首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study we investigated the participation of central H1 and H2 histaminergic receptors in water intake induced by hyperosmolarity (evoked by intragastric salt load), by hypovolemia (promoted by the subcutaneous administration of polyethyleneglycol) and by the pharmacological stimulation of central cholinergic pathways by the muscarinic agonist carbachol in male Wistar rats. The data presented here show that the pharmacological blockade of central H1 histaminergic receptors by third ventricle injections of mepyramine significantly decreased water intake induced by hyperosmolarity, hypovolemia and by the intracerebroventricular injections of carbachol. On the other hand, the pharmacological blockade of central H2 histaminergic receptors by third ventricle injections of cimetidine significantly reduced water intake in hypovolemic and hyperosmotic animals, but failed to alter water intake induced by central cholinergic stimulation by carbachol. We conclude that H1 and H2 brain histaminergic receptors are involved in inducing thirst during hyperosmolarity and hypovolemia and that H1 histaminergic receptors located post-synaptically in relation to cholinergic pathways seem to be important in triggering drinking following central pharmacological cholinergic stimulation.  相似文献   

2.
The aim of the present study was to investigate the effect of third ventricle injections of zinc on salt intake in rats in the three different experimental models where sodium appetite is increased: fluid deprivation, central angiotensinergic stimulation and sodium depletion. Adult Wistar male rats received third ventricle injections of Zn(Ac)2 in three different doses (0.03, 0.3 and 3.0 nmol/rat). Central angiotensinergic stimulation was achieved by third ventricle injections of angiotensin II in the dose of 25 ng/rat 30 min before central zinc administration. As expected, fluid deprivation, central angiotensinergic stimulation and sodium depletion significantly increased sodium appetite. Water intake was also enhanced after fluid deprivation and central angiotensinergic stimulation. After sodium depletion, no increase in water intake was observed. Third ventricle injections of zinc inhibited salt intake in all three experimental models studied. Water intake was also inhibited by central zinc administration after fluid deprivation and central angiotensinergic stimulation. Conversely, third ventricle injections of zinc were unable to modify food intake or body temperature. It is suggested that zinc, acting on central structures related to the control of body fluid homeostasis, inhibits the drive for salt intake that is normally observed during fluid deprivation, central angiotensinergic stimulation and sodium depletion.  相似文献   

3.
In the present paper, we studied in rats the effect of third ventricle administration of m-chlorophenylbiguanide hydrochloride (1-(3-chlorophenyl)biguanide (m-CPBG), a selective 5-HT(3) agonist, on water intake induced by three different physiological stimuli: water deprivation, acute salt load and hypovolemia. Central acute m-CPBG injections in the doses of 80 and 160 nmol significantly reduced water intake elicited by an acute salt load. Third ventricle injections of m-CPBG in the dose of 160 nmol significantly inhibited water intake in hypovolemic animals, whereas third ventricle injections of m-CPBG in a higher dose (320 nmol) were necessary to decrease water intake in water-deprived rats. Pretreatment with 1-methyl-N-[8-methyl-8-azabicyclo(3.2.1)-oct-3-yl]-1H-indazole-3-carboxamide (LY-278,584), a selective 5-HT(3) antagonist, abolished the inhibitory effect on water intake seen after central administration of m-CPBG in all groups studied. The central administration of m-CPBG was also able to inhibit water intake induced by pharmacological activation of central cholinergic and angiotensinergic pathways. Third ventricle injections of m-CPBG in the highest dose employed in this study (320 nmol) were unable to modify food intake in food-deprived rats. An aversion test has shown that acute third ventricle injections of m-CPBG do not induce illness-like effects that could explain the water intake inhibition here observed. Also, central administration of m-CPBG did not modify the intake of a "dessert" meal consisting of diluted condensed milk. It is concluded that central 5-HT(3) receptor activation exerts a specific inhibitory effect on water intake.  相似文献   

4.
The role of the central opioid system in the control of water and salt intake is complex, with both stimulatory and inhibitory effects having been observed. The aim of the present study was to investigate the participation of the central κ-opioid receptors in the control of salt appetite. Male Wistar rats were submitted to two different experimental protocols: sodium deficit produced by the diuretic, furosemide, and brain angiotensinergic stimulation in rats under normal sodium balance. Lateral ventricle (LV) injections of Nor-binaltorphimine (Nor-BNI) at different doses (5, 10 and 20 nmol) inhibited hypertonic saline solution (1.5%) intake in sodium-depleted rats. The salt appetite induced by an LV injection of angiotensin II (Ang II) (10 ng) was also blocked by Nor-BNI injections into the LV, while no significant change was observed in water intake. Furthermore, the decrease in salt intake seems not to have been due to a general inhibition of locomotor activity or to any change in palatability, since central administration of Nor-BNI failed to modify the intake of a 0.1% saccharin solution when the animals were submitted to a "dessert test" or to induce any significant locomotor deficit in the open-field test. Also the central administration of Nor-BNI was unable to modify blood pressure in sodium-depleted animals. The present results suggest that activation of endogenous κ-opioid receptors modulates salt appetite induced by sodium depletion and by central angiotensinergic stimulation in rats.  相似文献   

5.
The present work was carried out to investigate the role of angiotensin II type 1 (AT(1)) receptors in nocturnal thirst and sodium appetite induced by classical models of osmotic and sodium depletion challenges in ovariectomized rats chronically treated with oil or oestradiol benzoate (EB, 20 microg per animal, s.c. daily). In both conditions, the animals were given saline or losartan (108 nmol per animal, i.c.v.), a selective AT(1) receptor blocker. Oestrogen therapy significantly reduced the water intake induced by water deprivation, sodium depletion produced by frusemide injected 24 h before, and s.c. acute frusemide plus captopril injection (FUROCAP protocol), with no alteration following s.c. hypertonic saline injection. In contrast, EB therapy decreased the salt intake induced by sodium depletion and FUROCAP protocols, with no alteration following water deprivation and s.c. hypertonic saline injection. Central AT(1) blockade inhibited the dipsogenic response induced by water deprivation, osmotic stimulation, chronic sodium depletion and FUROCAP protocols and inhibited the natriorexigenic response induced by sodium depletion in ovariectomized rats. Oestrogen therapy significantly attenuated the losartan-induced antidipsogenic and antinatriorexigenic actions following sodium depletion and FUROCAP protocols. These results indicate that ovariectomized rats express increased AT(1) receptor signalling related to thirst and sodium appetite responses. Oestrogen therapy and brain AT(1) receptor blockade weakened or markedly decreased the behavioural responses during the nocturnal period, a time at which brain angiotensinergic activity is expected to be more prominent. Finally, we demonstrated through different experimental protocols a clear-cut influence of oestrogenic status on the behavioural AT(1)-induced signalling response.  相似文献   

6.
Disturbances in body water and electrolytes that trigger sodium appetite, such as sodium depletion or hypovolemia, are potent activators of the renin-angiotensin system. In the absence of an actual deficit in body fluids, angiotensin injections are adequate to stimulate increased sodium ingestion. To assess whether angiotensin is a significant mediator of sodium appetite induced by acute alterations in body fluids, sodium intake was examined in rats during central or peripheral angiotensin blockade. Central blockade of angiotensin receptors by intracerebroventricular (ICVT) injection of the analogue antagonist saralasin decreased (but did not eliminate) sodium intake after polethylene glycol-induced hypovolemia or sodium depletion resulting from dialysis against glucose. Conversely, peripheral blockade of angiotensin converting enzyme with orally active captopril potentiated rather than decreased sodium appetite and stimulated water intake after sodium depletion. This increased water and salt intake after peripheral inhibition of converting enzyme was reversed, however, by concurrent central blockade of angiotensin receptors. These data support the hypothesis that angiotensin participates in sodium appetite associated with acute alteration in body fluids. Furthermore, the brain is the site at which angiotensin exerts its influence on sodium appetite. While the involvement of angiotensin of brain origin is not ruled out, the change in sodium appetite after peripheral blockade of converting enzyme suggests that circulating angiotensin derived from renal renin may interact with central angiotensin receptors regulating sodium appetite.  相似文献   

7.
The involvement of angiotensin AT1 receptors in sodium appetite was studied in hypothyroid rats treated with the angiotensin II antagonist losartan. Losartan was administered chronically by the oral route or acutely by the subcutaneous route after water and sodium depletion or water, sodium and food deprivation. Three days after addition of losartan to the food at the dose of 1.0 mg x g(-1), the rats significantly reduced (P < 0.02) their spontaneous intake of 1.8% NaCl. Increasing the dose of losartan to 2.0 and 4.0 mg x g(-1) did not reduce NaCl intake; in contrast, the intensity of the sodium appetite gradually returned to previous levels. The simultaneous administration of captopril, an angiotensin converting enzyme inhibitor, and losartan significantly increased (P < 0.05) NaCl intake and after captopril removal NaCl intake returned to the levels observed with losartan treatment alone. The administration of losartan 4 days after the beginning of captopril treatment significantly reduced (P < 0.0001) NaCl intake. Following acute administration of losartan, water- and sodium-depleted rats significantly reduced their NaCl and water intake (P < 0.001). The administration of losartan also induced a significant reduction in NaCl and water intake in water, NaCl and food-deprived rats (P < 0.0001 and P < 0.001, respectively). The present results show that chronic treatment with oral losartan inhibited spontaneous sodium appetite in hypothyroid rats. Continuation of treatment rendered rats resistant to the blockade of AT1 receptors. Water and sodium depletion and water, NaCl and food deprivation induced sodium appetite, which in the short term depends on cerebral angiotensinergic activity mediated by the activation of AT1 receptors.  相似文献   

8.
Opioid mechanisms are involved in the control of water and NaCl intake and opioid receptors are present in the lateral parabrachial nucleus (LPBN), a site of important inhibitory mechanisms related to the control of sodium appetite. Therefore, in the present study we investigated the effects of opioid receptor activation in the LPBN on 0.3 M NaCl and water intake in rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally in the LPBN were used. In normohydrated and satiated rats, bilateral injections of the opioid receptor agonist beta-endorphin (2 nmol/0.2 mul) into the LPBN induced 0.3 M NaCl (17.8+/-5.9 vs. saline: 0.9+/-0.5 ml/240 min) and water intake (11.4+/-3.0 vs. saline: 1.0+/-0.4 ml/240 min) in a two-bottle test. Bilateral injections of the opioid antagonist naloxone (100 nmol/0.2 mul) into the LPBN abolished sodium and water intake induced by beta-endorphin into the LPBN and also reduced 0.3 M NaCl intake (12.8+/-1.5 vs. vehicle: 22.4+/-3.1 ml/180 min) induced by 24 h of sodium depletion (produced by the treatment with the diuretic furosemide s.c.+sodium deficient food for 24 h). Bilateral injections of beta-endorphin into the LPBN in satiated rats produced no effect on water or 2% sucrose intake when water alone or simultaneously with 2% sucrose was offered to the animals. The results show that opioid receptor activation in the LPBN induces hypertonic sodium intake in satiated and normohydrated rats, an effect not due to general ingestive behavior facilitation. In addition, sodium depletion induced 0.3 M NaCl intake also partially depends on opioid receptor activation in the LPBN. The results suggest that deactivation of inhibitory mechanisms by opioid receptor activation in the LPBN releases sodium intake if excitatory signals were activated (sodium depletion) or not.  相似文献   

9.
Adult male Sprague-Dawley rats surgically fitted with a cannula positioned in the third cerebral ventricle were tested for drinking after exogenous histamine or after eating with or without antagonism of H1 and/or H2 receptors for histamine using intracerebroventricular (ICV) dexbrompheniramine (DXB; 12.5-50 micrograms) or cimetidine (C; 25-100 micrograms). Histamine (0.06-16 micrograms) given ICV failed to elicit drinking. For rats drinking in response to subcutaneous (SC) histamine, ICV DXB alone did not affect drinking, whereas ICV DXB plus C, and ICV C given alone inhibited drinking. Such inhibition appeared to be relatively selective for drinking elicited by SC histamine, because ICV 50 micrograms DXB plus 100 micrograms C abolished drinking elicited by SC histamine, but failed to inhibit drinking after 12-hr water deprivation. When rats ate and drank after food deprivation, ICV DXB alone and ICV DXB plus C did not significantly inhibit food-related water intake. The inhibition of food-related drinking by ICV 100 micrograms C given alone was accompanied by inhibition of eating. In summary, histamine had unimpressive dipsogenic effects when given ICV, ICV DXB and C inhibited drinking elicited by SC histamine, but ICV DXB and C failed to inhibit food-related drinking in a manner parallel to the selective effects of intraperitoneal injection of these drugs on drinking elicited by eating. This suggests that it is histamine and histamine receptors in the periphery rather than in brain that have the predominant role for a histaminergic mechanism for drinking elicited by eating in the rat, but our findings do not rule out a role(s) for histamine in brain in the control of ingestive behavior.  相似文献   

10.
The present study examines the effects of intracerebroventricular injections of histamine (HA) and two HA antagonists, the H(1) receptor antagonist chloropheneramine maleate (CM) and the H(2) receptor antagonist cimetidine (CIM), on food and water consumption and body temperature in chickens. Single-Comb White Leghorns (SCWL) and broiler cockerels were utilized for these experiments. The first pair of experiments consisted of intracerebroventricular injections of HA and its effects on food and water consumption. HA was infused at dosages of 0, 25, 50, and 100 microg/10 microl of artificial cerebrospinal fluid (aCSF). HA significantly decreased food and water intake in a dose-dependent manner. The second pair of experiments examined the effects of HA on water intake while birds had no access to feed. Water intake was not significantly affected by intracerebroventricular injections of HA. The next pair of experiments examined the effects of HA on body temperature. In SCWL, body temperature was not affected by HA until 165 min postinjection when HA decreased temperature in a quadratic dose-response with maximum hypothermia being achieved at a dose of 25 microg. In contrast, HA increased body temperature in broilers beginning at 75 min postinjection. In the final series of experiments, the anorexia induced by HA was attenuated in SCWL and broilers with pretreatment of either CM or CIM. These results suggest that HA has an anorexigenic effect in SCWL and broiler cockerels, and this effect is mediated by both H(1) and H(2) receptors. Water intake is not directly affected by the intracerebroventricular injection of HA. Whereas HA increased body temperature in broilers, the response in SCWL is equivocal.  相似文献   

11.
Histamine is considered as a neurotransmitter, since it is present in hypothalamus and pituitary gland. It has been reported to stimulate prolactin (PRL) release in rats and humans; it seems to be involved in the control of LH release in rats. But cimetidine, an H2 antagonist also induces PRL release in humans. To investigate the relationship between the PRL secretion and possible histaminergic pathways, the response of PRL and LH was studied for 180 minutes in 10 normal subjects (5 men, 5 women) after H1 antagonist (diphenhydramine 50 mg iv), H2 antagonist (cimetidine 300 mg iv) and placebo. Diphenhydramine and placebo injection resulted in a decrease of PRL from 0800 until 11.00 hours, suggesting a spontaneous diurnal variation. Cimetidine induced a short but significant rise of PRL before a similar diurnal secretory pattern. LH levels were unaffected by H1 and H2 antagonists. These data suggest that PRL and LH secretion in humans is unresponsive to H1 histaminergic pathways. The specific action of cimetidine remains to be defined.  相似文献   

12.
The present study was carried out to investigate the contribution of angiotensinergic and catecholaminergic systems in the median preoptic nucleus (MnPO) to the drinking response elicited by activation of the subfornical organ (SFO) following injections of angiotensin II (ANG II) in the awake unrestrained rat. Microinjection of ANG II into the SFO caused the drinking response. The water intake caused by ANG II injected into the SFO was significantly enhanced by previous injections of phenylephrine, an alpha-adrenoceptor agonist, but not by isoprenaline, a beta-adrenoceptor agonist. Previous injections of either saralasin, a specific ANG II antagonist, or phentolamine, an alpha-adrenoceptor antagonist, into the MnPO significantly attenuated the water intake caused by the ANG II injection into the SFO. Similar injections of timolol, a beta-adrenoceptor antagonist, or the vehicle into the MnPO had no significant effect on the drinking response. These results show the involvement of both angiotensinergic and alpha-adrenergic systems in the MnPO in the drinking response induced by ANG II acting at the SFO, and imply that the alpha-adrenergic system may serve to enhance the neural inputs including the angiotensinergic inputs from the SFO, thereby causing increased dipsogenic response.  相似文献   

13.
Huang T  Yan J 《Neuroscience letters》2008,432(3):170-173
Acute sodium depletion induced by furosemide reduces gustatory responses of parabrachial nucleus (PBN) neurons to 0.3-0.5M NaCl in rats. However, in the rat nucleus of the solitary tract (NST), where taste-responsive cells project to the PBN, acute sodium depletion and dietary sodium deprivation elicit different response profiles to lingual NaCl stimulation. To examine the effect of dietary sodium deprivation on the responses of PBN gustatory neurons, we observed the taste responses of the PBN neurons to the four taste qualities and serial concentrations of NaCl in 15-day dietary sodium-deprived and control rats. The results showed that sodium deprivation reduced the responses of PBN taste neurons to 0.1-1.0M NaCl, but not to other tastants. Based on the analyses classified by best-stimulus categories, the number of NaCl-best neurons decreased from 68% to 45% following dietary sodium deprivation, and the responses of the NaCl-best neurons to 0.03-1.0M NaCl were significantly inhibited. Multidimensional scaling illustrated that sodium deprivation increased the similarity of the response profiles of the NaCl-best neurons. These findings suggest that dietary sodium deprivation might modulate sodium intake via increasing aversive threshold for salt rather enhancing salt discrimination.  相似文献   

14.
The activation of GABAergic receptors, GABAA and GABAB, in the lateral parabrachial nucleus (LPBN) increases water and sodium intake in satiated and fluid-depleted rats. The present study investigated the presence of the GABAC receptor in the LPBN, its involvement in water and sodium intake, and its effects on cardiovascular parameters during the acute fluid depletion induced by furosemide combined with captopril (Furo/Cap). One group of male Wistar rats (290–300 g) with bilateral stainless steel LPBN cannulas was used to test the effects of a GABAC receptor agonist and antagonist on the fluid intake and cardiovascular parameters. We investigated the effects of bilateral LPBN injections of trans-4-aminocrotonic acid (TACA) on the intake of water and 0.3 M NaCl induced by acute fluid depletion (subcutaneous injection of Furo/Cap). c-Fos expression increased (P<0.05), suggesting LPBN neuronal activation. The injection of different doses of TACA (0.5, 2.0 and 160 nmol) in the LPBN did not change the sodium or water intake in Furo/Cap-treated rats (P > 0.05). Treatment with the GABAC receptor antagonist (Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid sulfate (ZAPA, 10 nmol) or with ZAPA (10 nmol) plus TACA (160 nmol) did not change the sodium or water intake compared with that for vehicle (saline) (P > 0.05). Bilateral injections of the GABAC agonist in the LPBN of Furo/Cap-treated rats did not affect the mean arterial pressure (MAP) or heart rate (HR). The GABAC receptor expression in the LPBN was confirmed by the presence of a 50 kDa band. Although LPBN neurons might express GABAC receptors, their activation produced no change in water and sodium intake or in the cardiovascular parameters in the acute fluid depletion rats. Therefore, the GABAC receptors in the LPBN might not interfere with fluid and blood pressure regulation.  相似文献   

15.
A water deprived animal that ingests only water efficiently corrects its intracellular dehydration, but remains hypovolemic, in negative sodium balance, and with high plasma renin activity and angiotensin II. Therefore, it is not surprising that it also ingests sodium. However, separation between thirst and sodium appetite is necessary to use water deprivation as a method to understand the mechanisms subserving sodium appetite. For this purpose, we may use the water deprivation-partial repletion protocol, or WD-PR. This protocol allows performing a sodium appetite test after the rat has quenched its thirst; thus, the sodium intake during this test cannot be confounded with a response to thirst. This is confirmed by hedonic shift and selective ingestion of sodium solutions in the sodium appetite test that follows a WD-PR. The separation between thirst and sodium appetite induced by water deprivation permits the identification of brain states associated with sodium intake in the appetite test. One of these states relates to the activation of angiotensin II AT1 receptors. Other states relate to cell activity in key areas, e.g. subfornical organ and central amygdala, as revealed by immediate early gene c-Fos immunoreactivity or focal lesions. Angiotensin II apparently sensitizes the brain of the water deprived rat to produce an enhanced sodium intake, as that expressed by spontaneously hypertensive and by young normotensive rat. The enhancement in sodium intake produced by history of water deprivation is perhaps a clue to understand the putative salt addiction in humans.The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009.  相似文献   

16.
Angiotensin receptors in the most ventral part of the ventral median preoptic nucleus (VVMnPO) or organum vasculosum laminae terminalis appear to be important for salt appetite to angiotensin in rats. If so, then small lesions of this region should reduce salt appetite that is dependent on angiotensin. In separate experiments, the lesion greatly reduced salt appetite after treatments with chronic oral captopril or sodium depletion. On the other hand, the VVMnPO lesion actually enhanced salt appetite to deoxycorticosterone acetate. The lesion did not affect water intake to water deprivation, combined food-water deprivation, isoproterenol, or hypertonic saline, and basal plasma osmolality and sodium values were normal. These experiments suggest that VVMnPO lesions selectively affect angiotensin-induced salt appetite without producing the gross hydrational deficits that occur with larger lesions of the ventral forebrain.  相似文献   

17.
The interaction of central opioid receptors with histaminergic stimulation of the hypothalamo-pituitary-adrenocortical axis, evaluated indirectly through corticosterone secretion, was investigated in conscious unstressed rats. To avoid any possible direct action on the adrenal cortex, all drugs were given intracerebroventricularly (i.c.v.). Histamine, 2-pyridylethylamine (PEA), a histamine H1-receptor agonist, and 4-methyl-histamine (MeHA) and dimaprit, the H2-receptor agonists, considerably increased the serum corticosterone levels 1 h after adminstration. Naloxone, an opioid receptor antagonist, almost abolished the corticosterone response to PEA and considerably reduced the responses to MeHA, dimaprit and histamine. The maximum inhibitory effects of naloxone on corticosterone responses induced by histamine and histamine agonists were comparable with those of the H1-and H2-receptor antagonists, mepyramine and cimetidine.These results strongly suggest that a major part of the histaminergic stimulation of the hypothalamopituitary-adrenal axis is mediated by central opioid receptorsThe study was supported by the Polish Academy of Sciences, grant No 06.03.  相似文献   

18.
We investigated the influence of captopril (an angiotensin converting enzyme inhibitor) treatment during pregnancy and lactation period on hydromineral balance of the male adult offspring, particularly, concerning thirst and sodium appetite. We did not observe significant alterations in basal hydromineral (water intake, 0.3 M NaCl intake, volume and sodium urinary concentration) or cardiovascular parameters in adult male rats perinatally treated with captopril compared to controls. However, male offspring rats that perinatally exposed to captopril showed a significant attenuation in water intake induced by osmotic stimulation, extracellular dehydration and beta-adrenergic stimulation. Moreover, captopril treatment during perinatal period decreased the salt appetite induced by sodium depletion. This treatment also attenuated thirst and sodium appetite aroused during inhibition of peripheral angiotensin II generation raised by low concentration of captopril in the adult offspring. Interestingly, perinatal exposure to captopril did not alter water or salt intake induced by i.c.v. administration of angiotensin I or angiotensin II. These results showed that chronic inhibition of angiotensin converting enzyme during pregnancy and lactation modifies the regulation of induced thirst and sodium appetite in adulthood.  相似文献   

19.
Twelve Sprague-Dawley male albino rats were tested with or without combined antagonism of peripheral H1 (using 2 mg/kg dexbrompheniramine IP) and H2 (using 32 mg/kg cimetidine IP) receptors for histamine prior to (a) drinking after 2.5 mg/kg histamine SC, (b) drinking after 24-hr water deprivation, and (c) drinking during the acquisition and maintenance of schedule-induced polydipsia (SIP) with a 45 mg Noyes pellet delivered every 90 sec. Such antagonism of histamine receptors abolished drinking elicited by exogenous histamine without inhibiting drinking after water deprivation. Moreover, histaminergic antagonism failed to prevent the acquisition and maintenance of SIP and failed to alter the distribution of contacts with the drinking spout during interpellet intervals. These findings demonstrate no role for endogenous systemic histamine in SIP.  相似文献   

20.
The intraperitoneal administration of three antihistaminic drugs of H1 type: mepyramine, diphenyhydramine (each 5 and 30 mg/kg) and danitracen (2 and 10 mg/kg) did not modify histamine level in the rat brain after 2 h. Histamine H2-receptor antagonists: cimetidine (25-250 microgram) and metiamide (100 microgram) given directly into the brain had no significant effect on histamine content after 1.5 h. L-histidine (0.5 g/kg i.p.) increased after 1.5 h histamine level in various experiments by 50-75% above control. All antihistaminic drugs did not change significantly histamine level in the brains of L-histidine-treated rats though a slight but consistent tendency to decrease the L-histidine effect in the group of H2-receptor blocking drugs was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号