首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A panel of four anti-MAP1B antibodies have been used to study the presence and post-translational modification of MAP1B in primary cultures of glial cells. Two antibodies (150 and 125) recognize phosphorylated epitopes whereas the other two (531 and 842) recognize non-phosphorylated phosphorylatable epitopes on the MAP1B molecule. Immunofluorescence and Western blot analysis with antibodies 531 and 842 revealed the presence of small amounts of MAP1B-like immunoreactivity in type 1 astrocytes and a greater content in more differentiated glial cells found in long-term cultures. By immunofluorescence, these latter cells gave positive immunostaining with antibody 125, which recognizes a phosphorylated epitope phosphorylated by casein kinase II. Antibody 150, which reacts to a phosphorylated epitope on the MAP1B molecule, did not show any detectable immunoreactivity in glial cells cultures, either by immunofluorescence or Western blot. All four antibodies recognized hippocampal neurones in culture, with especially intense immunostaining in cell bodies and axons, and reacted strongly with protein present in hippocampal neurones extracts showing an electrophoretic mobility similar to that of brain MAP1B. In mixed optic nerve glial cell cultures, anti-galactocerebroside (Ga1C) positive cells gave also positive staining with antibodies 531 and 125. We propose that MAP1B is present in cultures of glial cells in moderate amounts and with a phosphorylation state different than in neurones. Thus, less differentiated glial cells, such as type 1 astrocytes, have a small amount of MAP1B, mainly in a non-phosphorylated form, which is spread diffusely in the cytoplasm and probably does not interact with microtubules. More differentiated glial cells, such as oligodendrocytes, show a greater content in MAP1B which, at least in part, is phosphorylated by a casein kinase II-like activity. © 1994 Wiley-Liss, Inc.  相似文献   

2.
Mautes AE  Noble LJ 《Brain research》2000,883(2):233-237
HSP70 and heme oxygenase-1 (HO-1) are thought to be markers of cell injury and oxidative stress, respectively. We have immunolocalized these proteins in the spinal cord at 1-14 days after contusion. HSP70 and HO-1 were co-induced in glia and macrophages within the injured segment at all time points. This co-induction may reflect complementary functions that serve to protect these cells as they respond to the postcontusional environment.  相似文献   

3.
Cerebral ischemic injury results in the liberation of heme from degenerating heme-containing proteins. The neurotoxic heme is usually detoxified by the constitutive heme oxygenase-2 (HO-2) and its inducible isoform HO-1(heat shock protein 32) resulting in the formation of biliverdin which becomes reduced to bilirubin, carbon monoxide (CO), and iron. Biliverdin and bilirubin have antioxidative properties whereas CO is discussed as a signaling molecule. Iron if it remains free could catalyze Haber--Weiss and Fenton reactions causing the formation of highly toxic radicals. We have studied the alterations of cerebral HO-2 and HO-1 in relation to iron accumulations after defined cortical photothrombosis within the hindlimb area of the rat. HO-2 immunohistochemistry showed that the number of HO-2-positive neurons in most perilesional regions remained constant. However, much stronger systemic immunoreactivity for HO-2 was observed between days 1 and 7 postlesion. For HO-1 a systemic increase of immunoreactivity occurred also between days 1 and 7. In addition HO-1-positive astrocytes and microglia appeared as early as 4 h postlesion and increased up to day 3 followed by a sharp decline toward day 14 within the injured hemisphere. HO-1-positive astrocytes and microglia occurred in ipsilateral cortex, corpus callosum, hippocampus, striatum, and thalamic nuclei. Additionally an increase of HO-1 in myelin-associated globulin-positive oligodendrocytes was found in ipsilateral and contralateral cortex. Next to the lesion iron accumulation occurred after day 3 and increased strongly toward day 14 at times when HO-1 and -2 had decreased, suggesting that HO activity does not directly contribute to postlesional iron deposition.  相似文献   

4.
The induction of heme oxygenase-1 (HO-1) was studied in intact spinal cords and injured spinal cords after a moderate, thoracic contusion injury. HO-1 was immunolocalized in the normal cord and along the axis of the cord at 1, 2, 3 and 4 days after contusion. Induction of this enzyme in astrocytes and microglia/macrophages was evaluated using immunofluorescent double labeling with monoclonal antibodies to HO-1 and either glial fibrillary acidic protein or the complement C3bi receptor. HO-1 was expressed in neurons in the normal spinal cord. After contusion, HO-1 was induced in both gray and white matter at the impact site. In segments of cord that were 1 cm proximal or distal to the injury, HO-1 was primarily induced in the dorsal columns and occasionally in the lateral white matter. This pattern of induction was noted at all time points. The HO-1 was induced primarily in microglia/macrophages. The distribution of the HO-1 positive cells closely correlated with the pattern of intraparenchymal hemorrhage. These findings demonstrate acute induction of HO-1 in non-neuronal cells in the injured spinal cord. Induction of HO-1 in glia may be a consequence of multiple factors including exposure to heme proteins, hypoxia and oxidative stress.  相似文献   

5.
Tumor necrosis factor α (TNFα) appears to take part in the pathogenesis of multiple sclerosis and to contribute to the degeneration of oligodendrocytes as well as neurons. TNFα is produced by microglia and astrocytes, which also produce hormones and cytokines that influence its biological activity. Thus, in mixed cultures the effects of exogenous TNFα might be modified by products of astrocytes and microglia. The effects of TNFα in oligodendrocyte-enriched cultures are reported below. We prepared the cultures by shaking oligodendrocytes off primary mixed glial-cell cultures from brains of 2-day-old rats at 7 days in vitro and plating them (0 days post-shake, DPS). Platelet-derived growth factor and fibroblast growth factor were included in the media at 1–5 DPS in order to encourage proliferation. At 2 DPS media were added with no TNFα (controls) or 1000, 2000 or 5000 U/ml of TNFα, and at 5 DPS media were replaced with fresh serum-free media. Cultures were fixed with 4% paraformaldehyde at 5, 7, 9 and 12 DPS and immunostained. Oligodendrocyte progenitors were not reduced in numbers immediately after the incubation with TNFα (i.e. at 5 DPS). However, after an additional 4 days in culture fewer progenitors remained in the cultures that had been treated with TNFα than in the untreated cultures. In the absence of the growth factors there were fewer progenitors, but their numbers also were reduced by TNFα. Maturation to the myelin basic protein (MBP)-positive stage was inhibited by about 36% at 9 DPS by 1000–2000 U/ml of TNFα, while numbers of O4+/MBP− precursors were unaffected. It is interesting that the steady-state number of O4-positive precursors was unchanged by TNFα at 9 DPS, when there were reductions in the numbers of A2B5-positive progenitors and MBP-positive mature oligodendrocytes. That observation suggests that the rates of proliferation, death and maturation are controlled by multiple factors, with a particularly vulnerable time at the maturation to the MBP-positive stage. At 5000 U/ml TNFα the specific effect on maturation was overtaken cytotoxicity. These data and a summary of the literature suggest that inhibition of MBP expression is sensitive to lower TNFα concentrations and incubation times than is cell survival. Specific effects on numbers of MBP-positive cells, morphology and MBP expression occur at 1000–2000 U/ml for 48–72 h or at up to 10 000 U/ml for≤24 h, and the deficits remain after removal of the TNFα.  相似文献   

6.
7.
Summary Intercellular adhesion molecule-1 (ICAM-1) was localized immunohistochemically in postmortem brain tissue of Alzheimer's disease (AD), progressive supranuclear palsy, amyotrophic lateral sclerosis, Pick's disease, and controls. In controls, only capillaries were stained for ICAM-1. In affected areas of neurologically disease brains, a subset of reactive astrocytes was also strongly stained. In addition, there were irregular, diffuse patches of positive staining in the tissue matrix. In AD, many of these patches had dense cores which corresponded with senile plaques. Double immunostaining for glial fibrillary acidic protein and ICAM-1 indicated that some reactive astrocytes at the periphery of senile plaques were positive for ICAM-1. Within such plaques, microglial aggregates were stained intensely for leukocyte function-associated antigen-1 (LFA-1), the adhesion molecule for ICAM-1. The LFA-1/ICAM-1 system appears to play an important role in the interaction of astrocytes and microglia in several neurological diseases.Supported by grants from the Foundation for Total Health Promotion (HA), the Sasakawa Research Foundation (HA), the Alzheimer Society of B.C. and the MRC of Canada, as well as donations from individual British Columbians  相似文献   

8.
Fingolimod affords protection from MS by sequestering lymphocytes in secondary lymphoid organs via down regulation of their sphingosine 1 phosphate receptor (S1P1). Unexpectedly, accumulating evidence indicates that patients who discontinue fingolimod treatment may be at risk of rehearsal of magnetic resonance (MR) and clinical disease activity, sometimes featuring dramatic rebound.We therefore developed in vivo and in vitro models of post-fingolimod MS rebound to unravel its cellular and molecular mechanisms. The impact of fingolimod withdrawal on T regulatory lymphocytes was also investigated by means of cytofluorimetric analysis and antigen-specific lymphocyte proliferation assays. We show that mice with relapsing-remitting experimental autoimmune encephalomyelitis (EAE) undergo extremely severe, chronic disease rebound upon discontinuation of fingolimod. Remarkably, rebound is preceded by a burst of S1P1 overexpression in lymph node-entrapped lymphocytes that correlates with subsequent massive lymphocyte egress and widespread CNS immune infiltration. Also, consistent with the ability of S1P1 to counteract polarization and function of T regulatory lymphocytes their number and suppression of effector T cells is reduced by fingolimod suspension. Data disclose the first pathogenic mechanisms of post-fingolimod rebound that may be targeted for therapeutic intervention.  相似文献   

9.
Extracellular heme derived from hemoglobin following hemorrhage or released from dying cells induces the expression of heme oxygenase-1 (HO-1, HSP-32) which metabolizes heme to the gaseous mediator carbon monoxide (CO), iron (Fe) and biliverdin. Biliverdin and its product bilirubin are powerful antioxidants. Thus, expression of HO-1 is considered to be a protective mechanism against oxidative stress and has been described in microglia, astrocytes and neurons following distinct experimental models of pathological alterations to the brain such as subarachnoidal hemorrhage, ischemia and traumatic brain injury (TBI) and in human neurodegenerative diseases. We have now analyzed the expression of HO-1 in human brains following TBI (n = 28; survival times: few minutes up to 6 months) and focal cerebral infarctions (FCI; n = 17; survival time: < 1 day up to months) by immunohistochemistry. Follwing TBI, accumulation of HO-1+ microglia/macrophages at the hemorrhagic lesion was detected as early as 6 h post trauma and was still pronounced after 6 months. In contrast, after FCI HO-1+ microglia/macrophages accumulated within focal hemorrhages only and were absent in non-hemorrhagic regions. Further, HO-1 was weakly expressed in astrocytes in the perifocal penumbra. In contrast to experimental data derived from rat focal ischemia, these results indicate a prolonged HO-1 expression in humans after brain injury.  相似文献   

10.
IL-1β and IL-18 are members of the IL-1 family of ligands, and their receptors are members of the IL-1 receptor family. Although several biological properties overlap for these cytokines, differences exist. In order to assess functional importance of these two cytokines in viral encephalitis, we have exploited an experimental model of Japanese Encephalitis (JE) and subsequent in vitro cell culture system. We report for the first time that in Japanese Encephalitis, microglia and astrocytes both produce IL-18 and IL-1β. In vitro, these two cytokines differentially activate microglia and astrocyte, and also alter the by stander neuronal survival following treatment with these two cytokines.  相似文献   

11.
12.
To examine the cellular distribution of radical scavenging enzymes in glia, in comparison to that in neurons and their behaviour during excitotoxically induced neurodegenerative processes, protein levels and the cellular localization of cytosolic and mitochondrial superoxide dismutase (Cu/Zn- and Mn-SOD) were investigated in the rat brain undergoing quinolinic acid (Quin)-induced neurodegeneration. Evidence for the specificity of the applied antibodies to detect immunocytochemically these SOD isoforms was obtained from electron microscopy and Western blotting. In control striatum Mn-SOD was clearly confined to neurons, whereas Cu/Zn-SOD was found, rather delicately, only in astrocytes. Microglia failed to stain with antibodies to both SOD isoforms. Quin application resulted in an initial formation of oxygen and nitrogen radicals as determined by the decline in the ratio of ascorbic to dehydroascorbic acid and by increased levels of nitrated proteins, an indicator for elevated peroxynitrite formation. Morphologically, massive neuronal damage was seen in parallel. Astroglia remained intact but showed initially decreased glutamine synthetase activities. The levels of Mn-SOD protein increased 2-fold 24 h after Quin injection (Western blotting) and declined only slowly over the time period considered (10 days). Cu/Zn-SOD levels increased only 1.3-fold. Immunocytochemical studies revealed that the increase in Mn-SOD is confined to neurons, whereas that of Cu/Zn-SOD was observed only in astroglial cells. Quiescent microglial cells were, as a rule, free of immunocytochemically detectable SOD, whereas in activated microglia a few Mn-SOD immunolabeled mitochondria occurred. Our results suggest a differential protective response in the Quin lesioned striatum in that Mn-SOD is upregulated in neurons and Cu/Zn-SOD in astroglia. Both SOD-isoforms are assumed to be induced to prevent oxidative and nitric oxide/peroxynitrite-mediated damage. In the border zone of the lesion core this strategy may contribute to resist the noxious stimulus. GLIA 23:285–297, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
目的:构建pcDNA3.1( )胶质细胞源性神经营养因子(GDNF)真核表达质粒并了解其在真核细胞内的表达。方法:将GDNF逆转录聚合酶链 式反应(RT-PCR)产物克隆至pcDNA3.1( )真核表达载体上,经酶切鉴定及测序分析并以FuGene6介导法转染真核细胞,了解其在细胞内的表达及春表达蛋白折生物学活性。结果:RT-PCR产物为640bp特异性片段,pcDNA3.1( )GDNF重组体经酶切后分别出现640bp和300bp片段,测序分析与文献报道结果完全一致,表明重组pcDNA3.1( )GDNF表达质粒克隆成功,可见pcDNA3.1( )GDNF质粒在真核动物细胞中得到表达,GDNF蛋白能刺激含多巴胺的细胞生长,表明重组质粒能在真核动物细胞中出具有活性的GDNF蛋白。结论以FuGene6介导pcDNA3.1( )GDNF质粒传染真核细胞为基因治疗帕金森病奠定了一定基础。  相似文献   

14.
To determine whether heme oxygenase-1 (HO-1) protein is induced by endogenous nitric oxide (NO) in rat glial cultures, we examined the effects of lipopolysaccharide (LPS), interferon-γ (IFN-γ), and NO donors such as S-nitroso-N-acetylpenicillamine (SNAP), in mixed glial cells and in vivo rat hippocampus. In cultured glial cells, treatment with LPS induced the expression of 130-kd inducible NO synthase (iNOS) after 6 h, and NO2accumulation and enhancement of the protein level of 33-kd HO-1 after 12 h. In addition, treatment with SNAP induced HO-1 expression after 6 h. Although NOS inhibitors such as NG-nitro-L-arginine (NNA) and NG-methyl-L-arginine did not change LPS-induced iNOS expression, these inhibitors suppressed both NO2 accumulation and the enhancement of HO-1. Immunocytochemistry showed that treatment with LPS for 24 h induced iNOS immunoreactivity predominantly in ameboid microglia, while this treatment induced HO-1-immunoreactivity in both microglia and astrocytes. In in vivo rat hippocampus, microinjection of LPS plus IFN-γ, or SNAP after 24 h also induced HO-1 immunoreactivity in reactive microglia and astrocytes. In addition, intraperitoneal administration of NNA inhibited HO-1 immunoreactivity induced by the microinjection of LPS plus IFN-γ. These results suggest that endogenous NO production by iNOS in microglia causes autocrine and paracrine induction of HO-1 protein in microglia and astrocytes in vitro and in rat brain. GLIA 22:138–148, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

15.
16.
The pathogenicity and cell tropism of mouse hepatitis virus (MHV-JHM-strain) in the developing mouse (Balb/c) and rat (Wistar and Lewis) brain were analysed. Intracranial infection of Balb/c mice at postnatal day 5 induced a lethal encephalitis in all animals. Of Wistar rats infected at day 2 or 5 after birth, 30 to 70%, respectively, survived. The distribution of viral antigen was studied in frozen brain sections of animals that died after infection; astrocytes were found to be the major virus-infected cell type throughout the central nervous system. More than 75% of the surviving rat pups developed paralysis, but viral antigen was detected in only few brain cells and not in astrocytes. The cell tropism of MHV-JHM was examined further in virus-infected glial cell cultures derived from brains of rats or mice. In the glial cultures derived from Wistar rats, only oligodendrocytes were infected, whereas in cultures derived from mouse or Lewis rat brain viral antigen was detected in both astrocytes and oligodendrocytes. Infection of astrocytes led to the formation of syncytia and degradation of the cytoskeleton. Infected rat oligodendrocytes gradually disappeared from the cultures because of cell death. These phenomena indicate that, besides an indirect autoimmune response triggered by infected astrocytes, direct virus-induced injury to astrocytes or to oligodendrocytes can have a dominant role in the neuropathogenicity of mouse hepatitis virus. The present results underscore the importance of species and developmental stage of experimental animals in the neurotropism and pathogenicity of MHV-JHM.  相似文献   

17.
18.
EAE大鼠SFO中NF-kB、HO-1蛋白表达的相关性   总被引:1,自引:0,他引:1  
目的探讨实验性自身免疫性脑脊髓炎(EAE)时,大鼠核转录因子-κB(NF-κB)、血红素氧合酶-1(HO-1)在穹隆下器(SFO)中的变化,为证明SFO是感受外周信息物质的早期位点之一提供依据。方法分别用HE染色和免疫组化双色标记技术,观察了完全福氏佐剂+豚鼠脊髓匀浆(CFA-GPSCH)诱导大鼠EAE1d、7d、14d、21d时SFO部位HO-1、NF-κB蛋白表达的动态变化,并分析了与症状之间的相关性。结果对照组大鼠脑仅有少量HO-1、NF-κB蛋白表达;实验组大鼠诱导EAE后,伴随着大鼠EAE症状及脑组织病理损伤的出现和进行性加重,其HO-1、NF-κB蛋白表达量逐渐增高;在诱导后1d,SFO部位即出现HO-1/NF-κB阳性细胞表达,而其他脑区变化不明显;7d时进一步增多;14d时,HO-1+/NF-κB+细胞至高峰,主要位于脉络丛、穹隆下器、血管"套袖样"病灶的周围,与EAE病变部位一致,此时大鼠EAE病情最重、体重减轻最显著、脑组织病理改变最明显;21d时脑组织HO-1+/NF-κB+细胞逐渐下降,大鼠EAE症状也逐渐恢复。应用NF-κB特异性抑制剂PDTC后,HO-1+/NF-κB表达明显减少,大鼠EAE症状和脑组织病变明显减轻,说明NF-κB水平的高低可以调节HO-1的活性及其生物学作用。结论SFO可能是外周信息物质向中枢神经系统传递的重要而早期的位点之一。  相似文献   

19.
We have previously reported that in the distal stump of ligated sciatic nerves, there is a change in the distribution of myelin basic protein (MBP) and P0 protein immunoreactivities. These results agreed with the studies of myelin isolated from the distal stump of animals submitted to ligation of the sciatic nerve, showing a gradual increase in a 14 kDa band with an electrophoretic mobility similar to that of an MBP isoform, among other changes. This band, which was resolved into two bands of 14 and 15 kDa using a 16% gel, was found to contain a mixture of MBP fragments and peptides with great homology with alpha- and beta-globins. In agreement with these results, we have demonstrated that the mRNA of alpha-globin is present in the proximal and distal stumps of the ligated nerve. It is also detected at very low levels in Schwann cells isolated from normal nerves. These results could be due to the presence of alpha- and/or beta-globin arising from immature cells of the erythroid series. Also, they could be present in macrophages, which spontaneously migrate to the injured nerve to promote the degradation of myelin proteins. Cells isolated from normal adult rat bone marrow which were injected intraortically were found to migrate to the injured area. These cells could contribute to the remyelination of the damaged area participating in the removal of myelin debris, through their transdifferentiation into Schwann cells or through their fusion with preexisting Schwann cells in the distal stump of the injured sciatic nerve.  相似文献   

20.
Di-2-ethylhexyl phthalate (DEHP) has been widely used as a plasticizer in industry and can cause neurotoxicity; however, the underlying mechanism remains unclear. In the study, we found that DEHP significantly inhibited viability of mouse NE-4C neural stem cells and caused lactate dehydrogenase (LDH) release from the cells. DEHP dramatically increased the levels of apoptosis-related proteins such as cleaved Caspase-8, cleaved Caspase-3 and Bax, as well as decreased Bcl-2 protein level. DEHP could also significantly increase the total numbers of AnnexinV-positive/PI-negative and AnnexinV-positive/PI-positive staining cells. Hoechst 33342 staining showed that marked DNA condensation and apoptotic bodies could be found in the ZnO NPs-treated cells. These results indicated that DEHP could induce apoptosis of NE-4C cells. Meanwhile, DEHP could significantly increase malondialdehyde (MDA) level, and decrease the content of glutathione (GSH) and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), respectively, implying that DEHP could induce oxidative stress of NE-4C cells. Furthermore, N-Acetyl-l-cysteine (NAC), an inhibitor of oxidative stress, could rescue the inhibition of cell viability and induction of apoptosis by DEHP. Taken together, our results showed that oxidative stress was involved in DEHP-induced apoptosis of mouse NE-4C cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号