrine factors, whereas tumor cells often lose control by antiproliferative stimuli. It is known that melanoma cells produce transforming growth factor (TGF) beta1, 2 and 3, but do not respond with growth inhibition. Recently, the Smad inhibitor Ski was found to play a role in this process. We originally analyzed Ski expression in nine melanoma cell lines, however, only one cell line (SK Mel 28) was positive. As all nine cell lines were unresponsive to TGF-beta, we continued to search for the responsible mechanism. Sequencing of the TGF-beta-receptor II, known to be mutated in other kinds of cancer, did not reveal any mutation. A family member of Ski, the proto-oncogene Sno was strongly expressed in all melanoma cell lines on RNA and protein level, but not in melanocytes. To confirm functional relevance of this observation, we used stable antisense Sno transfection for the generation of cell clones with reduced Sno expression. These cell clones displayed reduced cell proliferation, indicating participation of Sno in the escape of melanoma cells from TGF-beta dependent growth control. Searching for TGF-beta target genes that are under control of Sno interference, Id1 but not antiproliferative genes p21, p15, p57 and p27 was identified in the cell clones after antisense Sno expression. In summary, constitutive Sno expression was identified as an important mechanism to shut off antiproliferative TGF-beta signaling in malignant melanoma.  相似文献   

5.
Cancer cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor-beta (TGF-beta) together with stimulation of its oncogenic activity as in Ras-transformed cells; however, molecular mechanisms remain largely unknown. TGF-beta activates both its type I receptor (TbetaRI) and c-Jun NH2-terminal kinase (JNK), which phosphorylate Smad2 and Smad3 at the COOH-terminal (pSmad2/3C) and linker regions (pSmad2/3L). Here, we report that Ras transformation suppresses TbetaRI-mediated pSmad3C signaling, which involves growth inhibition by down-regulating c-Myc. Instead, hyperactive Ras constitutively stimulates JNK-mediated pSmad2/3L signaling, which fosters tumor invasion by up-regulating plasminogen activator inhibitor-1 and matrix metalloproteinase-1 (MMP-1), MMP-2, and MMP-9. Conversely, selective blockade of linker phosphorylation by a mutant Smad3 lacking JNK-dependent phosphorylation sites results in preserved tumor-suppressive function via pSmad3C in Ras-transformed cells while eliminating pSmad2/3L-mediated invasive capacity. Thus, specific inhibition of the JNK/pSmad2/3L pathway should suppress cancer progression by shifting Smad-dependent signaling from oncogenesis to tumor suppression.  相似文献   

6.
Smad proteins transduce signals carried by the transforming growth factor beta (TGF-beta) cytokine superfamily from receptor serine/threonine kinases at the cell surface to the nucleus, thereby affecting cell proliferation, differentiation, as well as pattern formation during early vertebrate development. Smad4/DPC4, located at chromosome 18q21, was identified as a candidate tumor suppressor gene that is inactivated in nearly half of all pancreatic carcinomas. For functional characterization of Smad4, a recombinant adenovirus encoding Smad4 (Ad-Smad4) was generated. When Smad4 was expressed in Smad4-null breast carcinoma cell line MDA-MB-468 using the recombinant adenovirus, TGF-beta signaling was restored as determined by TGF-beta-dependent activity of plasminogen activator inhibitor 1 promoter and p21 expression. Infection with Ad-Smad4 in the presence of TGF-beta1 also resulted in an altered cell morphology that coincided with enhanced beta1 integrin expression and reduced efficiency of colony formation in soft agar. In agreement with increased p21 expression, Smad4-expressing cells showed modest reduction in S phase. However, Smad4 expression did not lead to induction of apoptosis under normal culture conditions. Interestingly, when Smad4-expressing cells were detached and incubated in suspension, they underwent rapid apoptosis in a TGF-beta-dependent manner. Induction of apoptosis caused by loss of anchorage is known as anoikis. Anoikis is believed to prevent colonization elsewhere of detached cells. Additional characterization revealed an increase in the level of focal adhesion kinase 2 (or Pyk2) and activation of caspases 2, 3, 6, and 8 during anoikis because of Smad4 expression and restoration of TGF-beta signaling. Because resistance to anoikis in tumor cells is thought to contribute to metastasis, our data suggest a functional basis for the strong correlation between defects in Smad4 and development of malignancy.  相似文献   

7.
8.
9.
Han SU  Kim HT  Seong DH  Kim YS  Park YS  Bang YJ  Yang HK  Kim SJ 《Oncogene》2004,23(7):1333-1341
Loss of the tumor suppressive effect of transforming growth factor-beta (TGF-beta) has been commonly found at later stages in carcinogenic progression. Although the genes encoding TGF-beta receptors and Smads have been found genetically altered in certain human cancers, no mutation in Smad3 has been observed. Therefore, suppression of Smad3 expression may mediate key oncogenic properties of TGF-beta. First, we observed that 37.5% of human gastric cancer tissues showed low to undetectable levels of Smad3 and that in nine human gastric cancer cell lines examined, two showed deficient Smad3 expression. Introduction of Smad3 into human gastric cancer cells that did not express Smad3, restored TGF-beta responsiveness: induction of p21 and p15 gene expression, and growth inhibition in response to TGF-beta. Furthermore, these Smad3-expressing cells showed markedly decreased and delayed tumorigenicity in vivo. These findings suggest that Smad3 expression may have a critical role in tumor suppression in the early stages of gastric carcinogenesis.  相似文献   

10.
11.
12.
Although Smad signalling is known to play a tumour suppressor role, it has been shown to play a prometastatic function also in breast cancer and melanoma metastasis to bone. In contrast, mutation or reduced level of Smad4 in colorectal cancer is directly correlated to poor survival and increased metastasis. However, the functional role of Smad signalling in metastasis of colorectal cancer has not been elucidated. We previously reported that overexpression of Smad7 in colon adenocarcinoma (FET) cells induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis. Here, we have observed that abrogation of Smad signalling by Smad7 induces liver metastasis in a splenic injection model. Polymerase chain reaction with genomic DNA from liver metastases indicates that cells expressing Smad7 migrated to the liver. Increased expression of TGF-beta type II receptor in liver metastases is associated with phosphorylation and nuclear accumulation of Smad2. Immunohistochemical analyses have suggested poorly differentiated spindle cell morphology and higher cell proliferation in Smad7-induced liver metastases. Interestingly, we have observed increased expression and junctional staining of Claudin-1, Claudin-4 and E-cadherin in liver metastases. Therefore, this report demonstrates, for the first time, that blockade of TGF-beta/Smad pathway in colon cancer cells induces metastasis, thus supporting an important role of Smad signalling in inhibiting colon cancer metastasis.  相似文献   

13.
Liu X  Lee J  Cooley M  Bhogte E  Hartley S  Glick A 《Cancer research》2003,63(22):7760-7768
Smad7 and Smad6 are inhibitory Smads that block transforming growth factor-beta (TGF-beta) superfamily signal transduction. Smad7 is overexpressed in chemically induced mouse epidermal tumors, where oncogenic activation of c-ras is a frequent event. To test the role of Smad7 overexpression in tumor progression, we used retroviruses to transduce Smad7 or Smad6 and v-ras(Ha) into primary mouse keratinocytes. By itself, Smad7 transiently enhanced keratinocyte proliferation, blocked normal differentiation, and induced keratin 8, a marker of malignant conversion, but did not cause tumor formation. Smad7 extended the in vitro life span, suppressed senescence, and increased transformation frequency 3-fold of primary keratinocytes coexpressing v-ras(Ha). Smad7/v-ras(Ha) coinfected keratinocytes rapidly progressed to squamous cell carcinomas in vivo, whereas pBabe/v-ras(Ha)- or Smad6/v-ras(Ha)-transduced keratinocytes formed only benign papillomas. Smad7/v-ras(Ha) tumors had elevated proliferation and defective nuclear localizaton of Smad2, Smad3, and Smad5, whereas only Smad5 was altered in Smad6/v-ras(Ha) tumors. Smad7 overexpression in vitro induced epidermal growth factor (EGF)-like growth factors TGF-alpha, heparin binding-EGF, amphiregulin, and EGF receptor tyrosine phosphorylation as well as the EGF-CFC growth factor cripto-1. TGF-alpha and cripto-1 were also overexpressed in Smad7/v-ras(Ha) tumors. These results suggest that Smad7 overexpression accelerates tumor progression through inhibition of TGF-beta superfamily signaling and up-regulation of the EGF-like superfamily of growth factors. This is the first demonstration that Smad7 overexpression can cause malignant conversion in a multistage cancer model and suggests that it may have an important role in the pathogenesis of human cancer.  相似文献   

14.
15.
Transforming growth factor-beta (TGF-beta) signaling is dependent on the heterodimerization of the type II TGF-beta receptor (TbetaRII) with the type I TGF-beta receptor (TbetaRI). Activated TbetaRI then mediates TGF-beta signals by inducing the phosphorylation of Smad2 and/or Smad3, which separately hetetorodimerize with Smad4 and translocate to the nucleus. Phosphorylation of Smad2/Smad3 by activated TbetaRI is inhibited by two newly discovered members of the Smad family, Smad6 and Smad7. We now report that Smad7 mRNA levels are increased in human pancreatic cancer by comparison with the normal pancreas, and that by in situ hybridization, Smad7 is over-expressed in the cancer cells within the tumor mass. Stable transfection of COLO-357 human pancreatic cancer cells with a full-length Smad7 construct leads to complete loss of the growth inhibitory response to TGF-beta1, without altering TGF-beta1-mediated induction of PAI-I. Furthermore, Smad7 transfected COLO-357 cells display enhanced anchorage-independent growth and accelerated growth in nude mice. These findings point to a previously unrecognized mechanism for selective suppression of TGF-beta-mediated growth inhibition in cancer cells that allows for continued activation of the PAI-I promoter by TGF-beta1, which may act to enhance the tumorigenicity of certain cancer cells.  相似文献   

16.
Medrano EE 《Oncogene》2003,22(20):3123-3129
Transforming growth factor-beta (TGF-beta ) has dual and paradoxical functions as a tumor suppressor and promoter of tumor progression and metastasis. TGF-Ji-mediated growth inhibition is gradually lost during melanoma tumor progression, but there are no measurable defects at the receptor level. Furthermore, melanoma cells release high levels of TGF-beta to the microenvironment, which upon activation induces matrix deposition, angiogenesis, survival, and transition to more aggressive phenotypes. The SKI and SnoN protein family associate with and repress the activity of Smad2, Smad3, and Smad4, three members of the TGF-fl signaling pathway. SKI also facilitates cell-cycle progression by targeting the RB pathway by at least two ways: it directly associates with RB and represses its activity when expressed at high levels, and indirectly, it represses Smad-mediated induction of p21(Waf-1) This results in increased CDK2 activity, RB phosphorylation,and inactivation. Therefore, high levels of SKI result in lesions to the RB pathway in a manner similar to p16 (INK4a) loss. SKI mRNA and protein levels dramatically increase during human melanoma tumor progression. In addition,the SKI protein shifts from nuclear localization in intraepidermal melanoma cells to nuclear and cytoplasmic in invasive and metastatic melanomas. Here, I discuss the basis for repression of intracellular TGF-beta signaling by SKI, some additional activities of this protein, and propose that by disrupting multiple tumor suppressor pathways, SKI functions as a melanoma oncogene.  相似文献   

17.
Members of the TGF-beta family of growth factors signal from the cell surface through serine/threonine kinase receptors. Intracellular propagation of the signal occurs by phosphorylation of intracellular proteins of the Smad family. Smad7 belongs to the subclass of inhibitory Smads that function as antagonists of TGF-beta signaling. A yeast two-hybrid screen of a human placental cDNA expression library using full-length mouse Smad7 as bait identified Yes-Associated Protein (YAP65) as a novel Smad7-interacting protein. The association of Smad7 with YAP65 was confirmed using co-expressed tagged proteins in COS-7 cells. Deletion of the PY motif of Smad7 reduced but did not abolish YAP65-Smad7 association, suggesting the existence of several interacting domains. We demonstrate that YAP65 potentiates the inhibitory activity of Smad7 against TGF-beta-induced, Smad3/4-dependent, gene transactivation. Furthermore, YAP65 augments the association of Smad7 to activated TGF-beta receptor type I (TbetaRI), whereas YAP65(1-301), which exerts a dominant-negative effect against Smad7-driven inhibition of TGF-beta signaling, reduces these interactions. Together, these data provide the first evidence that YAP65 is a Smad7 partner that facilitates the recruitment of the latter to activated TbetaRI, and enhances the inhibitory activity of Smad7 against TGF-beta signaling.  相似文献   

18.
Safina A  Vandette E  Bakin AV 《Oncogene》2007,26(17):2407-2422
Transforming growth factor beta 1 (TGF-beta1) is a potent tumor suppressor but, paradoxically, TGF-beta1 enhances tumor growth and metastasis in the late stages of cancer progression. This study investigated the role of TGF-beta type I receptor, ALK5, and three mitogen-activated protein kinases (MAPKs) in metastasis by breast cancer cell line MDA-MB-231. We show that autocrine TGF-beta signaling in MDA-MB-231 cells is required for tumor cell invasion and tumor angiogenesis. Expression of kinase-inactive ALK5 reduces tumor invasion and formation of new blood vessels within the tumor orthotopic xenografts in severe combined immunodeficiency (SCID) mice. In contrast, constitutively active ALK5-T204D enhances tumor invasion and angiogenesis by stimulating expression of matrix metalloproteinase MMP-9/gelatinase-B. Ablation of MMP-9 in ALK5-T204D cells by RNA interference (RNAi) reduces tumor invasion and tumor growth. Importantly, RNAi-MMP-9 reduces tumor neovasculature and increases tumor cell death. Induction of MMP-9 by TGF-beta-ALK5 signaling requires MEK-ERK but not JNK, p38 MAPK or Smad4. Dominant-negative MEK blocks and constitutively active MEK1 enhances MMP-9 expression. However, all three MAPK cascades (ERK, JNK and p38 MAPK) are required for TGF-beta-mediated cell migration. Collectively, our results show that TGF-beta-ALK5-MAPK signaling in tumor cells promotes tumor angiogenesis and MMP-9 is an important component of this program.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号