首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 838 毫秒
1.
In vitro urine adulteration is a well‐documented practice adopted by individuals aiming to evade detection of drug use, when required to undergo mandatory sports and workplace drug testing. Potassium nitrite is an effective urine adulterant due to its oxidizing potential, and has been shown to mask the presence of many drugs of abuse. However, limited research has been conducted to understand its mechanism of action, and to explore the possibility of the drugs undergoing direct oxidation to form stable reaction products. In this study, opiates including morphine, codeine, morphine‐3‐glucuronide and morphine‐6‐glucuronide were exposed to potassium nitrite in water and urine to mimic the process of nitrite adulteration. It was found that two stable reaction products were detected by liquid chromatography‐mass spectrometry (LC‐MS) when morphine and morphine‐6‐glucuronide were exposed to nitrite. Isolation and elucidation using spectrometric and spectroscopic techniques revealed that they were 2‐nitro‐morphine and 2‐nitro‐morphine‐6‐glucuronide, respectively. These reaction products were also formed when an authentic morphine‐positive urine specimen was fortified with nitrite. 2‐Nitro‐morphine was found to be stable enough to undergo the enzymatic hydrolysis procedure and also detectable by gas chromatography‐mass spectrometry (GC‐MS) after forming a trimethylsilyl derivative. On the contrary, morphine‐3‐glucuronide did not appear to be chemically manipulated when exposed to potassium nitrite in urine. These reaction products are not endogenously produced, are relatively stable and can be monitored with both LC‐MS and GC‐MS confirmatory techniques. As a result, these findings have revealed the possibility for the use of 2‐nitro‐morphine and 2‐nitro‐morphine‐6‐glucuronide as markers for the indirect monitoring of morphine and morphine‐6‐glucuronide in urine specimens adulterated with nitrite. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
New dual binding site acetylcholinesterase (AChE) inhibitors have been designed and synthesized as a new drug candidate for the treatment of Alzheimer's disease (AD) through the binding to both catalytic and peripheral sites of the enzyme. Therefore, a series of 7H‐thiazolo[3,2‐b]‐1,2,4‐triazin‐7‐one derivatives 6a – j were synthesized and investigated for their ability to inhibit the activity of human AChE (hAChE) in comparison with huperzine‐A. All the compounds were found to inhibit AChE activity, especially compounds 6c and 6i with the inhibition value of 76.10% and 77.82%, respectively. The molecular docking study indicated that they were nicely accommodated by AChE. The molecular docking study revealed that 6c and 6i possessed a more optimal binding conformation than 6a and can perfectly fit into the active and peripheral site of hAChE, and consequently exhibited highly improved inhibitor potency to hAChE.  相似文献   

3.
Fifty one newer 1‐(cyclopropyl/2,4‐difluorophenyl/tert‐butyl)‐1,4‐dihydro‐8‐methyl‐6‐nitro‐4‐oxo‐7‐(substituted secondary amino)quinoline‐3‐carboxylic acids were synthesized from 1,3‐dichloro‐2‐methylbenzene and evaluated for in‐vitro antimycobacterial activities against Mycobacterium tuberculosis H37Rv (MTB), multi‐drug resistant Mycobacterium tuberculosis (MDR‐TB), and Mycobacterium smegmatis (MC2). Among the synthesized compounds, 1‐cyclopropyl‐1,4‐dihydro‐7‐(3,4‐dihydro‐6,7‐dimethoxyisoquinolin‐2(1H)‐yl)‐8‐methyl‐6‐nitro‐4‐oxoquinoline‐3‐carboxylic acid 9p was found to be the most active compound in vitro with a MIC value of 0.39 μM against MTB. Against MDR‐TB, compound 7‐(2‐carboxy‐5,6‐dihydroimidazo[1,2‐a]pyrazin‐7(8H)‐yl)‐1‐cyclopropyl‐1,4‐dihydro‐8‐methyl‐6‐nitro‐4‐oxoquinoline‐3‐carboxylic acid 9n was found to be the most active with a MIC value of 0.09 μM.  相似文献   

4.
2‐Nitro‐1‐phenyl‐1‐propanol (NPP) is a nitro alcohol that is known as an intermediate in the synthesis of sympathomimetic agents, such as norephedrine. The present study investigated the vasoactive effects of NPP on rat aorta. In endothelium‐intact aortic rings, NPP fully relaxed contractions that were induced by phenylephrine, KCl, and U‐46619. The relaxant effects of NPP on phenylephrine‐elicited contractions remained unaffected by NG‐nitro‐l ‐arginine methyl ester (l ‐NAME), indomethacin, propranolol, tetraethylammonium, 4‐aminopyridine, and glibenclamide. Conversely, pretreatment with 1H‐[1,2,4]oxadiazolo[4,3‐a]quinoxalin‐1‐one (ODQ), cis‐N‐(2‐phenylcyclopentyl)‐azacyclotridec‐1‐en‐2‐amine hydrochloride (MDL‐12,330A), and N‐[2‐(P‐bromocinnamylamino)ethyl]‐5‐isoquinolinesulfonamide dihydrochloride (H‐89) reduced the ability of NPP to relax contractions that were elicited by phenylephrine. NPP inhibited the vasoconstrictor response that was induced by Ca2+ in aortic rings that were stimulated by pharmacomechanical or electromechanical coupling with phenylephrine and 60 mmol/L KCl, respectively, and after the depletion of intracellular Ca2+ stores. Such effects of NPP were significantly reversed by pretreatment with the guanylyl cyclase inhibitor ODQ and weakly influenced by the adenylyl cyclase inhibitor MDL‐12,330A. In Ca2+‐free medium, NPP inhibited transient contractions that were induced by phenylephrine but not caffeine. In homogenates of aortic rings, NPP increased cyclic guanosine 3′,5′‐monophosphate (cGMP) and cyclic adenosine 3′‐5′‐monophosphate levels, but this effect was statistically significant only for cGMP. In conclusion, in contrast to the vasoconstrictor amine norephedrine, NPP is a vasodilator in rat aorta, and its relaxant effects are likely attributable to cGMP production.  相似文献   

5.
Inhibition of p38 mitogen‐activated protein kinases (MAPKs) would allow significant modulation of the neuroinflammation condition associated with Alzheimer's disease (AD). Inspired from the pharmacophore of natural NF‐κB and p38α MAPK inhibitor 5,6‐dehydrokawain and p38α MAPK inhibitors 1a, 1‐pyrazolyl‐3‐(4‐((2‐anilinopyrimidin‐4‐yl)oxy)napththalen‐1‐yl)ureas, and 1b , a class of indole–pyrimidinyl compounds which were patented respectively, we designed, de novo synthesized, and evaluated two kinds of novel series of lactone benzoyl hydrazine derivatives and 2‐nitro‐1‐phenyl‐1H‐indole derivatives in an effort to develop pharmacologically tractable agents to alleviate the progression of AD. Fourteen of the seventeen synthesized compounds exhibit significant inhibitory effect on the nitric oxide (NO) production induced by lipopolysaccharide (LPS)‐induced microglia activation with IC50 less than the control 5,6‐dehydrokawain. Notably, compound 27 , 6‐methoxy‐2‐nitro‐1‐(1H‐1, 2, 3‐triazol‐1‐yl)‐1H‐indole, with IC50 values of 1.6  μ m can markedly inhibit p38 α MAPK and NO release in BV‐2 microglial cells. The molecular dynamic (MD) simulations demonstrate that compound 27 inhibits p38 α MAPK through binding to the Glu71 and Asp168 residues. Moreover, in vitro study shows that all compounds can easily cross the blood–brain barrier (BBB) and did not exhibit any acute cellular toxicity checked by MTT assay. These investigations provide promising chemical lead candidate as anti‐neuroinflammatory agents for AD.  相似文献   

6.
An in silico method has been used to discover N‐hydroxy‐substituted 2‐aryl acetamide analogs as a new class of HIV‐1 integrase inhibitors. Based on the molecular requirements of the binding pocket of catalytic active site, two molecules (compounds 2 and 4b ) were designed as fragments. These were further synthesized and biologically evaluated. In vitro potency along with docking studies highlighted compound 4b as an active fragment which was further used to synthesize new leads as HIV‐1 integrase inhibitors. Finally, six promising compounds (compounds 5b , 5c , 5e, 6–2c, 6–3b, and 6–5b ) were identified by integrase inhibition assay (>50% inhibition). Based on in vitro anti‐HIV‐1 activity in a reporter gene‐based cell assay system, compounds 5d , 6s , and 6k were found as novel HIV‐1 integrase inhibitors due to its better selectivity index. Additionally, docking study revealed the importance of H‐bond as well as hydrophobic interactions with Asn155, Lys156, and Lys159 which were required for their anti‐HIV‐1 activity.  相似文献   

7.
Glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) has recently gained attention as an antiprotozoan and anticancer drug target. We have previously identified 2‐phenoxy‐1,4‐naphthoquinone as an inhibitor of both Trypanosoma brucei and human GAPDH. Herein, through multiple chemical, biochemical, and biological studies, and through the design of analogs, we confirmed the formation of a covalent adduct, we clarified the inhibition mechanism, and we demonstrated antitrypanosomal, antiplasmodial, and cytotoxic activities in cell cultures. The overall results lent support to the hypothesis that 2‐phenoxy‐1,4‐naphthoquinone binds the GAPDH catalytic cysteine covalently through a phenolate displacement mechanism. By investigating the reactivity of 2‐phenoxy‐1,4‐naphthoquinone and its analogs with four GAPDH homologs, we showed that the covalent inhibition is not preceded by the formation of a strong non‐covalent complex. However, an up to fivefold difference in inactivation rates among homologs hinted at structural or electrostatic differences of their active sites that could be exploited to further design kinetically selective inhibitors. Moreover, we preliminarily showed that 2‐phenoxy‐1,4‐naphthoquinone displays selectivity for GAPDHs over two other cysteine‐dependent enzymes, supporting its suitability as a warhead starting fragment for the design of novel inhibitors.  相似文献   

8.
A series of novel S‐DABO derivatives with the substituted 1,2,3‐triazole moiety on the C‐2 side chain were synthesized using the simple and efficient CuAAC reaction, and biologically evaluated as inhibitors of HIV‐1. Among them, the most active HIV‐1 inhibitor was compound 4‐((4‐((4‐(2,6‐dichlorobenzyl)‐5‐methyl‐6‐oxo‐1,6‐dihydropyrimidin‐2‐ylthio)methyl)‐1H‐1,2,3‐triazol‐1‐yl)methyl)benzenesulfonamide ( B5b7) , which exhibited similar HIV‐1 inhibitory potency (EC50 = 3.22 μm ) compared with 3TC (EC50 = 2.24 μm ). None of these compounds demonstrated inhibition against HIV‐2 replication. The preliminary structure–activity relationship (SAR) of these new derivatives was discussed briefly.  相似文献   

9.
1‐[2‐(4‐Fluorobenzoylamino)ethyl]‐4‐(7‐methoxynaphthyl)piperazine (S14506) is one of the most potent and selective agonists at 5‐HT1A receptors. For the purpose of prospective 5‐HT1A receptor imaging with positron emission tomography and the investigation of radioligand metabolic pathways, S14506 was labeled with a positron emitter, either carbon‐11 (t1/2=20.4 min) or fluorine‐18 (t1/2=109.7 min), at different positions. Thus, [O‐methyl11C]S14506 was obtained in a radiosynthesis time of 35 min by treating O‐desmethyl‐S14506 with [11C]iodomethane and tetrabutylammonium hydroxide in N,N–dimethylformamide. The overall decay‐corrected radiochemical yield (RCY) of [O‐methyl11C]S14506 ranged between 6 and 24% and the specific activity (SA) between 1343 and 3101 Ci/mmol (mean 2390; n=30). [carbonyl11C]S14506 was synthesized through a microwave‐enhanced direct coupling of in situ generated [11C]organocarboxymagnesium bromide with amine precursor. RCYs ranged from 10 to 18%. [18F]S14506 was prepared via nucleophilic aromatic fluoridation of the 4‐nitro analog in 14–35% RCY and with SA ranging from 1063 to 2302 Ci/mmol (mean 1617; n=14) in a radiosynthesis time of 115 min. Heating the radiofluoridation mixture for 5 min at 180°C in a single mode microwave cavity gave similar RCY and SA to heating for 30 min in an oil bath at the same temperature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
3,7,8‐15N3‐N1‐(β‐D‐erythro‐pentofuranosyl)‐5‐guanidinohydantoin was synthesized from the oxidation of 1,7,NH215N3‐8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine with 2 equivalents of Ir(IV) in pH 4.5 potassium phosphate buffer. The synthesis of 1,7,NH215N3‐8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine started with bromination of 1,7,NH215N3‐2′‐deoxyguanosine. The resulting 1,7,NH215N3‐8‐bromo‐7,8‐dihydro‐2′‐deoxyguanosine reacted with sodium benzyloxide to afford 1,7,NH215N3‐8‐benzyloxy‐7,8‐dihydro‐2′‐deoxyguanosine. Subsequent catalytic transfer hydrogenation of 1,7,NH215N3‐8‐benzyloxy‐7,8‐dihydro‐2′‐deoxyguanosine with cyclohexene and 10% Pd/C yielded 1,7,NH215N3‐8‐oxo‐7,8‐dihydro‐2′‐deoxyguanosine. Purification of 3,7,8‐15N3‐N1‐(β‐D‐erythro‐pentofuranosyl)‐5‐guanidinohydantoin was first carried out on a C18 column and the product was further purified on a graphite column. ESI‐MS was used to confirm the identity and to determine the isotopic purity of all the labeled compounds. The isotopic purity of 3,7,8‐15N3‐N1‐(β‐D‐erythro‐pentofuranosyl)‐5‐guanidinohydantoin was 99.4 atom% based on LC‐MS measurements. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Alzheimer's disease onset and progression are associated with the dysregulation of multiple and complex physiological processes, and a successful therapeutic approach should therefore address more than one target. In line with this modern paradigm, a series of 8‐imino‐2‐oxo‐2H,8H‐pyrano[2,3‐f]chromene analogs ( 4a – q ) were synthesized and evaluated for their multitarget‐directed activity on acetylcholinesterase, butyrylcholinesterase (BuChE), 2,2’‐azino‐bis(3‐ethylbenzthiazoline‐6‐sulfonic acid) (ABTS) radical, and amyloid‐β peptide (Aβ) specific targets for Alzheimer's disease therapy. Most of the synthesized compounds showed remarkable acetylcholinesterase inhibitory activities in low nm concentrations and good ABTS radical scavenging activity, however, no evidence of BuChE inhibitory activity. Among them, 3‐bromobenzylamide derivative 4m exhibited the best acetylcholinesterase inhibitory activity with IC50 value of 13 ± 1.4 nm which is 51‐fold superior to galantamine, a reference drug. Kinetic and molecular docking studies indicated 4m as mixed‐type inhibitor, binding simultaneously to catalytic active and peripheral anionic sites of acetylcholinesterase. Five compounds 4e , 4f , 4g , 4j , and 4k have shown 1.4‐ to 2.5‐fold of higher antioxidant activities than trolox. Interestingly, the most active compound 4m demonstrated dosage‐dependent acceleration of Aβ1?42 aggregation, which may reduce toxicity of oligomers. Overall, these results lead to discovery of fused tricyclic coumarins as promising dual binding site inhibitors of acetylcholinesterase and afford multifunctional compounds with potential impact for further pharmacological development in Alzheimer's therapy.  相似文献   

12.
Compared to homoaromatic and aliphatic nucleophilic radiofluorinations, only few references can be found in the literature describing nucleophilic substitutions with [18F]fluoride ion of heteroaromatic compounds such as pyridines and only reactions involving fluorination processes at the ortho‐position (2‐position) have been more intensively studied. In the present paper, the scope of the nucleophilic aromatic fluorinations at the meta‐ and para‐position of the pyridine ring with no‐carrier‐added [18F]fluoride ion as its activated K[18F]F‐K222 complex has been evaluated and compared to the nucleophilic aromatic fluorinations at the ortho‐position in this pyridine series. The syntheses of 3‐ and 4‐[18F]fluoropyridines were chosen as model reactions and compared to the radiosynthesis of 2‐[18F]fluoropyridine. The parameters studied include the influence of the position of the leaving group at the pyridine ring, as well as the quantity of the precursor used, the type of activation (conventional heating, microwave irradiation), the solvent, the temperature and the reaction time. Using the corresponding nitro precursor, high yields were obtained at the 2‐position (94% yield) using microwaves (100 W) for 2 min in DMSO. Good yields (up to 72%) were observed at the 4‐position using the same conditions while practically no reaction was observed at the 3‐position. About 60% yield was also obtained at both the 2‐ and 4‐position using the corresponding nitro precursor at 145°C for 10 min in DMSO. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The development of blood vessels inside tumors is required to provide the nutrients and oxygen needed for tumor growth and to allow the spread of cancer cells at a distance to form metastasis. Angiogenesis is also implicated in ocular diseases like age‐related macular degeneration. The present work describes the potential anti‐angiogenic properties of a coumarinic derivative, 3‐bromophenyl 6‐acetoxymethyl‐2‐oxo‐2H‐1‐benzopyran‐3‐carboxylate (IK9), previously described as a potent inhibitor of HT 1080 fibrosarcoma cell invasion in vitro and tumor growth in vivo. In vivo, ex vivo, and in vitro models were used to delineate the anti‐angiogenic properties of IK9. The anti‐angiogenic effect of IK9 was demonstrated in vivo in a choroidal neovascularization mice model and additionally ex vivo in a rat aortic ring assay where it was more active than the known matrix metalloproteinase inhibitor Ro 28‐2653. IK9 did not affect apoptosis, proliferation, or endothelial cell invasiveness in vitro. These findings suggest a complex mechanism of action of the compound via direct or indirect effects on endothelial cell properties. This study identifies IK9 as a new potent inhibitor of angiogenesis and suggests its potential use as a therapeutic agent. Drug Dev Res 71, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
A new series of oxadiazoles were designed to act as inhibitors of the anti‐apoptotic Bcl‐2 protein. Virtual screening led to the discovery of new hits that interact with Bcl‐2 at the BH3 binding pocket. Further study of the structure–activity relationship of the most active compound of the first series, compound 1 , led to the discovery of a novel oxadiazole analogue, compound 16j , that was a more potent small‐molecule inhibitor of Bcl‐2. 16j had good in vitro inhibitory activity with submicromolar IC50 values in a metastatic human breast cancer cell line (MDA‐MB‐231) and a human cervical cancer cell line (HeLa). The antitumour effect of 16j is concomitant with its ability to bind to Bcl‐2 protein as shown by an enzyme‐linked immunosorbent assay (IC50 = 4.27 μm ). Compound 16j has a great potential to develop into highly active anticancer agent.  相似文献   

15.
4‐Fluoro‐N‐{2‐[4‐(6‐trifluoromethylpyridin‐2‐yl)piperazin‐1‐yl]ethyl}benzamide is a full 5‐HT1A agonist with high affinity (pKi=9.3), selectivity and a c log P of 3.045. The corresponding PET radioligand 4‐[18F]fluoro‐N‐{2‐[4‐(6‐trifluoromethylpyridin‐2‐yl)piperazin‐1‐yl]ethyl}benzamide was synthesized by nucleophilic aromatic substitution on the nitro precursor. The fluorinating agent K[18F]F/Kryptofix 2.2.2 was both dried (9 min, 700 W) and incorporated in the precursor (5 min, 700 W) using a commercially available microwave oven. In a total synthesis time of 60 min, an overall radiochemical yield of 18% (SD=5, n=7, EOS) was obtained. Radiochemical purity was always higher than 99% and specific activity always higher than 81.4 GBq/µmol (2.2 Ci/µmol). Initial brain uptake in mice was 2.19% ID (5.47% ID/g, 2 min) but decreased rapidly (0.17% ID, 0.45% ID/g (60 min)). During the first 20 min p.i., radioactivity concentration of the brain was significantly higher than that of blood demonstrating good brain entry of the tracer. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
In 2012, seized capsules containing white powder were analyzed to show the presence of unknown steroid‐related compounds. Subsequent gas chromatography–mass spectrometry (GC‐MS) and nuclear magnetic resonance (NMR) investigations identified a mixture of 3α‐ and 3β‐ isomers of the novel compound; 3‐chloro‐17α‐methyl‐5α‐androstan‐17β‐ol. Synthesis of authentic reference materials followed by comparison of NMR, GC‐MS and gas chromatography‐tandem mass spectrometry (GC‐MS/MS) data confirmed the finding of a new ‘designer’ steroid. Furthermore, in vitro androgen bioassays showed potent activity highlighting the potential for doping using this steroid. Due to the potential toxicity of the halogenated steroid, in vitro metabolic investigations of 3α‐chloro‐17α‐methyl‐5α‐androstan‐17β‐ol using equine and human S9 liver fractions were performed. For equine, GC‐MS/MS analysis identified the diagnostic 3α‐chloro‐17α‐methyl‐5α‐androstane‐16α,17β‐diol metabolite. For human, the 17α‐methyl‐5α‐androstane‐3α,17β‐diol metabolite was found. Results from these studies were used to verify the ability of GC‐MS/MS precursor‐ion scanning techniques to support untargeted detection strategies for designer steroids in anti‐doping analyses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
AM‐694 (1‐[(5‐fluoropentyl)‐1H‐indol‐3‐yl]‐(2‐iodophenyl)methanone), a synthetic indole‐based cannabimimetic, was first reported to the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) via the Early Warning System (EWS) by Irish authorities in 2010. Using gas chromatography–mass spectrometry (GC‐MS), we have identified six AM‐694 metabolites in post‐ingestion samples. The metabolites were tentatively identified as products of (1) hydrolytic defluorination, (2) carboxylation, (3) monohydroxylation of N‐alkyl chain, and (4) hydrolytic defluorination combined with monohydroxylation of N‐alkyl chain. The parent compound was not detected. The excretion of major metabolites was observed up to 117 h following administration. One metabolite (a product of hydrolytic defluorination) was also identified in urine samples from two individuals admitted to hospital suffering from suspected drug overdoses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, novel acridone‐1,2,4‐oxadiazole‐1,2,3‐triazole hybrids were designed, synthesized, and evaluated for their acetylcholinesterase and butyrylcholinesterase inhibitory activity. Among various synthesized compounds, 10‐((1‐((3‐(4‐methoxyphenyl)‐1,2,4‐oxadiazol‐5‐yl)methyl)‐1H‐1,2,3‐triazol‐4‐yl)methyl)acridin‐9(10H)‐one 10b showed the most potent anti‐acetylcholinesterase activity (IC50 = 11.55 μm ) being as potent as rivastigmine. Also docking outcomes were in good agreement with in vitro results confirming the dual binding inhibitory activity of compound 10b .  相似文献   

19.
As a widely used plasticizer in industry, di‐2‐ethylhexylphthalate (DEHP) can cause testicular toxicity, yet little is known about the potential mechanism. In this study, DEHP exposure dramatically inhibited cellviability and induced apoptosis of mouse GC‐1 spg cells. Furthermore, DEHP significantly increased the levels of autophagy proteins LC3‐II, Beclin1 and Atg5, as well as the ratio ofLC3‐II/LC3‐I. Transmission electron microscopy (TEM) further confirmed that DEHP induced autophagy of mouse GC‐1 spg cells. DEHP was also shown to induceoxidative stress; while inhibition of oxidative stress with NAC could increase cell viability and inhibit DEHP‐induced apoptosis and autophagy. These results suggested that DEHP induced apoptosis and autophagy of mouse GC‐1 spg cells via oxidative stress. 3‐MA, an inhibitor of autophagy, could rescue DEHP‐induced apoptosis. In summary, DEHP induced apoptosis and autophagy of mouse GC‐1 spg cells via oxidative stress, and autophagy might exert a cytotoxic effect on DEHP‐induced apoptosis.  相似文献   

20.
In mycobacteria, the biosynthesis of the precursors to the essential isoprenoids, isopentenyl diphosphate and dimethylallyl pyrophosphate is carried out by the methylerythritol phosphate pathway. This route of synthesis is absent in humans, who utilize the alternative mevalonate acid route, thus making the enzymes of the methylerythritol phosphate pathway of chemotherapeutic interest. One such identified target is the second enzyme of the pathway, 1‐deoxy‐d ‐xylulose 5‐phosphate reductoisomerase. Only limited information is currently available concerning the catalytic mechanism and structural dynamics of this enzyme, and only recently has a crystal structure of Mycobacterium tuberculosis species of this enzyme been resolved including all factors required for binding. Here, the dynamics of the enzyme is studied in complex with NADPH, Mn2+, in the presence and absence of the fosmidomycin inhibitor using conventional molecular dynamics and an enhanced sampling technique, reversible digitally filtered molecular dynamics. The simulations reveal significant differences in the conformational dynamics of the vital catalytic loop between the inhibitor‐free and inhibitor‐bound enzyme complexes and highlight the contributions of conserved residues in this region. The substantial fluctuations observed suggest that 1‐deoxy‐D‐xylulose 5‐phosphate reductoisomerase may be a promising target for computer‐aided drug discovery through the relaxed complex method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号