首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) sodium channel currents were analyzed in acutely dissociated dorsal root ganglion (DRG) neurons isolated from 3-12-d-old and adult rats. Currents were recorded using the whole-cell patch-clamp technique. TTX-R current was more likely to be present in younger animals (3-7 d), whereas TTX-S current was more common in older animals (7-10 d), although TTX-R current was recorded from adult rat DRG neurons. The TTX-R and TTX-S currents differed in their steady-state inactivation, with 50% inactivation voltage at -40 +/- 5 mV (n = 10) for TTX-R currents and -70 +/- 4 mV (n = 10) for TTX-S currents. These current types also differed in their activation kinetics, with 50% activation values of -15 +/- 5 mV (n = 5) for TTX-R currents and -26 +/- 6 mV (n = 5) for TTX-S currents. The interactions of TTX-R and TTX-S channels with various pharmacological agents and divalent cations were studied. The Kd values for TTX-S and TTX-R currents were estimated to be 0.3 nM and 100 microM for TTX, 0.5 nM and 10 microM for saxitoxin, and 50 microM and 200 microM for lidocaine, respectively. TTX-S channels did not exhibit a marked use-dependent block by lidocaine, whereas lidocaine significantly decreased TTX-R current in a use-dependent manner at frequencies ranging from 1 to 33.3 Hz. Several external divalent cations exerted different effects on these current types.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Vreugdenhil M  Wadman WJ 《Epilepsia》1999,40(11):1512-1522
PURPOSE: To determine the modulation of sodium currents in hippocampal CA1 neurons by carbamazepine (CBZ) and valproate (VPA), before and after kindling epileptogenesis. METHODS: Voltage-dependent sodium current was measured in isolated hippocampal CA1 neurons, by using the whole-cell voltage-clamp technique. CBZ (15-100 microM) or VPA (0.5-5 mM) was applied by bath perfusion. Cells from fully kindled rats were compared with controls, 1 day and 5 weeks after the tenth generalized seizure. RESULTS: CBZ did not affect sodium current activation but selectively shifted the voltage dependence of steady-state inactivation to more hyperpolarized potentials. One day after the last kindled generalized seizure, the shift induced by 15 microM CBZ was 2.1+/-0.5 mV (mean +/- SEM; n = 20) compared with 4.3+/-0.3 mV (n = 16; p<0.001) in matched controls. The EC50 of the concentration-effect relation was 57+/-6 microM compared with 34+/-2 microM (p<0.01) in controls. Five weeks after kindling, these values had recovered to a level not different from control. VPA induces at a relatively high concentration a similar but smaller shift in voltage dependence of inactivation than does CBZ. After kindling, the shift induced by 2 mM VPA (2.8+/-0.6 mV; n = 19) was not different from controls (3.0+/-0.5 mV; n = 22). The EC50 for VPA was 2.6+/-0.3 mM compared with 2.5+/-0.4 mM in controls. CONCLUSIONS: Both CBZ and VPA selectively modulate the voltage dependence of sodium current steady-state inactivation and as a consequence reduce cellular excitability. The effect of CBZ was reduced immediately after kindling epileptogenesis, apparently by a reduced affinity of its receptor. In contrast, the shift induced by VPA was not different at any stage after kindling epileptogenesis. The change in CBZ sensitivity after kindling is related to epileptic activity rather than to the epileptic state, because it almost completely recovers in a period without seizures.  相似文献   

3.
Huang CW  Huang CC  Liu YC  Wu SN 《Epilepsia》2004,45(7):729-736
PURPOSE: We investigated the effects of lamotrigine (LTG) on the rapidly inactivating A-type K+ current (IA) in embryonal hippocampal neurons. METHODS: The whole-cell configuration of the patch-clamp technique was applied to investigate the ion currents in cultured hippocampal neuron-derived H19-7 cells in the presence of LTG. Effects of various related compounds on IA in H19-7 cells were compared. RESULTS: LTG (30 microM-3 mM) caused a reversible reduction in the amplitude of IA. The median inhibitory concentration (IC50) value required for the inhibition of IA by LTG was 160 microM. 4-Aminopyridine (1 mM), quinidine (30 microM), and capsaicin (30 microM) were effective in suppressing the amplitude of IA, whereas tetraethylammonium chloride (1 mM) and gabapentin (100 microM) had no effect on it. The time course for the inactivation of IA was changed to the biexponential process during cell exposure to LTG (100 microM). LTG (300 microM) could shift the steady-state inactivation of IA to a more negative membrane potential by approximately -10 mV, although it had no effect on the slope of the inactivation curve. Moreover, LTG (100 microM) produced a significant prolongation in the recovery of IA inactivation. Therefore in addition to the inhibition of voltage-dependent Na+ channels, LTG could interact with the A-type K+ channels to suppress the amplitude of IA. The blockade of IA by LTG does not simply reduce current magnitude, but alters current kinetics, suggesting a state-dependent blockade. LTG might have a higher affinity to the inactivated state than to the resting state of the IA channel. CONCLUSIONS: This study suggests that in hippocampal neurons, during exposure to LTG, the LTG-mediated inhibition of these K+ channels could be one of the ionic mechanisms underlying the increased neuronal excitability.  相似文献   

4.
These studies were carried out to characterize the properties of gamma-aminobutyric acidA (GABA(A)) receptors on guinea pig intestinal myenteric neurons maintained in primary culture. In addition, the type of neuron expressing GABA(A) receptors was identified using immunohistochemical methods. Whole-cell patch clamp recordings of currents elicited by GABA and acetylcholine (ACh) were obtained using pipettes containing Neurobiotin. After electrophysiological studies, neurons were processed for localization of calbindin-D28K-immunoreactivity (calbindin-ir). GABA (1 mM) and ACh (3 mM) caused inward currents in most cells tested. GABA currents were mimicked by muscimol (1-300 microM) and were blocked by bicuculline (10 microM) indicating that GABA was acting at GABA(A) receptors. GABA currents were associated with a conductance increase and a linear current/voltage relationship with a reversal potential of 1 +/- 1 mV (n = 5). Pentobarbital (PB, 3-1000 microM) and diazepam (DZP, 0.01-10 microM) potentiated GABA-induced currents. A maximum concentration of DZP (1 microM) increased GABA-induced currents 3.1 +/- 0.3 times while PB (1000 microM) increased GABA currents by 11 +/- 2 times. In outside-out patches, the amplitude of GABA-activated single-channel currents was linearly related to membrane potential with a single-channel conductance of 28.5 + 0.5 pS (n = 10). PB and DZP increased the open probability of GABA-induced single-channel currents. Neurons containing calbindin-ir were large, were isolated from other neurons and had GABA current amplitudes of -3.4 +/- 0.3 nA (n = 48). Neurons with weak or absent calbindin-ir were smaller, were localized in clusters of cells and had GABA-induced current amplitudes of -0.6 +/- 0.1 nA (n = 20). ACh-induced currents were smaller in calbindin-ir neurons (-0.7 +/- 0.1 nA) compared to weakly calbindin-ir neurons (-1.4 +/- 0.1 nA). These results indicate that myenteric calbindin-ir neurons express a high density of GABA(A) receptors. Cell size and location allow visual identification of neurons likely to contain calbindin-ir permitting targeted studies of the properties of these neurons.  相似文献   

5.
Niu ZD  Yu K  Gu Y  Wang M  She JQ  Chen WH  Ruan DY 《Neuroreport》2005,16(14):1585-1589
The effects of copper on voltage-gated A-type potassium currents were investigated in acutely dissociated rat hippocampal CA1 neurons using the whole-cell patch-clamp technique. Extracellular application of various concentrations of copper (1-1000 microM) reversibly reduced the amplitude of voltage-gated A-type potassium currents in a dose-dependent manner with a 50% inhibitory concentration value of 130 microM. Copper (300 microM) increased the V1/2 of the activation curve and state-inactivation curve by 17.2 and 9.0 mV, respectively. Thus, copper slowed down the activation and inactivation process of voltage-gated A-type potassium currents. This study indicated that copper reversibly inhibits the hippocampal CA1 neuronal voltage-gated A-type potassium current in a dose-dependent and voltage-dependent manner, and such actions are likely involved in the regulation of the neuronal excitability and the pathophysiology of Wilson's disease.  相似文献   

6.
We have studied outward currents of neurons acutely isolated from superficial layers of the entorhinal cortex with whole-cell patch-clamp recordings. If cells were held more negative than -50 mV, depolarizing voltage commands activated a transient A-type current together with a sustained outward current. Both currents were sensitive to 4-aminopyridine, while only the sustained current was blocked by tetraethylammonium. The sustained outward current showed a considerable rundown in amplitude over prolonged recording periods. At the same time its half-maximal inactivation shifted from -74 to -114 mV. Nystatin perforated patch recordings were used to minimize these perfusion effects. Under such conditions the amplitude and the steady-state inactivation properties of the sustained outward current remained stable for more than 1 h. Pharmacological investigations revealed that only a small part of the sustained outward current could be attributed to a calcium-activated potassium current. Therefore most of the rundown has to be due to changes in the delayed rectifier outward current. These results may suggest that the delayed rectifier current is under considerable metabolic control.  相似文献   

7.
Dai X  Ruan D  Chen J  Wang M  Cai L 《Brain research》2001,904(2):327-340
The effects of Pb2+ on transient outward currents (TOCs) were investigated on rat dorsal root ganglia (DRG) neurons at postnatal days of 15 approximately 21, using the conventional whole-cell patch-clamp technique. In media-sized (35 approximately 40 microm) neurons and in the presence of 50 mM TEA, TOCs that preliminarly included an A-current (IA) and a D-current (ID), were clearly present and dominant. Application of Pb2+ lengthened the initial delay of TOCs and increased the onset-peak time in a concentration-dependent manner. The amplitudes of initial outward current peak were reduced with increasing Pb2+ concentrations. The inhibitory effects of Pb2+ on TOCs were reversible with 80 approximately 90% of current reversed in 2 approximately 10 min at 1 approximately 400 microM Pb2+. For the normalized activation curves fitted by a single Boltzmann equation under each condition, there was a shift to more depolarized voltages with increasing concentrations of Pb2+. The V1/2 and the slope factor (k) increased from 12.76+/-1.49 mV and 15.31+/-1.66 mV (n=10) under control condition to 39.91+/-5.44 mV (n=10, P<0.01) and 21.39+/-3.13 mV (n=10, P<0.05) at 400 microM Pb2+, respectively, indicating that Pb2+ decreased the activation of TOCs. For the normalized steady-state inactivation curves, the V1/2 and the k increased from -92.31+/-2.72 and 8.59+/-1.36 mV (n=10) to -55.65+/-3.67 (n=10, P<0.01) and 23.02+/-2.98 mV (n=10, P<0.01) at 400 microM Pb2+, respectively. The curves were shifted to more depolarized voltages by Pb2+, indicating that channels were less likely to be inactivated at higher concentrations of Pb2+ at any given potential. The fast (tf) and slow (ts) decay time-constants were both significantly increased by increasing concentrations of Pb2+ (n=10, P<0.05), indicating that Pb2+ increased the decay time-course of TOCs. These effects were concentration-dependent and partly reversible following washing. Ca2+ modulated the TOCs gating and might share same binding site with Pb2+, for which Ca2+ had very low affinity. In summary, the results demonstrated that Pb2+ was a dose- and voltage-dependent, and reversible blocker of TOCs in rat DRG neurons. After Pb2+ application, normal sensory physiology of DRG neurons was affected, and these neurons might display aberrant firing properties that resulted in abnormal sensations. This variation caused by Pb2+ could underlie the toxical modulation of sensory input to the central nervous system.  相似文献   

8.
Outward currents activated by depolarization were studied in the neuropilar membrane of locust nonspiking local interneurons, using the single-electrode voltage-clamp technique in situ. Preliminary observation of these currents in 272 neurons revealed two families. The first and most commonly observed (85% of recordings) showed a large transient current followed by a slowly decaying/late current. The second (15% of recordings) showed an additional outward current with a slow rate of activation, a peak within 100-150 msec, and a slow rate of inactivation. Only neurons of the first type were studied further. The transient current was activated by depolarization around -60 mV, with a time to peak of approximately 11 msec at -50 mV and less than 3 msec at -20 mV. This current decayed exponentially, with a time constant of 8.1 +/- 1.6 msec (n = 8 interneurons) at -30 mV. This time constant of inactivation did not appear to depend strongly on membrane voltage, in the range in which it was studied. A second and longer time constant of inactivation of 50-400 msec could not be assigned to either of the transient and late components of the outward current. The ratio of transient-to-late current varied between 1.6 and 5.4, with a mean of about 2.5. The reversal potential for the transient current could, on average, be shifted by 14 mV by a threefold increase in the bath K+ concentration, indicating that K+ is a charge carrier for the current. The transient current became inactivated with maintained depolarization and appeared half-inactivated at about -60 mV (slope factor k1/2 = 8 mV). This current was thus not fully inactivated at "resting" potential (average, -58 mV). Recovery from inactivation followed a single exponential time course, with a time constant of approximately 100 msec at -80 mV. The time course of recovery from inactivation of the transient current was well correlated with that of the recovery of transient outward rectification, as measured in current-clamp recording. Tetraethylammonium, at a bath concentration of 10 mM reduced the transient current by 70% and the delayed current by 60%. 4-Aminopyridine, at a bath concentration of 5 mM, had a significant effect in only two of five interneurons, reducing the transient current by approximately 85% and the late current by approximately 15%. Quinidine at a bath concentration of 100 microM was ineffective. Although these blockers did not allow a clear pharmacological separation of the currents, they were effective in reducing the outward rectification observed in current clamp during step depolarization.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The pH-dependent actions of aluminum(III) hydroxides (Al(III))on the voltage-activated sodium currents (VASCs) in the giant neurons of the pond snail Lymnaea stagnalis L. were studied by means of a conventional two-electrode voltage-clamp technique. The final concentration of Al(III) was 5-500 microM at pH 7.7, 6.9 or 6.0. A significant and concentration-dependent increase in the peak amplitude of the VASCs was recorded over the entire voltage range at pH 7.7 (EC50 = 100.7 +/- 33.7 microM, n = 9), without alteration of the gating properties. A concentration-dependent decrease in the peak amplitude (IC50 = 175.9 +/- 73.6 microM, n = 6) and concomitant increases in the time constants of activation and inactivation of the VASCs were recorded in slightly acidic media (pH 6.0), whereas there were no changes in the investigated parameters at pH 6.9. A significant increase in the V1/2 of the half-maximal current of the steady-state inactivation resulted on Al(III) application at pH 7.7, but not at pH 6.9 or 6.0. These results suggest that Al(III) can differentially up- and down-modulate the sodium current and related physiological functions to extents dependent on the pH-determined speciation of the Al(III) hydroxides present.  相似文献   

10.
Chu ZG  Zhou FM  Hablitz JJ 《Brain research》2000,887(2):203-405
In the neocortex, fast excitatory synaptic transmission can typically be blocked by using excitatory amino acid (EAA) receptor antagonists. In recordings from layer II/III neocortical pyramidal neurons, we observed an evoked excitatory postsynaptic potential (EPSP) or current (EPSC) in the presence of EAA receptor antagonists (40-100 microM D-APV+20 microM CNQX, or 5 mM kynurenic acid) plus the GABA(A)-receptor antagonist bicuculline (BIC, 20 microM). This EAA-antagonist resistant EPSC was observed in about 70% of neurons tested. It had a duration of approximately 20 ms and an amplitude of 61.5+/-6.8 pA at -70 mV (n=35). The EAA-antagonist resistant EPSC current-voltage relation was linear and reversed near 0 mV (n=23). The nonselective nicotinic acetylcholine receptor (nAChR) antagonists dihydro-beta-erythroidine (DH beta E, 100 microM) or mecamylamine (50 microM) reduced EPSC amplitudes by 42 (n=20) and 33% (n=9), respectively. EPSC kinetics were not significantly changed by either antagonist. Bath application of 10 microM neostigmine, a potent acetylcholinesterase inhibitor, prolonged the EPSC decay time. EAA-antagonist resistant EPSCs were observed in the presence of antagonists of metabotropic glutamate, serotonergic (5-HT(3)) and purinergic (P2) receptors. The EAA-antagonist resistant EPSC appears to be due in part to activation of postsynaptic nAChRs. These results suggest the existence of functional synaptic nAChRs on pyramidal neurons in rat neocortex.  相似文献   

11.
Opioid transmission in the medial prefrontal cortex is involved in mood regulation and is altered by drug dependency. However, the mechanism by which ionic channels in cortical neurons are controlled by mu opioid receptors has not been elucidated. In this study, the effect of mu opioid receptor activation on voltage-dependent Na(+) currents was assessed in medial prefrontal cortical neurons. In 66 out of 98 nonpyramidal neurons, the application of 1 microM of DAMGO ([D-Ala(2), N-Me-Phe(4), Gly(5)-OL]-enkephalin), a specific mu receptor agonist, caused a decrease in the Na(+) current amplitude to approximately 79% of that observed in controls (half blocking concentration = 0.094 microM). Moreover, DAMGO decreased the maximum current activation rate, prolonged its time-dependent inactivation, and shifted the half inactivation voltage from -63.4 mV to -71.5 mV. DAMGO prolonged the time constant of recovery from inactivation from 5.4 ms to 7.4 ms. The DAMGO-evoked inhibition of Na(+) current was attenuated when GDP-beta-S (0.4 mM, Guanosine 5-[beta-thio]diphosphate trilithium salt) was included in the intracellular solution. Inhibitors of kinase A and C greatly attenuated the DAMGO-induced inhibition, while adenylyl cyclase and kinase C activators mirrored the DAMGO inhibitory effect. Na(+) currents in pyramidal neurons were insensitive to DAMGO. We conclude that the activation of mu opioid receptors inhibits the voltage-dependent Na(+) currents expressed in nonpyramidal neurons of the medial prefrontal cortex, and that kinases A and C are involved in this inhibitory pathway.  相似文献   

12.
The primary goal of this study was to use the cloned neuronal Kv channels to test if pimozide (PMZD), an antipsychotic drug, modulates the activity of Kv channels. In CHO cells, PMZD blocked Kv2.1, a major neuronal delayed rectifier, in a manner that depends upon time and concentration. The estimated IC50 was 4.2 microM at +50 mV. Tail current analysis shows that PMZD reduced the amplitude of the currents, with no effect on the steady-state activation curve (V(1/2) from 14.1 to 11.1 mV) or the slope (16.7 vs. 14.0 mV). From -120 to -20 mV, PMZD did not impact the deactivation kinetics of Kv2.1. PMZD also blocked Kv1.1, another neuronal delayed rectifier, with 16.1 microM of IC50. When Kv1.1 was co-expressed with Kvbeta1, approximately 50% of the Kv1.1 were converted into an inactivating A-type current and the Kv1.1/Kvbeta1 A-type currents were insensitive to PMZD. PMZD (10 microM) had minimal effect on Kv1.4, and had no effect on the M-current candidates, KCNQ2 and KCNQ3 when co-expressed in Xenopus oocytes. In hippocampal neurons, PMZD inhibited the delayed rectifiers by approximately 60%, and A-type currents were insensitive to PMZD. The results suggest that PMZD inhibits certain neuronal Kv channels in heterologous expression systems and in hippocampal neurons. PMZD was less effective on A-type currents, presumably because its ability to block requires a prolonged opening of the K channels. It is thus conceivable that the time-dependent and/or subunit-specific inhibition of Kv channels may increase the release of neurotransmitters such as serotonin and glutamate.  相似文献   

13.
Sang N  Meng Z 《Brain research》2002,952(2):351-221
The effects of magnesium (MgSO(4)) on sodium currents (Na(+) currents) in freshly dissociated rat hippocampal neurons were studied using the whole-cell patch clamp techniques. MgSO(4) caused a concentration-dependent and voltage-dependent reversible decrease of Na(+) currents. The half-blocking concentration (IC(50)) of MgSO(4) on Na(+) currents was 4.05 mM. But the action was frequency-independent. In addition, 4 mM MgSO(4) shifted the steady state activation curve of Na(+) currents toward positive potential (control V(h)=-55.83+/-6.79 mV, MgSO(4)V(h)=-34.15+/-6.18 mV, n=8, P相似文献   

14.
A characterization of the properties of voltage-gated sodium channels expressed in the human cerebellar medulloblastoma cell line TE671 is presented. Membrane currents were recorded under voltage clamp conditions using the patch clamp technique in both the whole-cell and the excised-patch configurations. Macroscopic sodium currents display a typical transient time course with a sigmoidal rise to a peak followed by an exponential decay. The rates of early activation and subsequent inactivation accelerate and approach a maximum in response to test potentials, V, of greater depolarization. The magnitude of peak sodium current increased from negligible values below V = -50 mV and reached a maximum at V = -3.6 mV +/- 2.7 mV (mean +/- S.E.M., n = 12). Sodium currents reversed at V = + 70 mV, near the predicted Nernst equilibrium potential for a Na+ selective channel. The peak sodium conductance, gpeak increased with depolarizing voltages to a maximum at V = approximately 0 mV, exhibiting half-activation voltage at V approximately equal to -36.8 mV and an e-fold change in gpeak/9.5 mV. The Hodgkin-Huxley inactivation parameter h infinity indicates that at V = -73.6 mV half of the sodium currents were inactivated. Single channel current recordings demonstrated the occurrence of discrete events: the latency for first opening was shorter as the depolarizing pulse became more positive. The single-channel current amplitude was ohmic with a slope conductance, gamma = 17.13 pS +/- 0.66 pS. Sodium channel currents were reversibly blocked by tetrodotoxin (TTX).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Ca channels induced in Xenopus oocytes by rat brain mRNA   总被引:11,自引:0,他引:11  
RNA was isolated from brains of 16-d-old rats and poly(A) samples were injected into stage V and VI oocytes. After allowing 2-5 d for expression, most oocytes were exposed to medium in which the K had been replaced by Cs for 24 hr prior to recording. Ba currents were usually measured in Cl-free Ba-methanesulfonate saline. IBa in noninjected oocytes was often undetectable, but ranged up to 50 nA (22 +/- 4 nA, n = 21). In contrast, injected oocytes showed a peak IBa of 339 +/- 42 nA (n = 33). The threshold for activation of IBa was -40 mV, with peak currents at +10 to +20 mV. After a peak, currents decayed to a nearly steady level along a single-exponential time course (tau = 650 +/- 50 msec at +20 mV). The maintained current was 67 +/- 6% (n = 9) of the early peak amplitude. A prepulse duration of 5 sec was needed to examine the inactivation of barium currents in injected oocytes. The inward IBa could be observed in BaCl2 solutions at potentials positive to ECl and also in Na-free salines, indicating that neither Cl- nor Na+ was carrying the inward current. Although IBa displayed voltage-independent blockade by Cd (50% inhibition at 6 microM), the peptide Ca channel antagonist, omega-CgTX (1 microM), and the organic Ca channel-blocking agents (verapamil, compound W-7, and nifedipine) were uniformly ineffective. No effects were observed with the dihydropyridine antagonist nifedipine (even at 10 microM, or when cells were held at -40 mV) or agonist Bay K-8644. However, IBa was enhanced via activation of protein kinase C with 4-beta-phorbol dibutyrate (PBT2). In contrast, use of forskolin to activate protein kinase A did not alter IBa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Transient potassium currents in mammalian central neurons influence both the repolarization of single action potentials and the timing of repetitive action potential generation. How these currents are integrated into neuronal function will depend on their specific properties: channel availability at the resting potential, activation threshold, inactivation rate, and current density. We here report on the voltage-gated transient potassium currents in embryonic mouse hippocampal neurons dissected at embryonic days 15-16 and grown in dissociated cell culture for up to 3 d. Two transient potassium currents, A-current and D-current, were isolated based on steady state inactivation and sensitivity to 4-aminopyridine (4-AP) and dendrotoxin (DTx). A-current had an activation threshold of approximately -50 mV and was half-inactivated at approximately -81 mV. A-current relaxations at voltages between -40 and +40 mV could be fit by single exponential functions with time constants of 20-25 msec; these time constants showed little sensitivity to voltage. In contrast, D-current had an activation threshold of between -40 and -30 mV and was half-inactivated at approximately -22 mV. D-current inactivation was voltage dependent; time constants of fitted exponential functions ranged from approximately 7 sec at -40 mV to 200 msec at +40 mV. A slower component of inactivation was also evident. D-current was preferentially blocked by 4-AP (100 microM) and DTx (1 microM). Operationally, A- and D-currents could be cleanly separated based on conditioning pulse potential and 4-AP sensitivity. Total transient potassium current amplitude increased during the time that neurons were in culture (recordings were made between 2 hr after dissociation and 3 d in culture). When normalized for cell capacitance (an index of membrane area), A-current density (pA/pF) decreased and D-current density increased, even during a period between days 1 and 3 when total transient current density remained constant. This observation suggests that A- and D-currents may be reciprocally modulated. Since blockade of D-current (with 100 microM 4-AP) increased both action potential duration and repetitive firing in response to constant current stimulation, long-term modulation of the A-current:D-current ratio may affect the excitability of hippocampal neurons.  相似文献   

17.
Ishiyama G  Lopez I  Ishiyama A 《Brain research》1999,837(1-2):270-276
The effect of brief anoxia on voltage dependent K(+)-currents of hippocampal cultured neurons was studied. The oxygen scavenger dithionite (hydrosulphite) was previously used for creating zero oxygen pressure. However, dithionite consumes O(2) in parallel with generation of superoxide radicals and is a strongly reducing agent. In this study anoxia was produced by perfusion of the neurons with a solution bubbled with nitrogen for 1 h using a chamber with an argon layer isolating the anoxic bath flow from atmospheric oxygen in presence and absence of dithionite. Oxygen partial pressure of dithionite-free solution was determined by oxygen dependent quenching of the phosphorescence of Pd-coproporphyrin to be 0.15+/-0. 02 Torr (values are given as mean+/-S.D., n=6). Slow (I(K))- and fast (I(A))-inactivating K(+)-currents were measured with the patch clamp technique in the whole cell configuration. Exposure of the neurons to anoxia reversibly decreased the amplitude of I(K) at a test pulse of 0 mV to 77+/-12% (n=7) in absence and to 83+/-7% (n=6) in presence of 2 mM dithionite; the amplitude of I(A) decreased to 78+/-11% in absence and to 82+/-9% in presence of 2 mM dithionite. Voltage dependence of activation and inactivation shifted 5 min after exposure to anoxia reversibly by about 6 mV in depolarizing direction. The decay times of inactivation were insensitive to anoxia. Dithionite had no significant effects on K(+)-currents. In 15 of 21 neurons not employed for analysis on K(+)-currents, a reversible increase in holding current under dithionite was observed. In absence of dithionite in 4 of 19 neurons the holding current reversibly increased during anoxia. Although dithionite does not affect K(+)-currents, changes in holding current show that the dithionite may affect neurons independently of oxygen deprivation.  相似文献   

18.
Intracellular chloride modulates A-type potassium currents in astrocytes   总被引:3,自引:0,他引:3  
Bekar LK  Walz W 《Glia》2002,39(3):207-216
Application of the GABA(A) receptor agonist muscimol to astrocytes in situ or in vitro results in a receptor-mediated Cl(-) current with a concomitant block of outward K(+) currents. The effect on K(+) current is largely selective for the inactivating A-type current. Parallel experiments with various Cl(-) pipette concentrations show a significant reduction in A-type current under low Cl(-) conditions with minimal effect on delayed current. In addition, lower Cl(-) conditions caused a depolarizing shift of steady-state inactivation (V(1/2), -68 to -57 mV) and activation (V(1/2), -5.8 to 34 mV) kinetics of A-type current only. Cl(-) had no effect on the time course of inactivation or reactivation kinetics, suggesting the Cl(-)-mediated effect is largely on activation kinetics, indirectly affecting steady-state inactivation. Muscimol application to astrocytes under perforated patch control (gramicidin) displayed a similar block of A-type current to that of conventional whole cell patch at 40 or 20 mM pipette Cl(-) concentrations. With barium application under perforated patch conditions, the study of muscimol-mediated Cl(-) current in isolation of the effect on K(+) currents was possible. This allowed estimation of intracellular Cl(-) concentration from receptor current reversal information. The average intracellular Cl(-) concentration was found to be 29 +/- 3.2 mM. The effect on activation kinetics and lack of effect on time course of inactivation or reactivation suggest that intracellular anion concentrations have an effect on the K(+) channel voltage sensor region. Cl(-) may modulate K(+) currents by altering membrane field potentials surrounding K(+) channel proteins.  相似文献   

19.
20.
Fast excitatory postsynaptic currents have been recorded at 23-27 degrees C from rabbit pelvic plexus neurons by a two-electrode voltage-clamp technique. The synaptic current decay was bi-exponential with the fast and slow components characterized at -50 mV by mean time constants of 4.0 +/- 0.3 and 21.9 +/- 2.8 ms (n = 11), respectively. Both components contributed to the synaptic current approximately equally and reversed at -5 mV. Hexamethonium (10 microM) decreased the amplitude and decay time constant of both synaptic current components; this effect increased with hyperpolarization and is consistent with a channel-blocking action. At - 50 mV, mean rate constants of hexamethonium association with open ion channels of nicotinic acetylcholine receptors presumably mediating the fast and slow synaptic current components were (18.4 +/- 2.3) x 10(6) and (6.1 +/- 1.2) x 10(6) M(-1) s(-1) (n = 4), respectively. These data suggest that the fast excitatory postsynaptic current in rabbit pelvic plexus neurons is probably mediated by at least two different subtypes of nicotinic acetylcholine receptors. Hexamethonium blocks open ion channels of both subtypes with efficiency allowing to exclude an appreciable presence of homomeric alpha7 nicotinic acetylcholine receptors on the subsynaptic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号