首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peripheral administration of the angiotensin converting enzyme (ACE) inhibitor, captopril, and the central infusion of sarile, an angiotensin II (Ang II) receptor antagonist, were used to evaluate the role of renal and brain generated Ang II in sodium depletion-induced production of Fos in cells of the subfornical organ (SFO) and organum vasculosum lamina terminalis (OVLT). Pretreatment with intravenous captopril (100 mg/kg) significantly inhibited the c-fos expression induced by sodium depletion in the SFO and OVLT. In contrast, continuous intracerebroventricular infusion of sarile (22.5 μg/4.5 h, 5 μl/h) did not affect the expected pattern of c-fos expression observed in both nuclei, 4 h after peritoneal dialysis. These results show that systemic interference with the angiotensin system of renal origen by captopril inhibited the production of Fos induced by sodium depletion in cells of the SFO and OVLT. These findings are consistent with the hypothesis that a rise in peripheral Ang II levels, triggered by sodium deficiency, could be an important mediator of the physiological and behavioral responses that lead to the restoration of sodium balance. In addition, this study suggests that increased circulating Ang II levels in response to body sodium deficit can directly stimulate neural pathways in the SFO and OVLT.  相似文献   

2.
Fos immunoreactivity in the rat brain after intracerebroventricular (ICV) angiotensin II (ANG II) was compared with that induced by intravenous ANG II. ANG II was infused into the lateral ventricle (at 1 ng/min) or femoral vein (at 5 μg/h) of conscious rats. After 90 min, rats were killed and Fos was detected by immunohistochemistry. Both infusions caused Fos immunoreactivity to be present in the lamina terminalis, hypothalamic supraoptic, and paraventricular nuclei, bed nucleus of the stria terminalis, and central amygdalold nucleus. However, distributions of Fos immunoreactivity within the lamina tenninalis differed with the different routes of infusion. Intravenous ANG II caused intense Fos immunoreactivity mainly in the subfomical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT). By contrast, ICV ANG 11 caused intense Fos immunoreactivity predominantly in the median preoptic nucleus and juxtaventricular neurons of the SFO and OVLT. These results suggest that IV ANG II induces behavioural and endocrine responses by direct actions on the SFO and OVLT, whereas ICV ANG II directly stimulates neurons in the median preoptic nucleus as well neurons in the SFO and OVLT.  相似文献   

3.
The distribution of Fos, the protein product of the immediate early gene c-fos, was studied with immunocytochemistry in the adult male rat brain after nerve growth factor (NGF) administration. NGF was injected in the lateral cerebral ventricle through a previously implanted cannula. The total number of Fos-immunoreactive (ir) neurons in the brain was 2–3 times higher after NGF administration than in control animals (untreated or injected with cytochrome c). With respect to control rats, in the NGF-treated cases Fos-ir cells were more numerous in the anterior olfactory nucleus, in the medial prefrontal and anterior cingulate cortices, in the basal forebrain, in the preoptic and ventromedial nuclei of the hypothalamus, as well as interior hypothalamic area, in the thalamic midline nuclei, and in some brainstem structures, such as the parabrachial nucleus. The relative quantitative increase of Fos-ir neurons varied in the different structures. In addition, Fos-ir neurons were evident after NGF administration in areas devoid of immunopositive cells in control animals. These included: frontoparietal and occipital cortical fields, the hypothalamic arcuate nucleus, and many brainstem structures, such as the dorsal nucleus of the lateral lemniscus, posterodorsal tegmental, medial and lateral vestibular, ventral cochlear, and prepositus hypoglossal nuclei. These findings demonstrate that the intracerebroventricular administration of NGF can induce c-fos expression in neurons in vivo. The distribution of Fos-ir neurons indicates that NGF can induce activation of functionally and chemically hetergeneous neuronal subsets in the brain.  相似文献   

4.
We studied the effects of water deprivation on the expression of c-fos protein (Fos) in the brain of inbred polydipsic mice, STR/N strain, that show extreme polydipsia without a lack of vasopressin in the body. Non-polydipsic mice, ICR strain, were used as controls. All male animals were deprived of water for 24 and 48 h. Fos-like immunoreactivity (Fos-LI) in the brain was studied by immunohistochemical techniques. In both groups of mice water deprivation induced a remarkable increase in Fos-LI in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei, the median preoptic nucleus (MnPO), the organum vasculosum laminae terminalis (OVLT) and the subfornical organ (SFO). A far more increase, however, was seen in the MnPO, the SFO and the area postrema (AP) of the polydipsic mice compared to those of the non-polydipsic control mice. In the nucleus of the tractus solitarius (NTS) and in the anteroventral part of the PVN (avPVN), water deprivation caused a clear increase in Fos-LI in the polydipsic mice, while in the non-polydipsic mice the same treatment induced no Fos-LI in the NTS and no change in the avPVN. These results indicate that neurons in the circumventricular organs and the NTS are strongly activated by water deprivation in the polydipsic mice, suggesting that these brain structures play an important role in the polydipsia.  相似文献   

5.
6.
Water deprivation induces expression of the immediate early gene c-fos in specific brain regions, most likely as a result of the activation of cells that are responsive to changes in osmolality and/or blood volume. We hypothesized that the magnitude of c-fos expression would be a function of both the duration of water deprivation and the time of day at which the deprivation started. This study was designed to examine the pattern of Fos-like immunoreactivity (FLI) following water deprivation in rats under normal light/dark conditions (nLD) and reverse light/dark conditions (rLD). Rats were deprived of water but not food either for 0, 5, 16, 24 or 48 h. As expected, hematocrit ratio (HCT), osmolality (OSM), plasma renin activity (PRA) and weight loss increased as a function of duration of water deprivation. In non-deprived rats (0 h), very little FLI was observed in most brain regions. The number of cells showing FLI increased with duration of water deprivation in the supraoptic nucleus (SON), paraventricular nucleus (PVN), organum vasculosum laminae terminalis (OVLT), median preoptic nucleus (MnPO) and subfornical organ (SFO) in both nLD and rLD conditions. However, the pattern of FLI differed between nLD and rLD conditions. Compared to corresponding nLD groups after 5 or 24-h water deprivation, rLD groups had significantly more FLI in SON and PVN, and higher PRA and HCT. Also, weight loss and FLI in the MnPO were greater after 5 h, and FLI in the SFO was greater after 24 h under rLD compared to nLD conditions. Our findings indicate that the magnitude of c-fos expression, and change in weight and plasma parameters were a function of both the duration of water deprivation and the time of day at which the deprivation started. This may result from ingestion of food early in the deprivation periods during the rLD tests, thus producing greater change in osmolality and blood volume.  相似文献   

7.
This paper reports the effects of AV3V lesions on the pattern of c-fos induced by 24 h dehydration. As expected, bilateral electrolytic lesions within the AV3V region (the ventral median preoptic nucleus) suppressed water intake following 24 h water deprivation. C-fos expression was also suppressed in the supraoptic (SON) and (less completely) in the paraventricular (PVN) nuclei, but not in the subfornical organ (SFO). Unilateral lesions of the AV3V region suppressed c fos expression in the ipsilateral SON, but this selective ipsilateral effect was less in the PVN. The SFO was again unaffected. Unilateral lesions also suppressed c-fos expression in the ipsilateral SON and PVN (to a lesser degree) following intraventricular infusions of angiotensin 11 (250 pmol). These results suggest that the cellular response of supraoptic neurons to osmotic stimuli require inputs from the AV3V region, but that this is less absolute for the PVN; that the projection from the ventral AV3V area to the SON is ipsilateral, but that to the PVN may be less lateralised. Activation of the SFO by dehydration is not dependent upon the integrity of the ventral AV3V region. These results are closely comparable to the effects of similar lesions on c-fos expression following intraventricular infusions of angiotensin 11, and suggest that the effect of dehydration on forebrain c-fos expression may be related to the central actions of angiotensin II.  相似文献   

8.
9.
Neonatal treatment of rodents by intraperitoneal injections of monosodium glutamate (MSG) destroys many retinal ganglion cells whose neurons belong to the circadian system; howertheless, adults always synchronize their locomotor activity rhythm (LAR) to the light/dark cycle. Recent studies have shown that light-induced phase shifts of LAR are associated with the c-fos induction in suprachiasmatic nuclei (SCN) of nocturnal rodents. In this study, the circadian system was analyzed in treated and control hamsters maintained in constant darkness and exposed to light at circadian times (CTs) 13 and 18 during subjective night, 1 and 6 h after the onset of LAR. The period of the LAR and delay (CT13) and advance (CT18) phase shifts of LAR were not significantly different between MSG-treated and control hamsters. Temporospatial variations of Fos induction after light exposure were similar in both MSG-treated and control hamsters although the total number of Fos immunoreactive (Fos-ir) nuclei in the SCN was always lower in treated hamsters. However, the decrease in Fos-ir was significant only for the caudal third of the SCN of treated hamsters, the part where retinal afferents are most dense. The effect of light exposure on Fos expression in SCN of MSG-treated and control hamsters was the same at CT13 and CT18: (1) Fos-ir nuclei were significantly more numerous at CT18 than at CT13 in the rostral SCN; (2) dorsal Fos-ir cells were observed in the SCN only at CT18; (3) a ventral subgroup expressed Fos protein in intermediate SCN only at CT13. This study demonstrates that MSG-treatment does not significantly modify the phase-shifting effects of light on either the LAR or the associated cellular activation.  相似文献   

10.
This study determined the interaction between glutamate receptors and dehydration-induced drinking, vasopressin (AVP) release, plasma osmolality and c-fos expression in the brain of conscious rats. The NMDA receptor antagonist dizocilpine (100 nmol infused into the cerebral ventricles) suppressed drinking following either 22 h water deprivation or intragastric injection of hypertonic saline (1.5 M), attenuated the increased plasma vasopressin induced by dehydration, but had no effects on peripheral hyperosmolality caused by either water deprivation or injections of hypertonic saline. Dizocilpine had no inhibitory effects on feeding after 24 h food deprivation. Dizocilpine also suppressed c-fos expression induced by dehydration in the median preoptic nucleus (MPN), the supraoptic and paraventricular nuclei (SON and PVN), but did not influence c-fos expression in the subfornical organ (SFO). The non-NMDA receptor antagonists CNQX (400 nmol) or DNQX (60 nmol) affected neither the animals' drinking nor c-fos expression induced by dehydration. Double staining showed that suppression of c-fos expression following dizocilpine occurred in the NMDA R1 receptor containing neurons in the hypothalamus. These results suggest that the NMDA-type glutamate receptors may be involved in dehydration induced dipsogenic and neuroendocrinological responses. They complement our earlier findings that dizocilpine also attenuated drinking and c-fos expression following intraventricular infusions of angiotensin II.  相似文献   

11.
The immediate early gene, c-fos, signals expression of target genes. Three natural occurring physiological entities: (1) learning, (2) plasticity, and (3) stress are proposed to use c-fos gene expression to signal molecular changes in neurons. The objective of this study was to determine whether c-fos expression is predominately activated by stress or by novel events associated with learning and plasticity. The approach was to quantitate the number of neurons in cochlear nuclei which express Fos protein following short-term novel sound stimuli together with either uni- or bilateral tympanotomy so as to differentiate novel sound stimuli from stress activation. The results show that routinely experienced sounds do not elicit c-fos expression in medullary cochlear nuclei, but novel sounds produced a 25-fold increase in the number of active cells. Following unilateral tympanotomy with novel sound stimulation, only a small number of cells were activated, ipsilaterally, (partially deafened side) while contralaterally, there was a 30-fold increase. After normalization of the data for control values, the data clearly indicate that novelty of sound stimuli induce c-fos gene expression. Furthermore, bilateral tympanotomy (bilateral partial deafening) with sound stimulation activated both sides by 20-fold, indicating that the c-fos response followed the sound stimulation. The data allow us to conclude that stress generates only a small contribution to c-fos gene expression while novel stimuli are potent signals, strongly implicating c-fos in novelty induced adaptation processes involved in learning and plasticity.  相似文献   

12.
The subfornical organ (SFO) may act as a sodium- or osmoreceptor that drives hypothalamic and other nuclei to secrete vasopressin and to elicit drinking. However, in response to mild doses of hypertonic saline, Fos-like immunoreactivity (Fos-ir) is absent in the SFO whereas it is well expressed in the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei. This suggests that the hypothalamus may be activated in advance of the SFO. In this study, the fibers connecting the SFO and hypothalamus were disconnected by a wire knife cut so that Fos-ir could be examined in both the SFO and hypothalamus after an intragastric (ig) load of 0.5% of body weight of 0.6 M NaCl. Compared with Fos-ir in isotonic-loaded rats, Fos-ir after the hypertonic load was not significantly elevated in the SFO or median preoptic nucleus in sham-cut or knife-cut rats and was only slightly elevated in the OVLT in sham-cut rats. However, the hypertonic load in sham-cut rats greatly elevated Fos-ir in the SON and in the entire PVN, but this expression was reduced significantly by 30-50% in knife-cut rats. Thus, the connectivity between SFO and the hypothalamus is critical for the full expression of Fos-ir in the hypothalamus during moderate ig hypertonic saline loading even when the SFO itself does not yet express Fos-ir.  相似文献   

13.
Two experiments were performed to investigate the relationship between the expression of sodium appetite and the appearance of Fos-like immunoreactivity (Fos-IR) in the brain of rats. In the first experiment, rats were depleted of sodium by treatment with furosemide 24 h prior to sacrifice and without access to either food or sodium solution. Some rats had access to distilled water, and others had no fluids available during the 24 h. All of the furosemide-treated rats showed Fos-IR in both the subfornical organ (SFO) and around the organum vasculosum laminae terminalis (OVLT). Rats with access to distilled water during the depletion period showed no Fos-IR in the supraoptic (SON) or paraventricular hypothalamic nuclei (PVN) and, in parallel behavioral studies, comparably-treated rats consumed only 0.3 M NaCl solution at the end of the 24 h. In rats that had no fluids during the deprivation period, only about one half showed Fos-IR in SON and PVN and, in parallel behavioral studies, comparably treated rats consumed both water and 0.3 M NaCI solution at the end of 24 h. In a second experiment, cerebroventricular administration of renin stimulated short latency intake of 0.3 M NaCI and water. The relative intakes of water and NaCl were comparable at a low dose of renin, but intake of water exceeded that of NaCl after higher doses. Renin induced Fos-IR in SFO, MnPO, peri-OVLT region, SON and PVN. Both Fos-IR and fluid intake were antagonized by administration of losartan, an angiotensin 11 type 1 receptor antagonist. Thus, only the circumventricular organs of the lamina terminalis showed Fos-IR during each natriorexigenic regimen in these studies. These data support the view that Ang 11 of both central and peripheral origin activates the SFO and/or peri-OVLT region and contributes to sodium appetite.  相似文献   

14.
The spatial and temporal pattern of expression of the protein products of immediate early genes (IEGs) c-fos, fos B, and egr-1 were mapped in medial preoptic area (MPOA) and ventral bed nucleus of stria terminalis (VBST) during maternal behavior in rats. Immunocytochemical analysis indicated significant increases in the number of cells expressing c-Fos after 2 h of pup exposure, while Fos B levels showed a delayed response, reaching maximal levels after 6 h.  相似文献   

15.
16.
17.
The induction of the c-fos gene in the rat brain by NGF was studied in a model of acute cholinergic hypofunction, i.e., the lesion of the nucleus basalis magnocellularis (NBM) with quisqualic acid. Choline acetyltransferase and Fos immunoreactivity (IR) in the NBM were analyzed at different times after the excitotoxic lesion. NGF treatment induced a potentiation of Fos expression 4 and 24 h after lesion. The possibility is discussed that c-fos induction is one of the early mechanisms of the neuroprotective action of NGF.  相似文献   

18.
Conscious rats were infused intravenously with either angiotensin II (30-55 pmol/kg/min), isotonic saline or phenylephrine for 2 h, then killed. Fos was identified by immunohistochemistry in the brains. Fos expression occurred in many neurons of the subfornical organ and organum vasculosum of the lamina terminalis (OVLT) with angiotensin infusion but not with isotonic NaCl or phenylephrine. Fos immunoreactivity was induced in cells in several medullary, hypothalamic and limbic structures with infusions of angiotensin II or phenylephrine at pressor doses. The results suggest that blood-borne angiotensin II at physiological levels causes angiotensin receptive neurons in the subfornical organ and OVLT to express Fos. Activation of baroreceptor pathways may also induce Fos expression at several other sites.  相似文献   

19.
Lesion of the anteroventral third-ventricle region (AV3VX) reduced saline consumption. Salt loading in AV3VX rats resulted in reduced but not completely abolished c-fos expression in the supraoptic and paraventricular nuclei. Intrinsic osmosensitivity of the magnocellular neurons, or input from other brain areas, such as the subfornical and median preoptic nuclei, may account for this residual c-fos expression. These regions showed c-fos expression following salt loading.  相似文献   

20.
Activation of c-fos, an immediate early gene, and the subsequent expression of the Fos protein have been noted following focal cerebral ischemia. Fos and Jun form a heterodimer as activator protein 1 (AP-1), which transregulates the expression of several genes. To study the postischemic events related to c-fos expression, we suppressed the expression of c-fos by intraventricular infusion of an antisense oligodeoxynucleotide (anti-rncfosr115) of c-fos mRNA. The effectiveness of anti-rncfosr 115 was confirmed first by its capability to block in vitro c-fos mRNA translation. In vivo, after intraventricular infusion of 32P-labeled anti-rncfosr115, the oligodeoxynucleotide was internalized iwthin 6 hours and detectable aslo in the nucleic acids fraction up to 41 hours. Treatment of the recovered nucleic acids with RNase H separated the labeled oligodeoxynucleotide from the nucleic acid fraction, indicating an association of the antisense oligodeoxynucleotide and cellular RNA after uptake. When focal cerebral ischemia was induced 16 hours after the infusion of anti-rncfosr115, the postischemic increase in Fos expression and AP-1 binding activity were suppressed. Specificity of the effect of anti-rncfosr 115 was suggested by its failure to suppress the DNA binding activity of nuclear cyclic AMP response elements. These results support the hypothesis that increased AP-1 binding activity following focal cerbral ischemia is dependent on Fos expression and can be inhibited in vivo by antisense c-fos oligodeoxy-nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号