首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 668 毫秒
1.
Jeffers JR  Browne M  Taylor M 《Biomaterials》2005,26(27):5532-5541
The behaviour of bone cement under fatigue loading is of interest to assess the long-term in vivo performance. In this study, uniaxial tensile fatigue tests were performed on CMW-1 bone cement. Acoustic emission sensors and an extensometer were attached to monitor damage accumulation and creep deformation respectively. The S-N data exhibited the scatter synonymous with bone cement fatigue, with large pores generally responsible for premature failure; at 20 MPa specimens failed between 2 x 10(3) and 2 x 10(4) load cycles, while at 7 MPa specimens failed from 3 x 10(5) load cycles but others were still intact after 3 x 10(6) load cycles. Acoustic emission data revealed a non-linear accumulation of damage with respect to time, with increasing non-linearity at higher stress levels. The damage accumulation process was not continuous, but occurred in bursts separated by periods of inactivity. Damage in the specimen was located by acoustic emissions, and allowed the failure site to be predicted. Acoustic emission data were also used to predict when failure was not imminent. When this was the case at 3 million load cycles, the tests were terminated. Creep strain was plotted against the number of load cycles and a linear relationship was found when a double logarithmic scale was employed. This is the first time a brand of cement has been characterised in such detail, i.e. fatigue life, creep and damage accumulation. Results are presented in a manner that allows direct comparison with published data for other cements. The data can also be used to characterise CMW-1 in computational simulations of the damage accumulation process. Further evidence is provided for the condition-monitoring capabilities of the acoustic emission technique in orthopaedic applications.  相似文献   

2.
Failure of the bone cement mantle has been implicated in the loosening process of cemented hip stems. Current methods of investigating degradation of the cement mantle in vitro often require sectioning of the sample to confirm failure paths. The present research investigates acoustic emission as a passive experimental method for the assessment of bone cement failure. Damage in bone cement was monitored during four point bending fatigue tests through an analysis of the peak amplitude, duration, rise time (RT) and energy of the events emitted from the damage sections. A difference in AE trends was observed during failure for specimens aged and tested in (i) air and (ii) Ringer's solution at 37 degrees C. It was noted that the acoustic behaviour varied according to applied load level; events of higher duration and RT were emitted during fatigue at lower stresses. A good correlation was observed between crack location and source of acoustic emission, and the nature of the acoustic parameters that were most suited to bone cement failure characterisation was identified. The methodology employed in this study could potentially be used as a pre-clinical assessment tool for the integrity of cemented load bearing implants.  相似文献   

3.
Fatigue microdamage accumulates in bone as a result of physiological loading. The damage is often manifested as microcracks, which are typically 50-100 mum long. These types of cracks develop in the interstitial bone and frequently abut osteon cement lines. In vitro experimentation has shown that an accumulation of fatigue damage reduces the material properties of bone (e.g., elastic modulus). An accumulation of fatigue damage has been implicated in the etiology of stress fractures and fragility fractures. However, bone has a remarkable ability to detect and repair fatigue microdamage. This article reviews the experimental techniques for identifying and quantifying different types of microdamage in bone, the density of in vivo microcracks at different skeletal locations, the effect of microdamage on bone material properties, the role of microdamage in bone fracture, and the biological mechanisms for the detection and repair of fatigue microdamage.  相似文献   

4.
BACKGROUND: The main reason for the postoperative loosening of cemented prosthesis is interfacial debonding and bone cement internal damage. Most studies have suggested that both of them occur in the process of fatigue damage, however, little is reported on primary loading that results in the initial damage to the bone cement-stem interface and inside of bone cement. OBJECTIVE: To study the mechanical properties of bone cement-stem interface, and the effect of crack formation in bone cement on interfacial loosening. METHODS: The cement-titanium alloy handle implant components were prepared. The maximum adhesive force of bone cement-stem interface was measured using push-in experiment. The cement damage and crack in the process of bone cement-handle interfacial debonding were monitored online using acoustic emission tester. The non-destructive testing on the metal surface and the inner layer of bone cement cylinder was conducted using three-dimensional surface profiler, ultrasonic microscopy and X-ray detector.   RESULTS AND CONCLUSION: The online monitoring results of debonding experiment and acoustic emission tester demonstrated that the initial damage of bone cement initiated in the primary loading of patients after operation, rather than at fatigue damage stage. Bone cement coffin caused cracks initiation mainly due to the combination effect of radial and axial stress. The bone cement-stem interfacial shear lag effect could not prevent the gradual extension of interface and inner coffin crack from top to bottom. The bone cement defects formed in solidification process was likely to affect the mechanical properties of the material, and eventually induced the crystal face and macromolecular chain fractures, forming silver striated cracks and leading component failure.   相似文献   

5.
Stresses are generated in implant materials and bone, and at their interfaces. These stresses may affect the structural properties of the implant/bone system, or bring it to failure at some time in the postoperative period. Due to these stresses, acetabular cup loosening becomes an important problem for long term survival of total hip arthroplasty. It was found that metal backing would tend to reduce stresses in the underlying acrylic cement and bone. Yet, recent studies of load transfer around acetabular cups have shown that metal backing generates higher stress peaks in cement at the cup edges, while generates lower stress peaks in bone at the central part of acetabulum (dome), thus the bone at the dome becomes more stress shielded. In this study a numerical shape optimization procedure in combination with an axisymmetric finite element model was used in order to optimize the shape of a stainless steel metal backing shell. The design was to minimize fatigue notch factor in cement along cement/bone and cement/metal backing interfaces in order to prevent failure of cement mantel and loosening of acetabular components, at the same time increasing fatigue notch factor in bone at the center of acetabulum to prevent stress shielding. The results of this study indicate that cemented acetabular cup designs can be improved by using metal backing shells of non-uniform thickness, thick at the dome and thin at edges. Fatigue notch factor in cement was reduced by 2.3% at cement/metal backing interface and increased by 1.3% in the central bone of acetabulum. Von Mises stresses in the cement edge were reduced by 17.8% and 19.3% along cement/bone and cement/metal backing interfaces, respectively. Thus the optimal design will reduce the possibility of fatigue fracture of cement and decrease the stress shielding effect and the likely incidence of bone resorption, whereby extend the expected life of the prostheses.  相似文献   

6.
The majority of cemented femoral hip replacements fail as a consequence of loosening. One design feature that may affect loosening rates is implant surface finish. To determine whether or not surface finish effects fatigue damage accumulation in a bone cement mantle, we developed an experimental model of the implanted proximal femur that allows visualisation of damage growth in the cement layer. Five matt surface and five polished surface stems were tested. Pre-load damage and damage after two million cycles was measured. Levels of pre-load (shrinkage) damage were the same for both matt and polished stems; furthermore damage for matt vs. polished stems was not significantly different after two million cycles. This was due to the large variability in damage accumulation rates. Finite element analysis showed that the stress is higher for the polished (assumed debonded) stem, and therefore we must conclude that either the magnitude of the stress increase is not enough to appreciably increase the damage accumulation rate or, alternatively, the polished stem does not debond immediately from the cement. Significantly (P=0.05) more damage was initiated in the lateral cement compared to the medial cement for both kinds of surface finish. It was concluded that, despite the higher cement stresses with debonded stems, polished prostheses do not provoke the damage accumulation failure scenario.  相似文献   

7.
Fractures in the bone-cement mantle (polymethyl methacrylate) have been linked to the failure of cemented total joint prostheses. The heat generated by the curing bone cement has also been implicated in the necrosis of surrounding bone tissue, leading to loosening of the implants. The addition of reinforcements may improve the fracture properties of bone cement and decrease the peak temperatures during curing. This study investigates the changes in the fracture properties and the temperatures generated in the ASTM F451 tests by the addition of 316L stainless steel fibers to bone cement. The influence of filler volume fraction (5-15% by volume) and aspect ratios (19, 46, 57) on the fracture toughness of the acrylic bone cement was assessed. Increasing the volume fraction of the steel fibers resulted in significant increases in the fracture toughness of the steel-fiber-reinforced composite. Fracture-toughness increases of up to 2.63 times the control values were obtained with the use of steel-fiber reinforcements. No clear trend in the fracture toughness was discerned for increasing aspect ratios of the reinforcements. There is a decrease in the peak temperatures reached during the curing of the steel-fiber-reinforced bone cement, though the decrease is too small to be clinically relevant. Large increases in the fatigue life of acrylic bone cement were also obtained by the addition of steel fibers. These results indicate that the use of steel fibers may enhance the durability of cemented joint prostheses.  相似文献   

8.
The composition of acrylic bone cement has been identified as one of the important parameters affecting its mechanical properties and may, in turn, ultimately influence the longevity of a cemented arthroplasty. Our aim in this study was to determine the influence of change of one compositional variable, the activator, on the fatigue performance and fracture toughness of specimens of the fully cured cement. To that end, three sets of cements were prepared, containing either the conventional activator, 4-N,N dimethyl p-toluidine (DMPT), or novel ones that are tertiary amines based on long-chain fatty acids, that is, 4-N,N dimethylaminobenzyl oleate (DMAO) and 4-N,N dimethylaminobenzyl laurate (DMAL). In the fatigue tests, the specimens were subjected to tension-tension loading, and the results (number of cycles to failure, Nf) were analyzed using the linearized form of the three-parameter Weibull equation. The fracture toughness (KIc) tests were conducted with rectangular compact tension specimens. All fracture surfaces were subsequently examined with scanning electron microscopy. We found that the Weibull mean fatigue lives for specimens fabricated using the DMPT, DMAL, and DMAO containing cements were 272,823, 453,551, and 583,396 cycles, respectively. The corresponding values for KIc were 1.94 +/- 0.05, 2.06 +/- 0.09, and 2.00 +/- 0.07 MPa radical m, respectively. Statistical analyses showed that for both the DMAL- and DMAO-containing cements, the mean values of Nf were significantly higher compared to the corresponding value for the DMPT-containing cement (Mann-Whitney test; alpha < 0.10). This result is attributed to the higher molecular weights of the former cements compared to the latter. The same trend was found for the mean KIc values (Mann-Whitney test; alpha < 0.05), with the trend being explained in terms of the differences seen in the crack morphologies. These results thus demonstrate that these novel amines are viable alternatives to DMPT for incorporation into acrylic bone cement formulations in the future.  相似文献   

9.
This study was conducted to investigate some fundamental fatigue testing variables as they apply to the response characteristics of acrylic bone cement. Cyclic loading under load control was conducted at frequencies of 1, 2, 5, 10, and 20 Hz in air at room temperature. At a tensile stress range of 0.3-20.0 MPa the fatigue life increased linearly with logarithmic frequency. The effect of conditioning and testing in saline at both room temperature and 37 degrees C at similar stress levels and a frequency of 10 Hz were also examined. When compared to dry testing at room temperature, testing in saline at 37 degrees C resulted in a reduction in fatigue life while testing in saline at room temperature produced an increase in fatigue life. Of a number of statistical distributions considered, the Weibull was found to be the most appropriate in documenting the findings of this investigation. A companion fractographic investigation of the failure surfaces demonstrated distinct regions of crack growth and fast fracture.  相似文献   

10.
Cemented total hip replacement has been performed worldwide to treat patients with osteoarthritis and osteonecrosis, with aseptic loosening as its primary reason for revision. It has been indicated that the stem–cement interfacial porosity may contribute to the early loosening of cemented hip prosthesis. In addition, it is generally accepted that the micropores in bone cement surface and in the bulk material are detrimental to the mechanical integrity of bone cement and act as stress concentrators, resulting in generation of fatigue cracks in the cement mantle. Furthermore, it was demonstrated that the micropores also play an important part in initiation and propagation of fretting wear on polished femoral stems. Taking this into consideration, a detailed review of the potential significance of the micropores in bone cement and the methods that could be employed to reduce porosity is given in this article. It was considered that modern cementing techniques are clinically beneficial and should be applied in surgery to further improve the survivorship of cemented total hip replacement.  相似文献   

11.
In cemented acetabular cup design it is acknowledged that bone resorption and fatigue fracture of cement may cause the most common problems after total hip replacement. Previous studies have optimized the shape of metal backing (MB) shell used in cemented acetabular components in order to minimize the fatigue notch factor (Kf) in cement, whilst at the same time maximizing Kf in bone at the central part of acetabulum to prevent stress shielding and subsequent bone resorption [1]. The optimal shape was found to be thin at the edges and thick at the dome. The present study describes the effect of changing the elastic modulus of the backing material on Kf and stresses as predicted by the initial shape of the backing shell of (3 mm) thick, and the optimized backing shape of non-uniform thickness in order to find the optimal material for the backing shell. It is recommended to use a backing shell material with elastic modulus equals 70 GPa (which can be readily attained using a fiber reinforced polymer composite). It is shown that such a material will decrease the fatigue notch factor and the stresses in cement at cup edges, at the same time it will increase the stresses and the fatigue notch factor in bone at the central part of acetabulum. Thereby, reducing the possibility of fatigue fracture of cement, whilst at the same time decreasing the stress shielding effect and the resulting bone resorption. The effect of lower bone resorption and lower probability of fatigue fracture of the cement will also reduce the incidence of loosening and premature revision operations.  相似文献   

12.
Cemented total hip replacement has been performed worldwide to treat patients with osteoarthritis and osteonecrosis, with aseptic loosening as its primary reason for revision. It has been indicated that the stem-cement interfacial porosity may contribute to the early loosening of cemented hip prosthesis. In addition, it is generally accepted that the micropores in bone cement surface and in the bulk material are detrimental to the mechanical integrity of bone cement and act as stress concentrators, resulting in generation of fatigue cracks in the cement mantle. Furthermore, it was demonstrated that the micropores also play an important part in initiation and propagation of fretting wear on polished femoral stems. Taking this into consideration, a detailed review of the potential significance of the micropores in bone cement and the methods that could be employed to reduce porosity is given in this article. It was considered that modern cementing techniques are clinically beneficial and should be applied in surgery to further improve the survivorship of cemented total hip replacement.  相似文献   

13.
The weight-average molecular weight (MW(w)) of a cement and the method used to mix its powder and liquid monomer constituents have been identified in the literature as key variables that affect mechanical properties of the fully polymerized cement that are relevant to its performance as a grouting agent in cemented arthroplasties. The goal of the present work was to identify which of these two variables exerts the greater effect in the case of fully reversed tension-compression fatigue performance. A judicious choice of cement brands, Surgical Simplex P and Osteopal, and the use of hand versus vacuum mixing, permitted this identification to be achieved. Three key observations were made in this work. First, for a given cement, the fatigue performance of vacuum-mixed specimens is far superior to that of hand-mixed ones, which may be a consequence of the substantially lower percentage areal porosity of the former specimens. Second, regardless of the mixing method, the fatigue performance of Osteopal outstrips that of Simplex P, a result that is attributed to the much higher MW(w) of the former cement. Third, hand-mixed Osteopal outperforms vacuum-mixed Simplex P (especially at low alternating stress levels), indicating that MW(w) of a bone cement is more influential than mixing method on its fatigue performance.  相似文献   

14.
The long term success of total joint replacement can be limited by fatigue failure of the acrylic cement and the resulting disruption of the bone-cement interface. The incidence of such problems may be diminished by reduction of the fatigue notch factor in the cement, so that stress concentrations are avoided and the fatigue crack initiation time maximized. This study describes a method for numerical shape optimization whereby the finite element method is used to determine an optimal shape for the femoral stem of a hip prosthesis in order to minimize the fatigue notch factor in the cement layer and at interfaces with the bone and stem.

A two-dimensional model of the proximal end of a femur fitted with a total hip prosthesis was used which was equivalent to a simplified three-dimensional axisymmetric model. Software was developed to calculate the fatigue notch factor in the cement along the cement/stem and cement/bone interfaces and in the proximal bone. The fatigue notch factor in the cement at the cement/stem interface was then minimized using the ANSYS finite element program while constraining the fatigue notch factor at the cement/bone interface at or below its initial level and maintaining levels of stress in the proximal bone to prevent stress shielding. The results were compared with those from other optimization studies.  相似文献   


15.
The fundamental aspects of damage initiation and accumulation in one-piece zirconium oxide endosseous dental implants remain to be investigated. Aims: This study tested the null hypothesis that there is no influence on mouth-motion fatigue reliability and failure modes between as-received and after full crown preparation on one-piece ceramic implants. Methods: Forty-eight one-piece Y-TZP ceramic implants (Nobel Biocare, Goteborg, Sweden) were utilized. All specimens were embedded in acrylic resin exposing the first two threads at 30 degrees angulation with respect to the vertical axis (as per ISO specification 14801). Full crown preparations were performed following prosthodontic guidelines for half of the specimens. As-received and prepared specimens were distributed among three step-stress profiles based on the specimens ultimate fracture strength. Specimens were step-stress fatigued until failure or survival. A master Weibull curve was generated from the data and the reliability for completion of a mission of 50,000 cycles at 600 N load calculated. Results: No differences between the groups' reliability was observed. Failure mode for both groups was similar, where cracks initiated mainly at the tensile bending side of the second thread's internal diameter. The low Weibull modulus (<1) indicates that fatigue (<150,000 cycles) did not influence failure. Failure depended upon the applied load. Conclusion: Crown preparation did not influence the reliability of the one-piece ceramic implant. The null hypothesis was accepted. Fatigue did not influence the life time of ceramic implants at loads under 600 N.  相似文献   

16.
Lewis G  Janna SI 《Biomaterials》2004,25(7-8):1415-1420
During a cemented arthroplasty, the prepared polymerizing dough of acrylic bone cement is subjected to pressurization in a number of ways; first, during delivery into the freshly prepared bone bed, second, during packing in that bed (either digitally or with the aid of a mechanical device), and, third, during the insertion of the prosthesis. Only a few studies have reported on the influence of the level of pressurization experienced during these events (which, depending on the cementing technique used, has been put at between 8 and 273 kPa) on various properties of the cement. That was the focus of the present study, in which the fully reversed tension-compression (+/-15 MPa; 5 Hz) fatigue lives (expressed as number of cycles to fracture, N(f)) of rectangular cross-sectioned "dog-bone" specimens (Type V, per ASTM D 638) fabricated from Cemex XL cement, at pressure applied continuously to the cement dough during curing in the specimen mold, p=75,150, and 300 kPa, were determined. The N(f) results were analyzed using the linearized transformation of the three-parameter Weibull relationship to obtain estimates of the Weibull mean, N(WM), which was taken to be the index of fatigue performance of the specimen set. Over the range of p studied, N(WM) increased as p increased (for example, from 329,118 cycles when p was 75 kPa to 388,496 cycles when p was 300 kPa); however, the increase was not significant over any pair of p increment steps (Mann-Whitney U-test; alpha<0.05).  相似文献   

17.
The paper presents a theory of fixation failure and loosening in cemented total hip prostheses and proceeds to investigate this using an experimentally validated finite element model and two prosthesis types, namely the Charnley and the C-Stem. The study investigates the effects of retroversion torque occurring at heel-strike in combination with a loss of proximal cement/bone support and distal implant/cement support with a good distal cement/bone interface. A 3D finite element model was validated by comparison of femoral surface strains with those measured in an in vitro experimental simulation using an implanted Sawbone femur loaded in the heel-strike position and including a simplified representation of muscle forces. Results showed that the heel-strike position applies a high retroversion torque to the femoral stem that when combined with proximal debonding of the cement/bone interface and distal debonding of the implant/cement interface increases the strain transfer to the cement that may ultimately lead to the breakdown of the cement mantle leading on to osteolysis and loosening of the prostheses. Experimental fatigue testing of the implanted Charnely stem in a Sawbone femur produced cracks within the cement mantle that were located in positions of maximum stress supporting the finite element analysis results and theory of failure.  相似文献   

18.
Nalla RK  Kruzic JJ  Kinney JH  Ritchie RO 《Biomaterials》2005,26(14):2183-2195
Although fatigue damage in bone induced by cyclic loading has been recognized as a problem of clinical significance, few fracture mechanics based studies have investigated how incipient cracks grow by fatigue in this material. In the present study, in vitro cyclic fatigue experiments were performed in order to quantify fatigue-crack growth behavior in human cortical bone. Crack-growth rates spanning five orders of magnitude were obtained for the extension of macroscopic cracks in the proximal-distal direction; growth-rate data could be well characterized by the linear-elastic stress-intensity range, using a simple (Paris) power law with exponents ranging from 4.4 to 9.5. Mechanistically, to discern whether such behavior results from "true" cyclic fatigue damage or is simply associated with a succession of quasi-static fracture events, cyclic crack-growth rates were compared to those measured under sustained (non-cyclic) loading. Measured fatigue-crack growth rates were found to exceed those "predicted" from the sustained load data at low growth rates ( approximately 3 x 10(-10) to 5 x 10(-7) m/cycle), suggesting that a "true" cyclic fatigue mechanism, such as alternating blunting and re-sharpening of the crack tip, is active in bone. Conversely, at higher growth rates ( approximately 5 x 10(-7) to 3 x 10(-5) m/cycle), the crack-growth data under sustained loads integrated over the loading cycle reasonably predicts the cyclic fatigue data, indicating that quasi-static fracture mechanisms predominate. The results are discussed in light of the occurrence of fatigue-related stress fractures in cortical bone.  相似文献   

19.
A simple multi-specimen apparatus for fixed stress fatigue testing.   总被引:1,自引:0,他引:1  
To cope with the time-consuming characteristics of fatigue tests, a multi-specimen fatigue testing apparatus, which could test 10 specimens at a time, was designed, constructed, and tested. The specimens are fixed around a rotating axis, and the required stresses are applied by weights attached on the other end of each specimen. The test mode can be categorized as a stress-controlled flexural fatigue test. Its performance was tested by comparing it with a commercial three-point bending fatigue testing apparatus. The stress versus number of cycles to failure curves of poly(methylmethacrylate) (PMMA), which were obtained from both fatigue testing equipment, showed results that were similar to each other. The fatigue test results of acrylic bone cement in a fixed-stress mode also showed good agreement between the data obtained from the new apparatus and the commercial apparatus. The test results seem quite reliable and show feasibility of significantly reducing the overall test periods. It may be valuable, especially for the fatigue tests, which must be done with a low frequency and a low applied stress level such as a fatigue test of bone cements.  相似文献   

20.
Cementing with poly(methyl methacrylate) (PMMA) is a common means of fixing total hip prostheses. Bone cement fails mechanically, and subsequent loosening frequently requires correction via revision surgery. An initial step in optimizing bone cement properties is to establish which properties are critical to the material's in vivo performance. The objectives were to discern the critical in vivo failure mechanisms of bone cement. Fracture surfaces of bone cement specimens that failed in vivo were compared with fatigue and rapid fracture surfaces created in vitro. In vivo fracture processes of bone cement were positively identified and explained by the elucidation of PMMA fracture micromechanisms. The ex vivo fracture surfaces are remarkably similar to in vitro fatigue fracture surfaces. The fractographic data document that the primary in vivo failure mechanism of bone cement is fatigue, and the fatigue cracks grow by developing a microcraze shower damage zone. Agglomerates of BaSO4 particles can be implicated in some bone cement failures, large flaws or voids in vivo can lead to a rapid, unstable fracture, pores in the PMMA mass have a clear influence on a propagating crack, and wear of the fracture surfaces occurs, and may produce PMMA debris, exacerbating bone destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号