首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The objective was to devise and apply a novel modelling approach to combine segmental in situ rat perfusion data and in vitro cell culture data, in order to elucidate the contribution of efflux in drug absorption kinetics. The fluoroquinolone CNV97100 was used as a model P-gp substrate. In situ intestinal perfusion was performed in rat duodenum, jejunum, ileum and colon to measure the influence of P-gp expression on efflux. Inhibition studies of CNV97100 were performed in the presence of verapamil, quinidine, cyclosporin A and p-aminohippuric acid. Absorption/efflux parameters were modelled simultaneously, using data from both in situ studies as well as in vitro studies. The maximal efflux velocity was modelled as a baseline value, corrected for each segment based on the expression level. CNV97100 passive diffusional permeability (P(diff)) and its affinity for the efflux carrier (K(m)) were assumed to be the same in all segments. The results indicate the new approach to combine in situ data and in vitro data succeed in yielding a unified, quantitative model for absorption/efflux. The model incorporated a quantitative relationship between P-gp expression level and the efflux functionality, both across in situ and in vitro systems, as well across different intestinal segments in the in situ studies. Permeability values decreased from duodenum to ileum in accordance with the increasing P-gp expression levels in rat intestine. The developed model reflects a strong correlation between in vitro and in situ results, including intrinsic differences in surface area. The successful application of a model approach to combine absorption data from two different experimental systems holds promise for future efforts to predict absorption results from one system to a second system.  相似文献   

2.
The purpose of this investigation is to evaluate the quantitative contribution of pH-dependent passive permeability on the functional activity of P-glycoprotein (P-gp) in limiting intestinal absorption of weakly basic drugs, in order to include this effect in prediction models. pH-dependent octanol/buffer partition coefficient, artificial membrane permeability and in situ rat intestinal permeability of quinidine were determined in the physiological pH range of gastrointestinal tract. In situ permeability, as a function of luminal pH, was also determined in the presence of P-gp inhibitor, verapamil (500 microM). Octanol/buffer partition coefficient, transport across artificial membrane, and rat in situ permeability showed high pH-dependency. Absorption quotient (AQ), calculated from in situ permeability to express the functional activity of P-gp, declined with increase in luminal pH or increase in luminal quinidine concentration because of the increased passive permeability or saturation of P-gp. AQ was 0.57 +/- 0.02 and 0.41 +/- 0.05, while passive permeability was 0.32 +/- 0.01 x 10(-4) cm/sec and 0.43 +/- 0.02 x 10(-4) cm/sec, in jejunum and ileum, respectively, at pH 7.4. Further, apparent Michaelis-Menten constants (K(M), J(P-gp,max)) for the quinidine efflux in jejunum indicated that efflux activity was more at luminal pH 4.5 over pH 7.4. K(M) values for jejunum quinidine efflux at pH 4.5 and pH 7.4 were determined to be 77.63 +/- 10.90 and 22.86 +/- 5.22 microM, with J(P-gp,max) values of 1.47 +/- 0.08 and 0.62 +/- 0.04 nM/cm2/sec, respectively. AQ vs passive permeability showed significant relationship indicating dependency of P-gp-mediated efflux on pH-dependent passive permeability, which is dictated by ionization status for a protic or ampholytic drug. In conclusion, an orally administered drug is absorbed from various segments of intestine, which inherit difference in luminal pH, transcellular permeability and P-gp expression. In situ data suggests that pH-dependency and regional variability in passive permeability of protic substrates significantly influence their P-gp-mediated efflux and may have implications on predictions of the in vivo drug absorption.  相似文献   

3.
The present investigation attempts to increase intestinal permeability and hence absorption of biopharmaceutic classification system (BCS) Class III (cefotaxime sodium (CX)) and Class IV (cyclosporin A (CSA)) drugs by employing certain absorption enhancers. Drugs were co-perfused with sodium caprate (SC, 0.25% w/v), piperine (P, 0.004% w/v) and sodium deoxycholate (SD, 1.0% w/v) separately in rat in situ single pass intestinal perfusion model. These additives increased intestinal permeability (P(app)) and absorption rate constant (K(a)) up to two and fourfold, respectively. SC exhibited substantial absorption enhancement of both CX and CSA, while SD and P enhanced absorption of CX and CSA, respectively. Co-administration of SC significantly enhanced peroral bioavailability of CX (from 29.4 +/- 1.7 to 69.6 +/- 3.2) and CSA (from 18.4 +/- 15.6 to 49.6 +/- 25.1) in rats, while P increased bioavailability of CSA (from 18.4 +/- 15.6 to 33.1 +/- 17.7). Transmission electron microscopy of intestinal mucosa revealed that SC and SD act on lipid and protein domains of absorptive membrane. P showed no effect on intestinal P(app) and oral bioavailability of CX but has a profound effect on CSA, a known P-glycoprotein (P-gp) substrate. These results indicated that P enhances intestinal absorption of CSA by modulating P-gp mediated efflux transport. Release of lactate dehydrogenase in situ from intestinal mucosa in the presence of absorption enhancer was taken as index of its local toxicity. All the absorption enhancers showed significantly less release of LDH compared to positive control, sodium dodecyl sulfate (60% w/v). Overall, the data indicate that the features of these commonly used food ingredients or endogenous bile salts can effectively improve bioavailability of various BCS Class III and Class IV drugs.  相似文献   

4.
The objective was to develop a semiphysiological population pharmacokinetic model that describes the complex salbutamol sulphate absorption in rat small intestine. In situ techniques were used to characterize the salbutamol sulphate absorption at different concentrations (range: 0.15-18 mM). Salbutamol sulphate at concentration of 0.29 mM was administered in presence of verapamil (10 and 20 mM), grapefruit juice and sodium azide (NaN3) (0.3, 3 and 6 mM). Different pharmacokinetic models were fitted to the dataset using NONMEM. Parametric and non-parametric bootstrap analyses were employed as internal model evaluation techniques. The validated model suggested instantaneous equilibrium between salbutamol sulphate concentrations in lumen and enterocyte, and the salbutamol sulphate absorption was best described by a simultaneous passive diffusion (ka = 0.636 h(-1)) and active absorption (VMax = 0.726 mM/h, Km = 0.540 mM) processes from intestinal lumen to enterocyte, together with an active capacity-limited P-gp efflux (V'max = 0.678 mM/h, K'm = 0.357 mM) from enterocyte to intestinal lumen. The extent of salbutamol sulphate absorption in rat small intestine can be improved by NaN3, grapefruit juice and verapamil.  相似文献   

5.
盐酸麻黄碱的大鼠肠吸收研究   总被引:1,自引:0,他引:1  
陈亚平  王柏 《药学进展》2010,34(7):319-323
目的:研究盐酸麻黄碱的肠吸收机制。方法:利用大鼠在体单向肠灌流模型,采用HPLC法测定灌流液中盐酸麻黄碱含量,分别考察灌流速度、盐酸麻黄碱质量浓度、不同肠段以及P-糖蛋白抑制剂对盐酸麻黄碱肠吸收的影响。结果:灌流速度对盐酸麻黄碱吸收速率常数(Ka)和表观吸收系数(Papp)有极显著影响(P〈0.01);灌流液中盐酸麻黄碱质量浓度对Ka和Papp无显著影响(P〉0.05);盐酸麻黄碱在小肠各肠段(十二指肠、空肠和回肠)的Ka和Papp无显著性差异(P〉0.05),但其Ka值显著大于在结肠处的值(P〈0.05),而各肠段的Papp无显著性差异(P〉0.05),P-糖蛋白抑制剂对盐酸麻黄碱在各肠段的Ka和Papp无显著影响(P〉0.05)。结论:盐酸麻黄碱在大鼠肠道内的吸收机制为被动扩散,不存在饱和吸收;其在全肠道吸收较好,吸收窗主要在小肠,且小肠内无明显的特定吸收部位;盐酸麻黄碱可能不是P-糖蛋白的底物。  相似文献   

6.
Within the framework of developing strategies to enhance the intestinal absorption of P-glycoprotein (P-gp) substrates, the modulatory effect of a standardized apricot extract on P-gp-related efflux carriers was investigated in the Caco-2 system, Ussing chambers and the rat in situ perfusion model using talinolol as a model substrate. Using the Caco-2 system, polarity in transport of talinolol could be observed, the absorptive transport being much lower than the secretory transport (P(app-abs) = 1.08 +/- 0.29 x 10(-6) cm/s and P(app-secr) = 11.74 +/- 0.80 x 10(-6) cm/s). Inclusion of apricot extract (1%) in the apical medium resulted in a statistically significantly diminished polarity (P(app-abs) = 4.88 +/- 0.96 x 10(-6) cm/s and P(app-secr) = 9.39 +/- 0.58 x 10(-6) cm/s, p < 0.05). In addition, the inhibitory effect of apricot extract on P-gp related efflux mechanisms was shown to be concentration (0% approximately 0.1% < 0.3% < 1%) and pH dependent. Experiments performed with the Ussing chambers resulted in similar observations. In the rat in situ perfusion model, inclusion of apricot extract (1%) in the perfusion medium resulted in a threefold increase of the amount of talinolol appearing in the collected blood compared to the reference condition (23.6 +/- 5.53 pmol/cm. min and 7.13 +/- 1.08 pmol/cm. min, respectively; p < 0.05). Coadministration of this standardized apricot extract might be a safe and useful strategy to enhance the intestinal absorption of P-gp substrates. The nature and structure of the compound(s) responsible for this inhibiting effect on P-gp-related efflux carriers remain to be elucidated, as well as the exact mechanism by which apricot extract exerts its inhibitory function.  相似文献   

7.
The influence of P-glycoprotein (P-gp) on intestinal absorption of drugs was investigated by comparison of the uptakes of two P-gp substrates, verapamil and vinblastine, using intestinal segments of wild-type and mdr1a/1b gene-deficient (mdr1a/1b(-/-)) mice, and Caco-2 cells. When [(3)H]vinblastine was injected into intestinal segments of wild-type mice, vinblastine was absorbed from duodenum and ileum, but not from jejunum. This difference among intestinal regions could not be explained by segmental differences of mdr1a mRNA expression. In Caco-2 cells, it was found that vinblastine had a high value of efflux/influx ratio (an index of affinity for P-gp) of 12.1, and a low permeability of less than 1 x 10(-6) cm/sec. The corresponding values for verapamil were 4.9 and 10.6 x 10(-6) cm/sec, respectively. After oral administration of [(3)H]vinblastine to mice, the maximum concentration (C(max)) and the area under the plasma concentration time-curve from time 0 to 24 hr (AUC(0-24 hr)) for mdr1a/1b(-/-) mice were 1.5 times greater than those for wild-type mice, while these parameters were not significantly different between the two strains in the case of [(3)H]verapamil. Therefore, P-gp substrates may be classified into at least two types, i.e., verapamil-type, for which the intestinal absorption is unaffected by P-gp, and vinblastine-type, for which the intestinal absorption is influenced by P-gp. Vinblastine-type P-gp substrates, with low permeability and high affinity for P-gp, would be unfavorable candidates for oral drugs.  相似文献   

8.
AIMS: There is considerable unexplained interindividual variability in the methadone dose-effect relationship. The efflux pump P-glycoprotein (P-gp) regulates brain access and intestinal absorption of many drugs. Evidence suggests that methadone is a P-gp substrate in vitro, and P-gp affects methadone analgesia in animals. However the role of P-gp in human methadone disposition and pharmacodynamics is unknown. This investigation tested the hypothesis that the intestinal absorption and pharmacodynamics of oral and intravenous methadone are greater after inhibition of intestinal and brain P-gp, using the P-gp inhibitor quinidine as an in vivo probe. METHODS: Two randomized, double-blind, placebo-controlled, balanced crossover studies were conducted in healthy subjects. Pupil diameters and/or plasma concentrations of methadone and the primary metabolite EDDP were measured after 10 mg intravenous or oral methadone HCl, dosed 1 h after oral quinidine (600 mg) or placebo. RESULTS: Quinidine did not alter the effects of intravenous methadone. Miosis t(max) (0.3 +/- 0.3 vs 0.3 +/- 0.2 h (-0.17, 0.22)), peak (5.3 +/- 0.8 vs 5.1 +/- 1.0 mm (0.39, 0.84)) and AUC vs time (25.0 +/- 5.7 vs 26.8 +/- 7.1 mm h (-6.1, 2.5)) were unchanged (placebo vs quinidine (95% confidence interval on the difference)). Quinidine increased (P < 0.05) plasma methadone concentrations during the absorptive phase, decreased t(max) (2.4 +/- 0.7 vs 1.6 +/- 0.9 h (0.33, 1.2)), and increased peak miosis (3.2 +/- 1.5 vs 4.3 +/- 1.6 mm (-1.96, -0.19)) after oral methadone. The C(max) (55.6 +/- 10.3 vs 59.4 +/- 14.1 ng ml(-1) (-8.5, 0.65)) and AUC of methadone (298 +/- 46 vs 316 +/- 74 ng ml(-1) h (-54, 18)) were unchanged, as were the EDDP : methadone AUC ratios. Quinidine had no effect on the rate constant for transfer of methadone between plasma and effect compartment (k(e0)) (2.6 +/- 2.6 vs 2.5 +/- 1.4 h(-1) (-3.5, 4.2)). CONCLUSIONS: Quinidine increased the plasma concentrations of oral methadone in the absorptive phase and the miosis caused by methadone, suggesting that intestinal P-gp affects oral methadone absorption and hence its clinical effects. Quinidine had no effect on methadone pharmacodynamics after intravenous administration, suggesting that if quinidine is an effective inhibitor of brain P-gp, then P-gp does not appear to be a determinant of the access of methadone to the brain.  相似文献   

9.
The mechanism of individual variability in the fentanyl dose-effect relationship is unknown. The efflux pump P-glycoprotein (P-gp) regulates brain access and intestinal absorption of numerous drugs. Evidence exists that fentanyl is a P-gp substrate in vitro, and P-gp affects fentanyl analgesia in animals. However, the role of P-gp in human fentanyl disposition and clinical effects is unknown. This investigation tested the hypothesis that plasma concentrations and clinical effects of oral and intravenous fentanyl are greater after inhibition of intestinal and brain P-gp, using the P-gp inhibitor quinidine as an in vivo probe. Two randomized, double-blind, placebo-controlled, balanced, two-period crossover studies were conducted in normal healthy volunteers (6 males and 6 females) after obtaining informed consent. Pupil diameters and/or plasma concentrations of fentanyl and norfentanyl were evaluated after oral or intravenous fentanyl (2.5 microg/kg), dosed 1 hour after oral quinidine (600 mg) or placebo. Quinidine did not alter the magnitude or time to maximum miosis, time-specific pupil diameter, or subjective self-assessments after intravenous fentanyl but did increase the area under the curve (AUC) of miosis versus time (13.6 +/- 5.3 vs. 8.7 +/- 5.0 mm*h, p< 0.05) and decreased the effect of elimination (k(el) 0.35 +/- 0.16 vs. 0.52 +/- 0.24 h(-1), p < 0.05). Quinidine increased oral fentanyl plasma C(max) (0.55 +/- 0.19 vs. 0.21 +/- 0.1 ng/mL) and AUC (1.9 +/- 0.5 vs. 0.7 +/- 0.3 ng*h*mL(-1)) (both p < 0.05) but had no effect on apparent elimination. Plasma norfentanyl/fentanyl AUC ratios were not diminished by quinidine. Quinidine significantly increased maximum miosis after oral fentanyl (3.4 +/- 1.3 vs. 2.3 +/- 1.3 mm, p< 0.05), commensurate with increases in plasma concentrations, but concentration-effect relationships and the rate constant for the transfer between plasma and effect compartment (k(e0)) (1.9 +/- 1.0 vs. 3.6 +/- 2.6 h(-1)) were not significantly different. Quinidine increased oral fentanyl plasma concentrations, suggesting that intestinal P-gp or some other quinidine-sensitive transporter affects the absorption, bioavailability, and hence clinical effects of oral fentanyl. Quinidine had less effect on fentanyl pharmacodynamics, suggesting that if quinidine is an effective inhibitor of brain P-gp, then P-gp appears to have less effect on brain access of fentanyl.  相似文献   

10.
普朗尼克抑制P-糖蛋白药泵的作用   总被引:2,自引:1,他引:2  
采用Caco-2细胞和动物模型,以维拉帕米为阳性对照,考察普朗尼克对塞利洛尔在Caco-2单层膜与肠道黏膜吸收的影响。用高效液相色谱法检测药物浓度,计算表观透过系数、吸收速率常数与有效透过系数等参数,评价普朗尼克对P-糖蛋白药泵的抑制作用。结果显示,塞利洛尔Caco-2细胞膜转运基底端(BL)到顶端(AP)的透过系数Papp大于AP到BL的Papp,分别为(2.10±0.13)×10-6和(0.333±0.018)×10-6 cm·s-1,且双向转运受到抑制剂维拉帕米和普朗尼克的影响。大鼠在体肠灌流实验中塞利洛尔在十二指肠段、空肠、回肠与结肠段的吸收速率常数ka分别为(0.09±0.03),(0.14±0.04),(0.11±0.03)与(0.05±0.02) h-1;合用维拉帕米后各肠段吸收速率常数ka分别为(0.14±0.03),(0.24±0.02),(0.25±0.03)和(0.23±0.02) h-1;合用普朗尼克后各肠段吸收速率常数ka分别为(0.13±0.02),(0.22±0.02),(0.22±0.03)和(0.20±0.03) h-1。可见,普朗尼克通过抑制P-gp外排作用,促进塞利洛尔Caco-2细胞膜和大鼠肠道黏膜的吸收。  相似文献   

11.
The objective of this study was to evaluate potential contributions of intestinal export and metabolism to the oral dose-dependent pharmacokinetics of the human cGMP-specific phosphodiesterase type 5 inhibitor, UK-343,664. Differences between jejunal and ileal handling of this CYP3A and P-gp substrate were investigated. CYP3A and P-gp display differing activities in the upper and lower mammalian small intestine and their impact on variable drug absorption can be mechanistically assessed for individual compounds with in situ perfusion of rat's small intestine. Isolated segments of rat jejunum and ileum were perfused with UK-343,664 solution and measurements were made as a function of drug concentration for dose dependence and in the presence of CYP3A and P-gp inhibitors. Intestinal permeability and metabolism were measured by total drug disappearance and major metabolite, UK-347,334 (N-desethyl metabolite), appearance in the intestinal lumen. Intestinal tissue and mesenteric blood measurements of drug and metabolite were also determined. The effective permeability (P(eff)) of UK-343,664 and metabolite formation (F(met)) increased as a function of concentration. Regional differences in P(eff) and F(met) were observed with low-intestinal metabolism of UK-343,664 in both regions (<10%). P-gp inhibition caused significant increase in P(eff) and F(met) in jejunum and ileum while ketoconazole, a P-gp and CYP3A inhibitor, has only limited effect on metabolism. In conclusion, UK-343,664 absorption is mainly regulated by P-gp in jejunum and ileum while CYP3A intestinal metabolism has minimal effect. This role of P-gp could explain the dose-dependent pharmacokinetics of UK-343,664 and its unusual behavior of t(max) as a function of dose.  相似文献   

12.
Intestinal absorption of novel-dipeptide prodrugs of saquinavir in rats   总被引:1,自引:0,他引:1  
Saquinavir (SQV) was the first human immuno-virus-1 (HIV-1) protease inhibitor approved by FDA. However, P-glycoprotein (P-gp), an efflux pump limits its oral and brain bioavailabilities. The objective of this study is to investigate whether prodrug modification of SQV to dipeptide prodrugs Valine-Valine-Saquinavir (Val-Val-SQV) and Glycine-Valine-Saquinavir (Gly-Val-SQV) targeting intestinal peptide transporter can enhance intestinal permeability of SQV by circumventing P-gp mediated efflux. Single pass intestinal perfusion experiments in rat jejunum were performed to calculate the absorption rate constant and intestinal permeability of SQV, Val-Val-SQV and Gly-Val-SQV. Equimolar concentration (25 microM) of SQV, Val-Val-SQV and Gly-Val-SQV were employed in the perfusion studies. Perfusion experiments were also carried out in the presence of cyclosporine (10 microM) and glycyl-sarcosine (20 mM). Absorption rate constants in rat jejunum (ka) for SQV, Val-Val-SQV and Gly-Val-SQV were found to be 14.1+/-3.4x10(-3), 65.8+/-4.3x10(-3), and 25.6+/-5.7x10(-3) min(-1), respectively. Enhanced absorption of Val-Val-SQV and Gly-Val-SQV relative to SQV can be attributed to their translocation by the peptide transporter in the jejunum. Significant permeability enhancement of SQV across rat jejunum was observed in the presence of cyclosporine 10 microM (P-gp inhibitor). However, permeability of Val-Val-SQV was unchanged in the presence of cyclosporine suggesting lack of any interaction of the prodrug with efflux pump. Intestinal absorption of Val-Val-SQV was significantly inhibited in the presence of gly-sar indicating the involvement of peptide transporter in intestinal absorption. In conclusion, peptide transporter targeted prodrug modification of P-gp substrates could lead to shielding of these drug molecules from efflux pumps.  相似文献   

13.
The in vitro release of physostigmine salicylate (PS) from a submicron emulsion and an aqueous solution was studied using the dialysis bag method. These formulations were then perfused to various locations along the rat small intestine (proximal, mid, and distal jejunum), and two lengths (10 and 55 cm). The disappearance of PS from the luminal compartment and its appearance in the blood compartment was monitored. In the in vitro drug release from emulsion experiments, a biphasic appearance of PS in the sink solution was observed, suggesting a possible sustained release from the emulsion. However, absorption data from perfusion studies did not correlate with this in vitro observation. No significant difference was found in absorption from emulsion versus solution in the mid jejunum where PS absorption was maximal. The difference between the two liquid formulations was observed only in those intestinal segments where the absorption was relatively low [absorption rate values of 4.6 +/- 0.86 and 9.98 +/- 2.04 (log%/min) x 10(-3) in the proximal and distal parts of the small intestine, respectively, as compared with 14.0 +/- 1.2-14.8 +/- 1.1 (log%/min) x 10(-3) in the mid jejunum]. In the distal part of the rat small intestine, PS was absorbed significantly better from solution than from the submicron emulsion. Cholinesterase activity in blood samples collected after intestinal perfusion with emulsion or solution revealed lower enzyme activity following emulsion administration.  相似文献   

14.
目的考察没食子酸的肠道吸收特性,为提高鞣质类成分生物利用度提供理论依据。方法采用大鼠在体肠单向灌流模型、建立HPLC测定没食子酸的方法,并计算没食子酸在各肠段的吸收速率常数(Ka)及有效表观渗透率系数(Peff);分别研究吸收部位、药物浓度、时间、pH值、P-糖蛋白(P-gp)和多药耐药相关蛋白-2(MRP2)抑制剂对没食子酸吸收的影响。结果没食子酸在不同肠段的Ka顺序为空肠>十二指肠>回肠≈结肠;随着药物浓度的升高,没食子酸的吸收差异无显著性;酸性环境(pH 5.5)有利于没食子酸的吸收;加入P-gp和MRP2抑制剂后,没食子酸的吸收与不加P-gp和MRP2抑制剂比较差异有显著性(P<0.05)。结论没食子酸在大鼠肠道内有较好的吸收,在空肠中吸收最好。初步判断其吸收机制为被动扩散。没食子酸的吸收受P-gp和MRP2的外排影响,可能为P-gp和MRP2底物。  相似文献   

15.
Intestinal absorption of forsythoside A by rat circulation in situ   总被引:2,自引:0,他引:2  
Zhou W  Di LQ  Bi XL  Chen LT  Du Q 《药学学报》2010,45(11):1373-1378
This study is to investigate the effects of concentration, intestinal section, pH, paracellular route, substrate/inhibitor of enzyme (CYP3A) and proteins (P-gp, MRP2, SGL1) on the absorption of forsythoside A. The absorption of three concentrations (2.6, 5.2, and 10.4 microg x mL(-1)) of forsythoside A in different intestinal segments was studied with phenol red as the marker by rat circulation in situ. The results showed that the residue of forsythoside A with different concentrations had little significant difference from that obtained after perfusing via duodenum, jejunum, ileum and colon, which indicated that the absorption of forsythoside A was passive diffusion and had no difference in different segments of rat intestine. The residue of forsythoside A increased to 466.160 and 463.429 microg respectively when cyclosporine (4 microg x mL(-1)) or midazolam (50 micromol x L(-1)) was added to the circulation fluid, which showed significant difference compared to the control group (P < 0.05). Moreover, the residue of forsythoside A showed a tendency of increase with the increase of cyclosporine or midazolam. When digoxin (50 micromol x L(-1)) or EDTA (10 microg x mL(-1)) was added to the circulation fluid, the residue of forsythoside A decreased to 325.110 and 369.888 microg respectively, which showed significant difference as compared to the control group (P < 0.05). Besides, the residue of forsythoside A showed a tendency of reduction with the increase of digoxin or EDTA. However, there is no significant change in the absorption of forsythoside A when the different concentrations of mannitol were added to the circulation fluid. The results above indicated that the absorption of forsythoside A was mainly passive diffusion and involved paracellular route at the same time. In addition, the substrates of P-gp or CYP3A had dose-dependent effect on the absorption of forsythoside A.  相似文献   

16.
Three purposes are presented in this study: (1) to study the in vivo regional dependent intestinal absorption of a P-gp substrate with high solubility and high permeability, (2) to study the gene expression difference in the various regions of the intestine, and (3) to study the contributions of P-gp or any other transporters for the absorption of a P-gp substrate. The in vivo permeability of verapamil and propranolol were determined by single-pass in situ intestinal perfusion in rat. The gene expression profiles were measured using Affymetrix GeneChip. Correlation analysis between drug in vivo permeability and expression of 3500 genes was performed with nonparametric bootstrap and ANOVA analysis. The permeability of verapamil and propranolol did not demonstrate regional dependency even though significant differences in gene expression were observed in various regions of the intestine. Verapamil permeability significantly correlates with propranolol permeability in both jejunum and ileum, but did not correlate with the permeability of other hydrophilic compounds (valacyclovir, acyclovir, and phenylalanine). Four different regions (duodenum, jejunum, ileum, and colon) showed distinct gene expression patterns with more than 70-499 genes showing at least 5-fold expression differences. Interestingly, P-gp expression is gradually increased by 6-fold from the duodenum to colon. Despite the distinct gene expression patterns in the various regions of the intestine, verapamil permeability did not correlate with any gene expression from 3500 expressed genes in the intestine. A 2-6-fold P-gp expression difference did not seem to associate verapamil permeability in the various intestinal regions in vivo. These data suggest that P-gp plays a minimal role in the in vivo intestinal absorption process of verapamil with high water solubility and high membrane permeability. The intestinal absorption of verapamil in vivo is primarily dominated by its high permeability. However, it is important to note that the findings in this paper do not undermine the importance of P-gp in oral drug bioavailability, drug disposition from the liver, drug efflux from the blood-brain barrier, and drug-drug interaction.  相似文献   

17.
The absorption characteristics of etretinate were examined in the Sprague-Dawley rat with the use of the in situ intestinal lumen perfusion model. Intestinal segments of 15-50 cm were cannulated and perfused with etretinate solutions of 178-1405 micrograms ml-1 in a single-pass manner at flow rates of 0.15-0.96 ml min-1. The intestinal effluent was collected and analyzed by HPLC for etretinate, as was blood that was drawn from the jugular vein. Despite its lipophilic nature, etretinate does not appear to be well absorbed from the rat intestine; the maximum fraction disappearing from the intestinal lumen was approximately 0.35. The absorption of etretinate appeared to be controlled by the aqueous diffusion layer. There was no evidence that the uptake of etretinate by the gastrointestinal membrane involved an active transport system.  相似文献   

18.
Previously the apparent permeability coefficient (P(app)) of ibuprofen was observed to vary depending on the perfusion medium employed. The present work explores the possible contributions to these differences. Studies were undertaken using an in situ single pass rat gut technique. Lumenal drug concentrations and plasma drug levels were assayed by HPLC. Absorption rate constants (k(0)) were determined from fractions of drug unabsorbed from the intestineat steady state. Plasma data were fitted to a two compartment open model with zero-order input. Significant differences in net fluid flux were observed between the various buffered perfusion media, with fluxes varying from -0.044+/-0.006 ml min(-1) to +0.057+/-0.013 ml min(-1), the lower and negative values occurring for lower pH media and the larger positive values tending to occur with media of higher pH. A linear relationship was found between the P(app) of ibuprofen and net water flux (y=1.13+11.3x; r(2)=0.80). Apparent zero-order rate constants for ibuprofen appearance in plasma correlated well with absorption rate constants estimated from steady state lumenal drug concentration [k(0(gut))]. From the linear relationship between P(app) and fluid flux a normalized P(app) for ibuprofen (i.e. the P(app) in the absence of net fluid flux) of 1.1 x 10(-4)cms(-1) was determined Net lumenal fluid flux is dependent on perfusion medium composition and significantly alters ibuprofen absorption. The differences observed for P(app) were reflected in systemic drug absorption concentrations. The findings of these studies underline the importance of standardizing the osmolarity of experimental media used for the determination of intestinal permeability data.  相似文献   

19.
Salbutamol was perfused in the small intestine of rat using a standard rat gut "in situ" preparation: (1) in inhibitor-free solution at seven different concentrations (0.15, 0.29, 1.20, 5.0, 9.0, 13.0 and 18.0mM); (2) at a 0.29mM concentration - thought to be close to the allometric dose in man - in the presence of a non-specific enzyme inhibitor, sodium azide (0.3, 3.0 and 6.0mM); and (3) at 0.29mM in the presence of a selective secretion inhibitor, verapamil (10.0 and 20.0mM). In free solution, the mixed-order rate constants, k'(a), of salbutamol increase as the solute concentration increases until an apparent asymptotic value is reached. This could be due to the saturation of enzymatic systems responsible for the secretion of the drug from the enterocyte to the luminal fluid, a process that could explain the poor absorption of salbutamol. In the presence of sodium azide, the k(a) values increased about 1.5-fold, whereas in the presence of verapamil they increased two- to three-fold. These results indicate that salbutamol can act as a substrate of an intestinal secretory transport, which probably includes--at least in part--the enzyme P-glycoprotein, since verapamil has been shown to inhibit this enzyme by dose-dependent competition. This leads to a secretion-limited peroral absorption of salbutamol, which contributes to the poor oral bioavailability of the drug. The possible options for improving salbutamol absorption are discussed.  相似文献   

20.
目的:比较研究小檗碱及其磷脂固体分散体的肠吸收特点,探讨磷脂固体分散体技术提高小檗碱生物利用度的作用机制。方法:采用大鼠循环灌流模型,以酚红为标示物,HPLC法测定在体灌流小檗碱的浓度变化,比较分析小檗碱及其磷脂固体分散体的肠吸收数据。结果:小檗碱肠吸收较差,磷脂固体分散技术可显著促进小檗碱各肠段的吸收,主要促进吸收部位为十二指肠和空肠。结论:小檗碱及其磷脂固体分散体的肠吸收机制主要为被动扩散,磷脂固体分散技术促吸收机制与小檗碱与P-gp亲和力降低或/和小檗碱膜渗透性提高有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号