首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
ObjectiveAdipogenesis determines the number of adipocytes which is increased when individuals become obese. Mitochondria undergo remarkable morphological and functional changes during adipogenesis. PTEN-induced kinase 1 (PINK1) is pivotal to maintain mitochondrial homeostasis in neural cells. The present study aimed at investigating effects of PINK1 on adipogenesis and energy metabolism.MethodsExpression of presenilin associated rhomboid-like protein (PARL), PINK1 and Parkin, as well as the interaction among these proteins was temporally examined during adipogenesis. In addition, the alterations of mitochondrial mass and the energy metabolism were also analyzed.ResultsAdipogenic process can be dissected into 3 stages according to the participation of PARL-PINK1-Parkin system. (1) When pre-adipocytes are switched to differentiation, f-PINK1 is subjected to PARL cleavage to generate s-PINK1 at the early stage of differentiation (0–4 day). Mitochondrial mass is increased for generating ambient energy to meet the demands for cellular remodeling. (2) At the second stage (5–6 day), s-PINK1 persistently accumulates in mitochondria and translocates into cytoplasm to mediate Parkin degradation. Mitochondria are fragmented to reduce their mass. (3) At the late stage (7–8 day), only residual autophagy activity is remained when excess mitochondria have been eliminated. This mitochondria clearance maintains energy consumption of mature adipocytes at the minimal levels for storing energy. PARL silencing aborts adipogenesis by inhibiting PPARγ expression and the finely-orchestrated events.ConclusionsOur findings reveal the sequential adipogenic events directed by PARL-PINK1-Parkin system, add more evidence supporting the convergence of pathogenesis leading to neurodegenerative and metabolic diseases, and provide substantial information for developing novel therapeutic strategies by manipulating adipogenesis.  相似文献   

8.
OBJECTIVES: To determine the importance of lamin A/C for fat cell differentiation in vitro and for the anti-adipogenic activity of HIV protease inhibitors such as indinavir. METHODS: Lipodystrophy-associated and processing-defective mutants of lamin A were stably expressed at high levels in 3T3-L1 pre-adipocytes. Additionally, 3T3-L1 pre-adipocytes with stable reduction of lamin A/C or emerin were derived. The cells were differentiated for 8 days into mature adipocytes in the presence or absence of indinavir or nelfinavir. RESULTS: 3T3-L1 cells stably expressing high levels of lipodystrophy-associated or processing-defective mutants of lamin A differentiated with comparable efficiencies to control cells. Similarly, cells with dramatically reduced lamin A levels differentiated as efficiently as controls. Although indinavir stimulated the accumulation of unprocessed lamin A, cells with dramatically reduced lamin A/C levels and no detectable prelamin A remained responsive to an indinavir-induced inhibition of adipogenesis. CONCLUSIONS: The ability of HIV protease inhibitor to stimulate the accumulation of unprocessed lamin A is neither necessary nor sufficient to explain their anti-adipogenic activity. Furthermore, lamin A/C plays a minimal role in the differentiation of 3T3-L1.  相似文献   

9.
Cardiomyocytes are terminally differentiated cells characterized as withdrawal cell-cycle machinery, but nonetheless they are known to express cell-cycle regulators. Because many proteins related to the cell cycle induce apoptosis in proliferating cells, we examined the involvement of these proteins in the apoptosis pathway in cardiomyocytes. Primary rat cardiomyocytes were exposed to a severe hypoxic condition to induce apoptosis. The apoptosis rate of cardiomyocytes increased to approximately 40% under 24 hours of hypoxia as evaluated by the TUNEL method. The cyclin A protein level assessed by immunoblot analysis accumulated in a time-dependent manner in cardiomyocytes, but there was no increase in nonmyocytes. Hypoxia increased the activity of cyclin A-associated kinase but not the activity of cyclin E-associated kinase, and the apoptosis was inhibited by infection of dominant-negative cdk2 adenovirus, suggesting that cyclin A and its associated kinase play significant roles in the apoptosis of cardiomyocytes. To investigate the cyclin A-mediated apoptosis, we infected cultured cells with cyclin A adenovirus. Apoptosis was induced in 63+/-12% of the infected cardiomyocytes in contrast to only 12+/-3% of the LacZ-infected control cells. In addition, the cells in the hypoxic condition showed an increase in caspase-3 activity and a subsequent decrease in p21(cip1/waf1) protein, which is partly cleaved by caspase-3. These findings confirm that cyclin A-associated kinase mediates hypoxia-induced apoptosis in cardiomyocytes, and they also suggest that additional elements of the cell-cycle-dependent machinery participate in this mechanism.  相似文献   

10.
11.
With an increasing incidence of obesity worldwide, rational strategies are needed to control adipogenesis. Growth of any tissue requires the formation of a functional and mature vasculature. To gain mechanistic insight into the link between active adipogenesis and angiogenesis, we developed a model to visualize noninvasively and in real time both angiogenesis and adipogenesis using intravital microscopy. Implanted murine preadipocytes induced vigorous angiogenesis and formed fat pads in a mouse dorsal skin-fold chamber. The newly formed vessels subsequently remodeled into a mature network consisting of arterioles, capillaries, and venules, whereas the preadipocytes differentiated into adipocytes as confirmed by increased aP2 expression. Inhibition of adipocyte differentiation by transfection of preadipocytes with a peroxisome proliferator-activated receptor gamma dominant-negative construct not only abrogated fat tissue formation but also reduced angiogenesis. Surprisingly, inhibition of angiogenesis by vascular endothelial growth factor receptor-2 (VEGFR2) blocking antibody not only reduced angiogenesis and tissue growth but also inhibited preadipocyte differentiation. We found that part of this inhibition stems from the paracrine interaction between endothelial cells and preadipocytes and that VEGF-VEGFR2 signaling in endothelial cells, but not preadipocytes, mediates this process. These findings reveal a reciprocal regulation of adipogenesis and angiogenesis, and suggest that blockade of VEGF signaling can inhibit in vivo adipose tissue formation. The full text of this article is available online at http://www.circresaha.org.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号