首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete sequence of four viral RNA segments of fig mosaic virus (FMV) was determined. Each of the four RNAs comprises a single open reading frame (ORF) 7,093, 2,252, 1,490 and 1,472 nucleotides in size, respectively. These ORFs encode the following proteins in the order: RNA-dependent RNA polymerase (p1 264 kDa), a putative glycoprotein (p2 73 kDa), a putative nucleocapsid protein (p3 35 kDa) and a protein with unknown function (p4 40.5 kDa). All RNA segments possess untranslated regions containing at the 5′ and 3′ termini a 13-nt complementary sequence. A conserved motif denoted premotif A was found to be present in addition to the five RdRp motifs A–F in RNA-1. In phylogenetic trees constructed with the amino acid sequences of RNA-1 and RNA-2, FMV clustered consistently with European mountain ash ringspot-associated virus (EMARaV) in a clade close to those comprising members of the genera Hantavirus, Orthobunyavirus and Tospovirus. The amino acid sequence of the putative FMV nucleocapsid protein encoded by RNA-3 shared identity with comparable sequences of EMARaV and the unclassified viruses pigeonpea sterility mosaic virus (PPSMV) and maize red stripe virus (MRSV). The nucleocapsid sequences rooted the four viruses in a clade close to the genus Tospovirus. Based on molecular, morphological and epidemiological features, FMV appears to be very closely related to PPSMV and MRSV. All these viruses are phylogenetically related to EMARaV and therefore seem to be eligible for classification in the proposed genus Emaravirus, which, in turn, may find a taxonomic allocation in the family Bunyaviridae.  相似文献   

2.
Summary After extraction of double-stranded (ds) RNAs from Vicia faba, dsRNA1 and dsRNA2 of Vicia cryptic virus (VCV), a member of the genus Alphacryptovirus (family Partitiviridae), were detected in six out of seven different cultivars by agarose gel electrophoresis. In attempts to sequence the complete VCV genome, the dsRNA1 and dsRNA2 sequences from a total of five different V. faba cultivars were determined. Analysis of these sequences indicated that V. faba cultivars contain almost indistinguishable VCV sequences. The larger dsRNA1 was 2012 bp in length and contained a major open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp). The smaller dsRNA2 was 1779 bp in length and comprised a single ORF on its plus-strand encoding the coat protein (CP). The sequences of the dsRNA1 and dsRNA2 ORFs shared highest amino acid sequence identities (84 and 56%, respectively) with the corresponding gene products of the alphacryptovirus white clover cryptic virus 1 (WCCV-1). The 5′-terminal untranslated regions of dsRNA1 and dsRNA2 of VCV were highly conserved and were strikingly similar to the corresponding regions of WCCV-1. RdRp amino acid sequence alignments revealed conserved motifs, which correlate with the phylogenetic clustering of the family Partitiviridae.  相似文献   

3.
We report the discovery of a new virus from the red imported fire ant, Solenopsis invicta. Solenopsis invicta virus 3 (SINV-3) represents the third virus discovered from this ant species using the metagenomics approach. The single (positive)-strand RNA, monopartite, bicistronic genome of SINV-3 was sequenced in entirety (GenBank accession number FJ528584), comprised of 10,386 nucleotides, and polyadenylated at the 3′ terminus. This genome size was confirmed by Northern analysis. The genome revealed 2 large open reading frames (ORFs) in the sense orientation with an untranslated region (UTR) at each end and between the two ORFs. The 5′ proximal ORF (ORF 1) encoded a predicted protein of 299.1 kDa (2580 amino acids). The 3′ proximal ORF (ORF 2) encoded a predicted protein of 73.2 kDa (651 amino acids). RNA-dependent RNA polymerase (RdRp), helicase, and protease domains were recognized in ORF 1. SDS-PAGE separation of purified SINV-3 particles yielded 2 bands (ostensibly capsid proteins) with a combined molecular mass of 77.3 kDa which was similar to the mass predicted by ORF 2 (73.2 kDa). Phylogenetic analysis of the conserved amino acid sequences containing domains I to VIII of the RdRp from dicistroviruses, iflaviruses, plant small RNA viruses, picornaviruses, and 4 unassigned positive-strand RNA viruses revealed a trichotomous phenogram with SINV-3 and Kelp fly virus comprising a unique cluster. Electron microscopic examination of negatively stained samples of SINV-3 revealed isometric particles with apparent projections and a diameter of 27.3 ± 1.3 nm. SINV-3 was successfully transmitted to uninfected workers by feeding. The minus (replicative) strand of SINV-3 was detected in worker ants indicating replication of the virus. The possibility of using SINV-3 as a microbial control agent for fire ants is discussed.  相似文献   

4.
James D  Upton C 《Archives of virology》2002,147(8):1631-1641
Summary.  RNA-2 of a flat apple isolate of Cherry rasp leaf virus (CRLV-FA) appears to consist of 3274 nucleotides, excluding a 3′ poly (A) tail. The data supports re-classification of CRLV in a new genus in the family Comoviridae. A single open reading frame (ORF) encoding a putative 108 kDa polyprotein was identified. Potential protease cleavage sites were identified which would result in the production of a putative movement protein (41 kDa), and 3 capsid protein subunits (24, 20, and 22 kDa, respectively). A 5′-UTR and 3′-UTR were identified, 248 nt and 146 nt long, respectively. The genome organisation of CRLV-FA RNA-2 is similar to that of Apple latent spherical virus (ALSV) RNA-2, a new member of the family Comoviridae. The Vp25 amino acid sequences were unique to CRLV-FA and ALSV (54% identity), with no relationship identified to any other virus. CRLV-FA Vp20 and Vp24 amino acid sequences were closely related to ALSV (59 and 65%, respectively) but the only other relationships identified were with a range of animal ssRNA positive-strand viruses. Received December 7, 2001; accepted April 12, 2002 Published online June 21, 2002  相似文献   

5.
Potato virus T (PVT), a member of an unassigned species in the family Flexiviridae, has a genome 6,539 nt in size with three ORFs coding for replication-associated proteins (185 kDa, ORF 1), movement protein (40 kDa, ORF 2) and coat protein (24 kDa, ORF 3), respectively. PVT differs from the type members of all genera of the family Flexiviridae with a 30K-type movement protein and is phylogenetically distant from all of these viruses, least so from grapevine virus A (GVA, genus Vitivirus), with which it groups in all trees. The viral genome resembles that of trichoviruses but is smaller and does not contain the 3′ terminal fourth ORF found in some members of this genus. PTV may represent a new genus of plant viruses for which the provisional name of Andesvirus is proposed.  相似文献   

6.
James D  Upton C 《Archives of virology》2005,150(7):1469-1476
Summary. The sequence of the RNA-1 of a flat apple isolate of Cherry rasp leaf virus (CRLV-FA) was determined using overlapping cDNA fragments. CRLV-FA RNA-1 consists of 6992 nucleotides (nt), excluding a 3′ poly (A) tail. A single open reading frame (ORF) consisting of 6705 nt was identified. This ORF encodes a putative polyprotein consisting of 2235 amino acid (aa) residues, approximately 249.6 kDa. When compared to CRLV-pot (potato isolate) RNA-1 ORF, 2 deletions of 5 aa and 10 aa (total 15 aa) were observed at the variable N-terminus of the protease cofactor of CRLV-FA. Non-coding regions were identified at the 5′-(142 nt) and 3′-end (145 nt). CRLV-FA and CRLV-pot are isolates of the same virus with identity levels for the RNA-1 associated nt and deduced aa of 94% and 95%, respectively. RT-PCR targeting CRLV-FA RNA-1 appear to be of similar sensitivity and just as reliable as RT-PCR targeting RNA-2.  相似文献   

7.
8.

A virus isolate from tabasco pepper (Capsicum frutescens) has been reported as a strain of the comovirus Andean potato mottle virus (APMoV). Using the replicative intermediate viral dsRNA, the pepper virus strain was sequenced by Illumina MiSeq. The viral genome was de novo assembled resulting in two RNAs with lengths of 6028 and 3646 nt. Nucleotide sequence analysis indicated that they corresponded to the RNA-1 and RNA-2 of a novel comovirus which we tentatively named pepper mild mosaic virus (PepMMV). Predictions of the open reading frame (ORF) of RNA-1 resulted in a single ORF of 5871 nt with five cistrons typical of comoviruses, cofactor proteinase, helicase, viral protein genome-linked, 3C-like proteinase (Pro), and RNA-dependent RNA polymerase (RdRP). Similarly, sequence analysis of RNA-2 resulted in a single ORF of 3009 nt with two cistrons typical of comoviruses: movement protein and coat protein (large coat protein and small coat proteins). In pairwise amino acid sequence alignments using the Pro-Pol protein, PepMMV shared the closest identities with broad bean true mosaic virus and cowpea mosaic virus, 56% and 53.9% respectively. In contrast, in alignments of the amino acid sequence of the coat protein (small and large coat proteins) PepMMV shared the closest identities to APMoV and red clover mottle virus, 54% and 40.9% respectively. A phylogenetic tree constructed using the conserved domains for the Pro-Pol from all members of the family Secoviridae confirmed the comovirus nature of the virus. Phylogenetic and sequence analyses supports proposing PepMMV as a new species of the genus Comovirus.

  相似文献   

9.
The complete genome sequence of grapevine Bulgarian latent virus (GBLV) has been determined. RNA-1 (7,452 nt in length) contains a single ORF of 6,285 nt, encoding a polyprotein with conserved motifs characteristic of the viral protease cofactor (Prot-cofact), the NTP-binding protein (NTP), the cysteine-like protease (Cyst-Prot) and the RNA-dependent RNA polymerase (RdRp) of members of the order Picornavirales and show high aa sequence identity with blackcurrant reversion virus (BRV, 64%). RNA-2 (5,821 nt) contains a single ORF of 4,500 nt, encoding a polyprotein in which the conserved motifs of the movement protein (MP) and coat protein (CP) have been identified. The GBLV CP aa sequence shows highest homology with that of blueberry leaf mottle virus (BLMoV, 68%). Both RNAs have a poly(A) tail and a NCR at the 3' and 5' termini, respectively. The results of this study confirm the classification of GBLV as a member of a distinct species in subgroup C of the genus Nepovirus.  相似文献   

10.
The nucleotide sequence of Dweet mottle virus (DMV) was determined and compared to sequences of members of the families Alphaflexiviridae and Betaflexiviridae. The DMV genome has 8,747 nucleotides (nt) excluding the 3′ poly-(A) tail. DMV genomic RNA contains three putative open reading frames (ORFs) and untranslated regions of 73 nt at the 5′ and 541 nt at 3′ termini. ORF1 potentially encoding a 227.48-kDa polyprotein, which has methyltransferase, oxygenase, endopeptidase, helicase, and RNA-dependent RNA polymerase (RdRP) domains. ORF2 encodes a movement protein of 40.25 kDa, while ORF3 encodes a coat protein of 40.69 kDa. Protein database searches showed 98–99% matches of DMV ORFs with citrus leaf blotch virus (CLBV) sequences. Phylogenetic analysis based on the RdRP core domain revealed that DMV is closely related to CLBV as a member of the genus Citrivirus. DMV did not satisfy the molecular criteria for demarcation of an independent species within the genus Citrivirus, family Betaflexiviridae, and hence, DMV can be considered a CLBV isolate.  相似文献   

11.
This report describes the complete nucleotide sequence and genome organization of Rosa rugosa leaf distortion virus (RrLDV), the causal agent of a previously undescribed virus disease of Rosa rugosa. The RrLDV genome is a positive-sense ssRNA, 3971 nucleotides in length, containing five open reading frames (ORFs). ORF1 encodes a 27-kDa peptide (p27). ORF2 shares a common start codon with ORF1 and continues through the amber stop codon of p27 to produce an 87-kDa protein (p87) with amino acid sequence similarity to the RNA-dependent RNA polymerases (RdRp) of members of the family Tombusviridae. ORF3 encodes a protein of 8 kDa with no significant similarity to known viral sequences. ORF4 encodes a 6-kDa protein (p6) with similarity to the p13 movement proteins of members of the family Tombusviridae. ORF5 has no conventional start codon and overlaps with p6. A putative +1 frame shift mechanism allows p6 translation to continue through the stop codon and results in a 12-kDa protein with high homology to the carmovirus p13 movement protein. The 37-kDa protein encoded by ORF6 has amino acid sequence similarity to coat proteins (CPs) of members of the family Tombusviridae. Phylogenetic analyses of the RdRp and CP amino acid sequences placed RrLDV in a subgroup close to members of the genus Carmovirus of the family Tombusviridae.  相似文献   

12.
Summary.  The complete sequence of a North American tobacco rattle virus (TRV) isolate, ‘Oregon yellow’ (ORY), was determined from cDNA and RT-PCR clones derived from the two genomic RNAs of this isolate. The RNA-1 is 6790 bases and RNA-2 is 3261 bases. The sequence of TRV-ORY RNA-1 was similar to RNA-1 of TRV isolate SYM, and differs in 48 nucleotides. TRV-ORY RNA-1 was one base shorter than -SYM, and had 47 base substitutions resulting in 12 amino acid substitutions of which 4 were conservative. The RNA-2 of TRV-ORY was distinct from RNA-2 of other characterized TRV isolates and contained three open reading frames (ORFs) that could potentially code for proteins of MW 22.4 kDa, 37.6 kDa and 17.9 kDa. Based on the homology of the predicted amino acid sequence with those of other tobraviruses, ORF1 of RNA-2 encodes the coat protein (CP). The protein sequence of ORF2 had regions of limited similarity with those of ORF2 of two other TRV isolates and pea early browning tobravirus. The ORF3 was unique to TRV-ORY. Phylogenetic analysis of tobravirus CPs indicated that TRV-ORY was most closely related to pepper ringspot tobravirus and TRV-TCM. The relationship of tobravirus CPs to other rod-shaped tubular plant viruses vis also discussed. Accepted March 21, 1998  相似文献   

13.
Summary.  The sequence of prune dwarf ilarvirus (PDV) RNA-1 has been determined; it consists of 3 374 nucleotides and contains a single open reading frame of 3 168 nucleotides. The putative translation product is 1 055 amino acids in length with a calculated molecular mass of 118.9 kDa. Both the nucleic acid and the translated amino acid sequences show stronger homology to the corresponding RNA-1 and ORF-1 of apple mosaic ilarvirus and alfalfa mosaic alfamovirus than to spinach latent mosaic ilarvirus or citrus leaf rugose ilarvirus. These findings are consistent with the inclusion of alfalfa mosaic virus in the ilarvirus genus. The reported sequence of PDV RNA-1 and its single ORF conform to the genomic organization typical of the Bromoviridae family. Received September 4, 1997 Accepted March 27, 1997  相似文献   

14.
Kim JW  Choi EY  Lee JI 《Virus genes》2005,31(2):175-183
The complete sequences of three double-stranded (ds) RNAs (referred to F1, F2 and F3) of Penicillium stoloniferum virus F (PsV-F) were established. The F1 dsRNA was 1677 bp in length, and it contained one open reading frame (ORF) of 538 amino acids (molecular weight of 63 kDa, referred to P63), The F2 dsRNA was 1500 by in length, and also it contained one ORF of 420 amino acids (molecular weight of 46 kDa, referred to P46). The F3 dsRNA was 677 bp in length, but contained a small ORF with unknown function. A sequence motif of (5′-CGTAAAA-3′) was found only at the 5′ termini of the F1 and F2 dsRNAs, and a sequence motif of (5′-TAAAAAAAAA-3′) was found at the 3′ termini of all three dsRNA segments. The predicted amino acid sequence of F1 showed 38–48% sequence homology with the putative dsRNA-dependent RNA polymerases (RdRp) of dsRNA viruses, but the predicted amino acid of F2 showed no homology. Phylogenetic analysis using the RdRp sequences of the various Partitiviruses and Alphacryptoviruses revealed that PsV-F clustered well with Partitiviruses, but showed remote relationship with PsV-S. Near full-length and positive-sense single-stranded (ss) RNAs derived from the Fl, F2 and F3 dsRNAs were detected from the PsV-infected host cell. The expressed proteins of P63 and P46 showed a positive reaction against PsV-F antiserum, indicating P63 and P46 as RdRp and capsid protein, respectively. These results suggest that PsV-F can be a member of Partitivirus, but it is quite distinct from PsV-S electrophoretically, serologically and genetically, though both viruses coexist in the same cell.  相似文献   

15.
Summary.  Aureusvirus is a new genus of plant viruses typified by pothos latent virus (PoLV) and comprising cucumber leaf spot virus (CLSV), previously classified as definitive species in the genus Carmovirus. Aureusviruses are soil-borne viruses readily transmitted by sap inoculation to a moderate range of hosts. Natural transmissions of CLSV is by the chytrid fungus Olpidium bornovanus, whereas PoLV infects the host without the apparent intervention of a vector. Aureusviruses have isometric particles with size (c. 30 nm) and structure similar to those of the family Tombusviridae, to which the genus belongs. The genome consists of a molecule of single-stranded, positive-sense RNA c. 4.4 kb in size comprising five ORFs. The structural organization (i.e. number and order of genes) is virtually identical to that of members of the genus Tombusvirus. However, the aureusvirus genome has a smaller size and shows distinct differences in the amino acid sequence of some of the ORFs. ORF 1 encodes a 25 kDa product and terminates with a leaky amber codon the readthrough of which results in a 84 kDa protein (ORF 2) with the conserved motifs of RNA dependent RNA polymerase. ORF 3 encodes the coat protein (40-41 kDa), ORF 4 the movement protein (27 kDa), and ORF 5 a 14-17 kDa product responsible for symptom severity. Virions accumulate in great quantity in the cytoplasm, often forming crystalline aggregates, and in bubble-like evaginations of the tonoplast protruding into the vacuole. Replication is likely to occur in the cytoplasm with a stategy based on direct expression of the 5' proximal ORF and expression of downstream ORFs through subgenomic RNAs.  相似文献   

16.
Tobacco rattle virus (TRV) causes stem mottle on potato leaves and necrotic arcs and rings in potato tubers, known as corky ringspot disease. Recently, TRV was reported in Michigan potato tubers cv. FL1879 exhibiting corky ringspot disease. Sequence analysis of the RNA-1-encoded 16-kDa gene of the Michigan isolate, designated MI-1, revealed homology to TRV isolates from Florida and Washington. Here, we report the complete genomic sequence of RNA-1 (6,791 nt) and RNA-2 (3,685 nt) of TRV MI-1. RNA-1 is predicted to contain four open reading frames, and the genome structure and phylogenetic analyses of the RNA-1 nucleotide sequence revealed significant homologies to the known sequences of other TRV-1 isolates. The relationships based on the full-length nucleotide sequence were different from than those based on the 16-kDa gene encoded on genomic RNA-1 and reflect sequence variation within a 20–25-aa residue region of the 16-kDa protein. MI-1 RNA-2 is predicted to contain three ORFs, encoding the coat protein (CP), a 37.6-kDa protein (ORF 2b), and a 33.6-kDa protein (ORF 2c). In addition, it contains a region of similarity to the 3′ terminus of RNA-1, including a truncated portion of the 16-kDa cistron. Phylogenetic analysis of RNA-2, based on a comparison of nucleotide sequences with other members of the genus Tobravirus, indicates that TRV MI-1 and other North American isolates cluster as a distinct group. TRV M1-1 is only the second North American isolate for which there is a complete sequence of the genome, and it is distinct from the North American isolate TRV ORY. The relationship of the TRV MI-1 isolate to other tobravirus isolates is discussed.  相似文献   

17.
Liu H  Teng Y  Zheng X  Wu Y  Xie X  He J  Ye Y  Wu Z 《Archives of virology》2012,157(4):777-782
A nodavirus isolated from red-spotted grouper (Epinephelus akaara) larvae in China has been subjected to genome analysis. The full-length genome sequences of RNA1 and RNA2 were determined, and the 5′-non-coding region (NCR) and 3′NCR sequences were determined by 5′ rapid amplification of cDNA ends (RACE) and 3′RACE. RNA1 is 3,103 nt in length and contains a 982-amino-acid open reading frame (ORF) encoding protein A with a calculated molecular mass of 110.74 kDa. RNA2 is 1,433 nt long and contains a 338-amino-acid major ORF encoding coat protein with a calculated molecular mass of 37.059 kDa. Multiple alignment and phylogenetic analysis clearly supported including this virus in the species Redspotted grouper nervous necrosis virus, genus Betanodavirus, family Nodaviridae.  相似文献   

18.
RNA 2 and RNA 3 of lilac leaf chlorosis virus (LLCV) were sequenced and shown to be 2,762 nucleotides (nt) and 2,117 nts in length, respectively. RNA 2 encodes a putative 807-amino-acid (aa) RNA-dependent RNA polymerase associated protein with an estimated M r of 92.75 kDa. RNA 3 is bicistronic, with ORF1 encoding a putative movement protein (277 aa, M r 31.45 kDa) and ORF2 encoding the putative coat protein (221 aa, M r 24.37 kDa). The genome organization is similar to that typical for members of the genus Ilarvirus. Phylogenetic analyses indicate a close evolutionary relationship between LLCV, ApMV, and PNRSV.  相似文献   

19.
Summary. A new virus was isolated from tomato plants from the Murcia region in Spain which showed symptoms of ‘torrado disease’; very distinct necrotic, almost burn-like symptoms on leaves of infected plants. The virus particles are isometric with a diameter of approximately 28 nm. The viral genome consists of two (+)ssRNA molecules of 7793 (RNA1) and 5389 nts (RNA2). RNA1 contains one open reading frame (ORF) encoding a predicted polyprotein of 241 kDa that shows conserved regions with motifs typical for a protease-cofactor, a helicase, a protease and an RNA-dependent RNA polymerase. RNA2 contains two, partially overlapping ORFs potentially encoding proteins of 20 and 134 kDa. These viral RNAs are encapsidated by three proteins with estimated sizes of 35, 26 and 23 kDa. Direct protein sequencing mapped these coat proteins to ORF2 on RNA2. Phylogenetic analyses of nucleotide and derived amino acid sequences showed that the virus is related to but distinct from viruses belonging to the genera Sequivirus, Sadwavirus and Cheravirus. This new virus, for which the name tomato torrado virus is proposed, most likely represents a member of a new plant virus genus.  相似文献   

20.
Summary.  The nucleotide sequence of cherry mottle leaf virus (CMLV) was determined and compared to sequences of a number of plant viruses including the type member of the Trichovirus genus (apple chlorotic leafspot virus, ACLSV), and members of the Vitivirus genus including grapevine virus B, (GVB). The CMLV genome was determined to consist of 8003 nt excluding the poly(A) tail at the 3′ end of the genome. The overall A+U content of CMLV genomic RNA was 59. 1%, which is similar to ACLSV, but significantly different from GVB. Four putative open reading frames were identified (ORFs 1, 2, 3, and 4) encoding proteins of Mr 215. 8 kDa, 47 kDa, 21.6 kDa, and 15. 3 kDa, respectively. This differs from ACLSV which has 3 ORFS, and GVB which has 5 ORFs. Protein database searches showed no matches of CMLV ORF4 with ACLSV sequences, but found similarities between ORF4 of CMLV and ORF5 of GVB, suggesting that this may be a nucleic acid-binding protein. CMLV and ACLSV formed a common virus clade in phylogenetic analysis of the coat protein amino acid sequence and except for CMLV’s ORF4, these viruses show high levels of similarity throughout the genome. CMLV appears to be a member of the Trichovirus genus. Accepted November 19, 1999/Received August 12, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号