首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new bioactive bone cement, designated GBC, has been developed. It consists of polymethyl methacrylate (PMMA) as an organic matrix and bioactive glass beads as an inorganic filler. The bioactive beads, consisting of MgO--CaO--SiO(2)--P(2)O(5)--CaF(2) glass, have been newly designed, and a novel PMMA powder was selected. The purpose of the present study was to evaluate the effects on mechanical properties and osteoconductivity of adding a phosphoric ester (PE) monomer to the cement as an adhesion-promoting agent. Four kinds of cements were prepared: GBC, GBC with PE (designated GBC/PE), a cement consisting of the same PMMA used in GBC with apatite- and wollastonite-containing glass-ceramic (AW-GC) powder (designated AWC), and AWC with PE (designated AWC/PE). Each filler was added to the cement at 70 wt %. Adding PE to either GBC or AWC resulted in increases in the bending strength and decreases in the Young's modulus compared with the unmodified cements. Cements were packed into the intramedullar canals of rat tibiae to evaluate osteoconductivity as determined by an affinity index. Rats were sacrificed at 4 and 8 weeks after operation. The affinity index (length of bone in direct contact with the cement expressed as a percentage of the total length of the cement surface) was calculated for each cement. Adding PE to either GBC or AWC resulted in significant increases in the affinity index compared with the unmodified cements. The affinity index for GBC was significantly higher than that of AWC, and that for GBC/PE was also significantly higher than that of AWC/PE. The affinity indices for each cement increased significantly with time up to 8 weeks. Our study revealed that the higher osteoconductivity of GBC/PE was due to the large alkyl group in the PE monomer, to the hydrophilicity of the phosphoric acid in the PE monomer, and to the higher bioactivity of the bioactive glass beads at the cement surface. GBC/PE shows promise as an alternative bone cement with improved properties compared with conventional PMMA bone cement.  相似文献   

2.
A new bioactive bone cement (designated GBC) consisting of polymethyl methacrylate (PMMA) as an organic matrix and bioactive glass beads as an inorganic filler has been developed. The bioactive beads, consisting of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) glass, have been newly designed, and a novel PMMA powder was selected. The purpose of the present study was to compare this new bone cement GBC's mechanical properties in vitro and its osteoconductivity in vivo with cements consisting of the same matrix as GBC and either apatite- and wollastonite-containing glass-ceramic (AW-GC) powder (designated AWC) or sintered hydroxyapatite (HA) powder (HAC). Each filler added to the cements amounted to 70 wt %. The bending strength of GBC was significantly higher than that of AWC and HAC (p < 0.0001). Cements were packed into intramedullar canals of rat tibiae in order to evaluate osteoconductivity as determined by an affinity index. Rats were sacrificed at 2, 4, and 8 weeks after operation. An affinity index, which equaled the length of bone in direct contact with the cement expressed as a percentage of the total length of the cement surface, was calculated for each cement. At each time interval studied, GBC showed a significantly higher affinity index than AWC or HAC up to 8 weeks after implantation (p < 0.03). The value for GBC increased significantly with time up to 8 weeks (p < 0.006). The handling property of GBC was comparable with that of PMMA bone cement. Our study revealed that the higher osteoconductivity of GBC was due to the higher bioactivity of the bioactive glass beads at the cement surface and the lower solubility of the new PMMA powder to MMA monomer. In addition, it was found that the smaller spherical shape and glassy phase of the glass beads gave GBC strong enough mechanical properties to be useful under weight-bearing conditions. GBC shows promise as an alternative with improved properties to the conventionally used PMMA bone cement.  相似文献   

3.
A new bioactive bone cement (designated GBC), which is a polymethyl methacrylate (PMMA)-based composite consisting of bioactive glass beads as an inorganic filler and high molecular-weight PMMA as an organic matrix, has been developed. The purpose of the present study was to evaluate the effect of the filler content on the mechanical properties and osteoconductivity of GBC, to decide the most suitable filler proportion, and to evaluate the degree of cement degradation with time. The bioactive beads, consisting of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) glass, were added to the cement in various proportions (40-70 wt %). The bending strength of GBC did not differ among the proportions (approximately 136 MPa), but the elastic modulus of bending of GBC increased as the glass bead filler content increased (approximately 4.1-7.2 GPa). The all types of GBC were packed into the intramedullary canals of rat tibiae to evaluate osteoconductivity, as determined by an affinity index calculated as the length of bone in direct contact with the cement surface expressed as a percentage of the total length of the cement surface. Rats were sacrificed at 4, 8, 25, and 39 weeks after implantation, and the affinity index was calculated for each type of GBC at each time point. Histologically, new bone had formed along the surface of all types of GBC within 4 weeks, even in GBC containing only 40 wt % of glass beads. The affinity indices of GBC tended to increase as the proportion of glass bead filler increased and as the implantation period increased. In GBC containing 60 or 70 wt % of glass beads, significant rapid increases in the affinity indices were found from 4 to 8 weeks, and the high values (approximately 70%) were maintained up to 39 weeks. A sign of glass bead degradation was observed at the bone-cement interface in the rat tibiae at 39 weeks. We conclude that, when mechanical properties and osteoconductivity are both taken into consideration, GBC containing 60 or 70 wt % of glass beads is the most suitable formulation, but that further studies are needed to investigate and overcome the degradation.  相似文献   

4.
A bioactive bone cement (designated GBC), consisting of bioactive glass beads as an inorganic filler and poly(methyl methacrylate) (PMMA) as an organic matrix, has been developed. The purpose of the present study was to examine the effect of the size of the glass beads added as a filler to GBC on its mechanical properties and osteoconductivity. Serial changes in GBC with time were also examined. Four different sizes of beads (mean diameters 4, 5, 9, and 13 microm) consisting of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) glass were added to four GBC mixes in a proportion of 70 wt %. The bending strength of GBC increased as the mean size of the glass beads decreased. The four GBC mixes were packed into the intramedullary canals of rat tibiae to evaluate osteoconductivity, as determined by an affinity index. Rats were sacrificed at 4 and 8 weeks after surgery. The affinity index, which equaled the length of bone in direct contact with the cement surface expressed as a percentage of the total length of the cement surface, was calculated for each cement at each interval. Histologically, new bone had formed along the surface of all types of GBC within 4 weeks. At each time interval, there was a trend for the affinity index of GBC to increase as the mean glass bead size decreased. The affinity indices for all types of GBC increased significantly with time up to 8 weeks. The handling properties of GBC were comparable to those of conventional PMMA bone cement. We concluded that, considering both mechanical properties and osteoconductivity, GBC made with smaller sized glass beads as filler was the most suitable cement. GBC shows promise as an alternative bone cement with improved properties compared to conventional PMMA bone cement.  相似文献   

5.
A new bioactive bone cement (designated GBC), consisting of bioactive glass beads as an inorganic filler and polymethylmethacrylate (PMMA) as an organic matrix, has been developed. The purpose of the present study was to examine the effect of the amount of glass bead filler added to GBC on its mechanical and biological properties, and to decide the most suitable content of filler. Serial changes in GBC with time were also examined. The newly designed bioactive beads, consisting of MgO-CaO-SiO2-P2O5-CaF2 glass, were added to the cement in the proportions 30, 40, 50, 60, and 70 wt %. These cements were designated GBC30, GBC40, GBC50, GBC60, and GBC70, respectively. The compressive strength and the elastic modulus of bending of GBC increased as the glass bead content increased. The various types of GBC were packed into the intramedullar canals of rat tibiae to evaluate osteoconductivity, as determined by an affinity index calculated as the length of bone in direct contact with the cement expressed as a percentage of the total length of the cement surface. Rats were killed at 4 and 8 weeks after the operation and the affinity index was calculated for each type of GBC. Histologically, new bone had formed along the surface of all types of GBC within 4 weeks, even in GBC30 containing only 30 wt % of glass beads. At each time interval studied, there was a trend for the affinity index of GBC to increase as the glass bead filler content increased. There was no significant increase of affinity index between GBC60 and GBC70. The affinity indices for all types of GBC increased significantly with time up to 8 weeks. The handling properties of GBC were comparable to those of conventional PMMA bone cement. We conclude that when mechanical properties and osteoconductivity are both taken into consideration, GBC60 is the most suitable formulation; it shows excellent osteoconductivity and sufficient mechanical strength for clinical use.  相似文献   

6.
A new bioactive bone cement (designated GBC), which is a polymethyl methacrylate- (PMMA-) based composite consisting of bioactive glass beads as an inorganic filler and high-molecular-weight PMMA (hPMMA) as an organic matrix, has been developed. The bioactive glass beads consist of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) glass. The purpose of the present study was to evaluate the effect of CaF(2) on osteoconductivity and to evaluate the degree of cement degradation with time. Three different types of cement were prepared. GBC(F +), which has been previously described, consisted of CaF(2)-containing bioactive glass beads and hPMMA. GBC(F -) consisted of CaF(2)-free bioactive glass beads and hPMMA. The third cement was hPMMA itself (as a reference material). These three types of cement were packed into the intramedullary canals of rat tibiae to evaluate osteoconductivity, as determined by an affinity index calculated as the length of bone in direct contact with the cement surface expressed as a percentage of the total length of the cement surface. Rats were killed at 4, 8, 25, and 52 weeks after implantation, and the affinity index was calculated for each type of cement at each time point. Histologically, new bone had formed along the surface of both GBC(F +) and GBC(F -) within 4 weeks, whereas hPMMA had little contact with bone, and an intervening soft tissue layer between bone and cement was detected. No significant difference in affinity index was found between GBC(F +) and GBC(F -) at any of the time points studied, although GBC(F -) showed higher affinity indices than GBC(F +) at 8, 25, and 52 weeks. The affinity indices for GBC(F +) and GBC(F -) were significantly higher than those for hPMMA at all time points. With GBC(F +) and GBC(F -), significant increases in the affinity indices were found as the implantation period increased, and the affinity index values at 52 weeks reached more than 70%. In hPMMA, no significant increase in affinity index was observed up to 52 weeks, and the value at 52 weeks was less than 30%. Although no significant difference in affinity index was found between GBC(F +) and GBC(F -), GBC(F -) is conclusively better than GBC(F +) because diseases such as chronic fluorosis might be caused by CaF(2)-containing glass beads. Regarding the cement degradation of both GBC(F +) and GBC(F -), the degree of the degradation at 25 weeks was the same as that at 52 weeks. Therefore, the cement degradation does not appear to proceed rapidly. Further studies are needed to better understand the degradation process.  相似文献   

7.
We have developed two types of polymethylmethacrylate (PMMA)-based bioactive bone cements containing bioactive glass beads (designated GBC) or apatite-wollastonite containing glass-ceramic powder (designated AWC) as the filler. A new method was used to evaluate the bone-cement interfacial strength of these bioactive bone cements. Two types of bioactive bone cements (GBC and AWC) and PMMA cement (CMW-1) were put in a frame attached to the smooth tibial metaphyseal cortex of the rabbit and polymerized in situ. The load required to detach the cement from the bone was measured at 4, 8, and 16 weeks after implantation. The interfacial tensile strength of GBC and AWC showed significantly higher values than PMMA cement from 4 weeks, and increased with time. For GBC, strength reached a maximum value of 12.39 +/- 1.79 kgf 16 weeks after implantation. Histological examination of rabbit tibiae up to 16 weeks demonstrated no intervening layer between the bioactive bone cements and the bone, whereas fibrous tissue was observed at the interface between the PMMA cement and the bone. From this study, we conclude that PMMA-based bioactive bone cements have a relatively higher adhesiveness at the interface than the conventionally used PMMA cement, showing potential as a promising alternative.  相似文献   

8.
A novel bioactive bone cement (GBC) was developed with newly designed bioactive MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) glass beads as the inorganic filler and high molecular weight poly(methyl methacrylate) as the organic matrix. The purpose of this study was to examine the relationship between the amount of the silane coupling agent (gamma-methacryloxy propyl trimethoxy silane) used to treat the glass beads and the mechanical and biological properties of the resultant bone cement. Serial changes in the cement over time were also investigated. Five different kinds of cement, in which the glass beads were treated with different amounts of the coupling agent, were prepared. The quantities of the coupling agent were 0 (control), 0.1, 0.2, 0.5, and 1.0% (w/w) of the glass beads, and the cements were designated GBCs0, GBCs0.1, GBCs0.2, GBCs0.5, and GBCs1.0, respectively. After soaking in water at 75 degrees C for 5 days, GBCs0.1 and GBCs0.2 had significantly higher bending strengths than the other cements. Each GBC was packed into intramedullar canals of rat tibiae to evaluate osteoconductivity, as determined by affinity indices. Rats were killed 4 and 8 weeks after the operation. The affinity index was calculated for each GBC and equaled the length of bone in direct contact with the cement and was expressed as a percentage of the total length of the cement surface. Histologically, new bone had formed along all of the GBC surfaces within 4 weeks. At each time interval, a decreasing trend in the affinity index of GBC was found as the amount of the coupling agent increased. At 8 weeks, no significant change in the affinity index occurred when the amount of the coupling agent increased from 0 to 0.2%, whereas a significant decrease in the affinity index was observed when the amount of the coupling agent increased from 0 to 0.5 or 1.0%. The affinity indices for all the GBCs increased significantly up to 8 weeks. When both the mechanical properties and osteoconductivity were taken into consideration, GBCs0.1 and GBCs0.2 were the best cements, and they showed excellent osteoconductivity and strong enough mechanical properties for clinical use.  相似文献   

9.
We took three types of bioactive bone cement (designated AWC, HAC, and TCPC), each with a different bioactive filler, and evaluated the influence of each filler on the mechanical properties and osteoconductivity of the cement. The cements consisted of bisphenol-a-glycidyl methacrylate-based (Bis-GMA based) monomers as an organic matrix, with a bioactive filler of apatite/wollastonite containing glass-ceramic (AW-GC) or sintered hydroxyapatite (HA) or beta-tricalcium phosphate (beta-TCP) powder. Each filler was mixed with the monomers in proportions of 50, 70, and 80% (w/w), giving a total of nine cement subgroups. The nine subgroups were designated AWC50, AWC70, AWC80, HAC50, HAC70, HAC80, TCPC50, TCPC70, and TCPC80. The compressive and bending strengths of AWC were found to be higher than those of HAC and TCPC for all bioactive filler contents. We also evaluated the cements in vivo by packing them into the intramedullary canals of rat tibiae. To compare the osteoconductivity of the cements, an affinity index was calculated for each cement; it equaled the length of bone in direct apposition to the cement, expressed as a percentage of the total length of the cement surface. Microradiographic examination up to 26 weeks after implantation revealed that AWC showed a higher affinity index than HAC and TCPC for each filler content although the affinity indices of all nine subgroups (especially the AWC and HAC subgroups) increased with time. New bone had formed along the AWC surface within 4 weeks, even in the cement containing AW-GC filler at only 50% (w/w); observation of the cement-bone interfaces using a scanning electron microscope showed that all the cements had directly contacted the bone. At 4 weeks the AWC had bonded to the bone via a 10 micron-thick reactive layer; the width of the layer, in which partly degraded AW-GC particles were seen, became slightly thicker with time. On the other hand, in the HAC- and TCPC-implanted tibiae, some particles on the cement surface were surrounded by new bone and partly absorbed or degraded. The results suggest that the stronger bonding between the inorganic filler and the organic matrix in the AWC cements gave them better mechanical properties. The results also indicate that the higher osteoconductivity of AWC was caused by the higher reactivity of the AW-GC powder on the cement surface.  相似文献   

10.
We developed new composites consisting of comparatively high molecular weight poly(methyl methacrylate) (hPMMA) and delta-alumina powder or alpha-alumina powder (designated delta-APC and alpha-APC, respectively) that allowed direct bone formation on their surfaces in vivo. delta-Alumina powder was manufactured by the fusing and quenching of pulverized alumina powder. It was composed mainly of delta-crystal phases of alumina. The purpose of this study was to evaluate the static mechanical properties and biological properties of these composites. The hPMMA itself was used as a reference material. The bending strength and Young's modulus of both delta-APC and alpha-APC were significantly higher than those of hPMMA, and the alumina composites are believed to be strong enough for use under weight-bearing conditions. The three types of composites were packed into the intramedullary canals of rat tibiae to evaluate osteoconductivity, as determined by an affinity index. Rats were sacrificed 4 and 8 weeks after surgery. The affinity index, equal to the length of bone in direct contact with the composite surface and expressed as a percentage of the total length of the composite surface, was calculated for each composite at each interval. Histologically, new bone had formed along the surfaces of both delta-APC and alpha-APC within 4 weeks. The affinity indices for both delta-APC and alpha-APC increased significantly with time up to 8 weeks. At 8 weeks, the affinity index for delta-APC was significantly higher than the indices for alpha-APC and hPMMA. This study revealed that the excellent osteoconductivity of delta-APC was due to the delta-crystal phases of alumina and the high molecular weight of hPMMA. delta-APC shows promise as a base for developing a highly osteoconductive and mechanically strong biomaterial.  相似文献   

11.
We have developed a bioactive bone cement that consists of apatite and wollastonite containing glass-ceramic (AW-GC) powder and bisphenol-a-glycidyl dimethacrylate (Bis-GMA)-based resin. In this study, we made three types of composite (designated AWC, HAC, and TCPC) consisting of AW-GC, hydroxyapatite (HA,) or beta-tricalcium phosphate (beta-TCP) powder as the inorganic filler and Bis-GMA-based resin as the organic matrix. The proportion by weight of the filler mixed into the cement was 70%. Rectangular plates (10 x 15 x 2 mm) of each composite were made and abraded with 2000 alumina powder. These composites were implanted into tibial metaphyses of rabbits. Specimens were prepared 10 and 25 weeks after implantation and examined using transmission electron microscopy (TEM). AWC was in direct contact with bone 10 weeks after implantation, and AW-GC particles were partially absorbed at the surface. HAC was in contact with partially mineralized extracellular matrix 10 weeks after implantation. In TCPC-implanted specimens, randomly oriented mineral was observed 10 weeks after implantation; however, collagenous extracellular matrix rarely was observed. In 25-week specimens, AW-GC particles were completely absorbed and replaced by new bone, and there was no intervening soft tissue. Both HAC and TCPC were in contact with bone at 25 weeks. These results indicate that AWC has higher bioactivity than either HAC or TCPC.  相似文献   

12.
A new composite bone cement designated "G2B1" was developed for percutaneous transpedicular vertebroplasty. G2B1 contains beta tricalcium phosphate particles and methylmethacrylate-methylacrylate copolymer as the powder components, and methylmethacrylate, urethane dimethacrylate, and tetrahydrofurfuryl methacrylate as the liquid components. Biocompatibility and osteoconductivity were evaluated using scanning electron microscopy, contact microradiography, and Giemsa surface staining 4, 8, 12, 26, and 52 weeks after implantation into rat tibiae. To evaluate osteoconductivity, affinity indices (%) were calculated. Scanning electron microscopy and contact microradiography revealed that bone contact with G2B1 was attained within 4 weeks (affinity index: 50.2 +/- 11.8 at 4 weeks) and at most of the margin within 26 weeks (affinity index: 87.4 +/- 7.2 at 26 weeks). Specifically, G2B1 contacted bone via a wide calcium-phosphate-rich layer, and its degradation started within 8 weeks, mainly in the marginal area. Giemsa surface staining showed that there was almost no inflammatory reaction around the G2B1. These results indicate that G2B1 is a biocompatible and osteoconductive bone cement.  相似文献   

13.
A study was conducted to evaluate the osteoconductivity and bone-bonding ability of two types of bioactive bone cement, both consisting of apatite and wollastonite containing glass-ceramic powder (AW-P), fused silica glass powder (SG-P), submicron fumed silica as an inorganic filler, and bisphenol-a-glycidyl methacrylate (Bis-GMA) based resin as an organic matrix. The cements had two kinds of formulas: one (dough-type cement; designated DTC) composed of 85% (w/w) filler and 15% resin, which was developed for fixation of the acetabular component in total hip arthroplasty and could be handled manually; and one (injection-type cement; designated ITC) composed of 79% (w/w) filler and 21% resin. ITC was developed for fixation of the femoral component and, because it had a lower viscosity than DTC, could be injected. The DTC and ITC both contained 73% AW-P, 25% SG-P, and 2% fumed silica in the weight ratio of the filler component. Two other types of cement, both of which consisted of 83.3% AW-P or SG-P, 1.7% fumed silica, and 15% resin, were used as reference material (designated AWC or SGC) for a detaching test. Following the packing of bone defects in the rat tibiae with either DTC or ITC, histological examination revealed that the DTC and ITC had both directly contacted the bone and were almost completely surrounded by bone by 16 weeks after the surgery and that no marked biodegradation had occurred at 52 weeks postimplantation. Rectangular plates (2 x 10 x 15 mm) of AWC, DTC, ITC, and SGC were implanted into the metaphysis of the tibia of male rabbits and the failure load was measured by a detaching test at 10 and 25 weeks after implantation. The failure loads of AWC, DTC, ITC, and SGC were 3.65, 2.21, 2.44, and 0.04 kgf at 10 weeks and 4.87, 2. 81, 2.82, and 0.13 kgf at 25 weeks, respectively. Observation of the bone-implant interface by scanning electron microscopy and energy dispersive X-ray microanalysis revealed that all the samples except SGC formed direct contact with the bone and that only AWC-implanted tibiae had a layer of a low calcium and phosphorus level at the bone-implant interface. Results showed that DTC and ITC have excellent osteoconductivity and bone-bonding ability under non-weight-bearing conditions.  相似文献   

14.
Three composites consisting of alumina powder dispersed in a bisphenol-a-glycidyl methacrylate (Bis-GMA) matrix were prepared and evaluated to assess the effect of alumina powder content on the mechanical properties and osteoconductivity of the composite. The alumina powder composites (APC) consisted of alumina powder (AL-P) as the inorganic filler dispersed in a Bis-GMA matrix that was solidified by a radical polymerization process. Prior to polymerization the AL-P was mixed with the monomers in proportions of 50%, 70%, and 80% by weight (APC50, APC70, and APC80). A fused silica-glass-filled composite containing 70% glass by weight (SGC70) was used as a control. The compressive and bending strengths, the elastic modulus in bending, and the bending strain of the composites increased as the AL-P content increased. We also evaluated the composites in vivo by implanting them into the medullary canals of rat tibiae. To compare the osteoconductivity of the composites, an affinity index was calculated for each composite; the affinity index equals the length of a bone in direct apposition to the composite and is expressed as a percentage of the total length of the composite surface. Microradiographic examination for periods of up to 26 weeks after implantation revealed that APC50, APC70, and APC80 all exhibited excellent osteoconductivity and made direct contact with the bone with no interposed soft tissues. However, the higher the AL-P content of the composite, the higher the osteoconductivity, especially at 4 weeks after the operation. Moreover, the amount of bone directly apposed to the composite surface increased with time. In contrast, little bone formation was seen on the surface of SGC70, even after 26 weeks. Observation by scanning electron microscope-energy dispersive X-ray microanalysis demonstrated that bone made direct contact with the APC surface through a layer containing calcium, phosphorus, and alumina powder. These results suggest that APC shows promise as a basis for developing mechanically strong and highly osteoconductive composites.  相似文献   

15.
We investigated the osteoconductivity and biocompatibility in vivo of a new hydroxyapatite-polymethylmethacrylate (HA-PMMA) composite developed for use as an implant material for cranioplasty, which is expected to have the good osteoconductivity of HA together with the strength and ease of handling of PMMA. The HA-PMMA composites were implanted in eight full-grown beagles and then 6, 12, 24 weeks and 1 year after implantation, the animals were sacrificed and the implanted materials removed along with the surrounding tissues. Extirpated specimens were studied using an optical microscope and micro-computed tomography (micro-CT). Fibrous connective tissue was prominent in the interface of the composite at 6 weeks. New bone formation was seen around the implant, 12 and 24 weeks after operation. At 1 year, new bone filled in the interface of the HA-PMMA composite and adhered to the surrounding autogenous bone. Mixing HA and PMMA did not interfere with the osteoconductivity of the HA component. In micro-CT findings, the new bone growing on the HA-PMMA composite could be seen attaching preferentially to HA particles exposed at the composite surface, rather than the PMMA. This study demonstrated that this HA-PMMA composite is a good candidate for cranial bone implants due to its good osteoconductivity and biocompatibility.  相似文献   

16.
Previously we developed a composite consisting of apatite and wollastonite containing glass-ceramic (AW-GC) powder and bisphenol-a-glycidyldimethacrylate (Bis-GMA)-based resin (designated AWC), and demonstrated that AWC showed direct contact with living bone. Another new composite consisting of mainly the delta-crystal phase of alumina bead powder and Bis-GMA-based resin (designated ABC) was developed. Although alumina ceramics are bioinert and a composite filled with the pure alpha-crystal phase of alumina powder (designated alphaALC) did not allow direct bone formation in vivo, ABC was shown to have excellent osteoconductivity. One purpose of this study was to investigate whether AW-GC powder in a composite promotes osteoblastic differentiation of rat bone marrow cells as AW-GC bulk did. Another purpose was to evaluate the effects of the delta-crystal phase of alumina powder in a composite on osteoblastic differentiation. In a cell culture with dexamethasone, alkaline phosphatase (AP) activity at both days 7 and 14, and the levels of osteocalcin mRNA and alpha1(I) collagen mRNA at day 14 and osteopontin mRNA at day 7, were highest on AWC, followed by ABC, and finally alphaALC. Scanning electron microscopy showed more abundant mineralized globules and a fibrous collagen matrix on AWC at day 14, followed by ABC. In a cell culture without dexamethasone, AP activity at both days 7 and 14, and the level of osteopontin mRNA at day 7, were higher on ABC than on any other composite, whereas osteocalcin mRNA could not be detected. These results indicate that AW-GC powder in a composite promotes osteoblastic differentiation of bone marrow cells intensively when supplemented with dexamethasone. The delta-crystal phase of alumina powder in a composite promotes greater osteoblastic differentiation than the alpha-crystal phase of alumina powder.  相似文献   

17.
In methylmethacrylate (MMA)-based cements containing bioactive particles, polymethylmetacrylate (PMMA) is known to suppress the bioactivity of Bioglass(R) and apatite-wollastonite glass ceramic (AW-GC). Little is known about the effect of different silane treatment methods on the bioactivity of AW-GC. MMA-based cement plates containing dry silanated AW-GC particles and PMMA particles of different molecular weights (12,000-900,000) were immersed in simulated body fluid (SBF). Cements containing PMMA particles of high molecular weight formed an apatite layer on the surface after 24 h. Using PMMA particles with a molecular weight of 60,000 and AW-GC particles silanated with different methods (dry method vs. slurry method), cement plates were made and immersed in SBF. Only cement plates containing dry silanated AW-GC particles showed apatite formation in SBF after 3 days. In vivo implantation in rat tibias of MMA-based cement containing dry silanated AW-GC particles and PMMA particles (molecular weight 900,000) demonstrated an affinity index of 32.1 +/- 15.8% after 8 weeks of implantation compared to 89.4 +/- 10.7% achieved by bisphenol-A-glycidyl methacrylate based cement containing the same bioactive powder. By using a dry method of silane treatment and high molecular weight PMMA particles, the bioactivity of cement based on MMA monomer was achieved; but further effort is needed to improve the mechanical properties of the composite.  相似文献   

18.
Biological and mechanical properties of PMMA-based bioactive bone cements   总被引:6,自引:0,他引:6  
We reported previously that a bioactive PMMA-based cement was obtained by using a dry method of silanation of apatite-wollastonite glass ceramic (AW-GC) particles, and using high molecular weight PMMA particles. But handling and mechanical properties of the cement were poor (Mousa et al., J Biomed Mater Res 1999;47:336-44). In the present study, we investigated the effect of the characteristics of PMMA powder on the cement. Different cements containing different PMMA powders (CMW1, Surgical Simplex, Palacos-R and other two types of PMMA powders with Mw 270,000 and 1,200,000) and AW-GC filler in 70 wt% ratio except Palacos-R (abbreviated as B-CMW1 and B-Surg Simp, B-Palacos 50 [50 wt% AW-GC filler] and B-Palacos 70 [70 wt% AW-GC filler], B-270 and B-1200) were made. Dough and setting times of B-CMW1, B-Surg Simp B-270 and B-1200 were similar to the commercial CMW1 cement which did not contain bioactive powder (C-CMW1), but B-palacos which contained large PMMA beads with high Mw had delayed setting time. B-270 had the highest bending strength among the tested cements. After 4 and 8 weeks of implantation in the medullary canals of rat tibiae, the bone-cement interface was examined using SEM. The affinity index of B-1200 was significantly higher than the other types of cements. B-270 showed good combination of handling properties, high mechanical properties and showed higher bioactivity with minimal soft tissue interposition between bone and cement compared with commercial PMMA bone cement. This may increase the strength of the bone-cement interface and increase the longevity of cemented arthroplasties.  相似文献   

19.
In present study, a new composition of glass-ceramic was synthesized based on the Na2O-CaO-SiO2-P2O5 glass system. Heat treatment of glass powder was carried out in 2 stages: 600 °C as the nucleation temperature and different temperature on crystallization at 850, 950 and 1000 °C. The glass-ceramic heat-treated at 950 °C was selected as bioactive filler in commercial PMMA bone cement; (PALACOS? LV) due to its ability to form 2 high crystallization phases in comparison with 850 and 1000 °C. The results of this newly glass-ceramic filled PMMA bone cement at 0-16 wt% of filler loading were compared with those of hydroxyapatite (HA). The effect of different filler loading on the setting properties was evaluated. The peak temperature during the polymerization of bone cement decreased when the liquid to powder (L/P) ratio was reduced. The setting time, however, did not show any trend when filler loading was increased. In contrast, dough time was observed to decrease with increased filler loading. Apatite morphology was observed on the surface of the glass-ceramic and selected cement after bioactivity test.  相似文献   

20.
The fact that bisphenol-a-glycidyl methacrylate (bis-GMA)-based cements contain an uncured surface is believed to play an important role when determining the surface curing properties of the cements. Therefore, in the present study, the bone-bonding strength of cement plates having an uncured surface on one side and a cured surface on the other side has been evaluated. These cement plates were composites of a bis-GMA-based resin with either an apatite- and wollastonite-containing glass-ceramic (AW-GC) powder or a hydroxyapatite (HA) powder, respectively designated AWC and HAC. The amount of each of these powders in a composite cement was 70 wt %. We formulate the hypothesis that the uncured surface of a cement plate is bioactive having bone-bonding properties. The goal of the present study was to indicate the bone-bonding strength of the uncured surfaces of AWC and HAC and compare the strength with the respective cured surfaces by a detaching in vivo test, as well as to histologically examine the bone-cement interface. Each plate has been implanted into the tibiae of male Japanese white rabbits, taking care to retain the surface properties, and the so-called "failure load has been measured using a detaching test followed 8 weeks after implantation. The failure load for AWC-plates at the uncured surface (2.05 +/- 1.11 kgf, n = 8) was significantly higher than AWC at its cured surface side (0.28 +/- 0.64 kgf, n = 8). The failure load for HAC-plates at the uncured surfaces (1.40 +/- 0.68 kgf, n = 8) was significantly higher than HAC at its cured surface (0.00 +/- 0.00 kgf, n = 8). Failure loads for AWC at its uncured and cured surfaces were both higher than for HAC, although not significantly. Direct bone formation has been observed histologically for both AWC and HAC on the uncured surfaces, and a Ca-P-rich layer was observed only at the uncured surface of AWC. These findings strongly suggest that uncured surfaces are useful for exposing a bioactive filler on a surface of composites, being very effective in inducing bone bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号