首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examined immediate‐early gene expression in the perirhinal cortex of rats with hippocampal lesions. The goal was to test those models of recognition memory which assume that the perirhinal cortex can function independently of the hippocampus. The c‐fos gene was targeted, as its expression in the perirhinal cortex is strongly associated with recognition memory. Four groups of rats were examined. Rats with hippocampal lesions and their surgical controls were given either a recognition memory task (novel vs. familiar objects) or a relative recency task (objects with differing degrees of familiarity). Perirhinal Fos expression in the hippocampal‐lesioned groups correlated with both recognition and recency performance. The hippocampal lesions, however, had no apparent effect on overall levels of perirhinal or entorhinal cortex c‐fos expression in response to novel objects, with only restricted effects being seen in the recency condition. Network analyses showed that whereas the patterns of parahippocampal interactions were differentially affected by novel or familiar objects, these correlated networks were not altered by hippocampal lesions. Additional analyses in control rats revealed two modes of correlated medial temporal activation. Novel stimuli recruited the pathway from the lateral entorhinal cortex (cortical layer II or III) to hippocampal field CA3, and thence to CA1. Familiar stimuli recruited the direct pathway from the lateral entorhinal cortex (principally layer III) to CA1. The present findings not only reveal the independence from the hippocampus of some perirhinal systems associated with recognition memory, but also show how novel stimuli engage hippocampal subfields in qualitatively different ways from familiar stimuli.  相似文献   

2.
Dorsoventral lesion studies of the hippocampus have indicated that the dorsal axis of the hippocampus is important for spatial processing and the ventral axis of the hippocampus is important for olfactory learning and memory and anxiety. There is some evidence to suggest that the ventral CA3 and ventral CA1 conduct parallel processes for pattern completion and temporal processing, respectively. Studies have indicated that the dorsal dentate gyrus (DG) is importantly involved in processes reflecting underlying pattern separation activity for spatial information. However, the ventral DG is less understood. The current study investigated the less‐understood role of the ventral DG in olfactory pattern separation. A series of odor stimuli that varied on only one level, number of carbon chains (methyl groups), was used in a matching‐to‐sample paradigm in order to investigate ventral DG involvement in working memory for similar and less similar odors. Rats with ventral DG lesions were impaired at delays of 60 sec, but not at delays of 15 sec. A memory‐based pattern separation effect was observed performance was poorest with only one carbon chain separation between trial odors and was highest for trials with four separations. The present study indicates that the ventral DG plays an important role in olfactory learning and memory processes for highly similar odors. The results also indicate a role for the ventral DG in pattern separation for odor information, which may have further implications for parallel processing across the dorsoventral axis for the DG in spatial (dorsal) and olfactory (ventral) pattern separation. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Day‐to‐day life involves the perception of events that resemble one another. For the sufficient encoding and retrieval of similar information, the hippocampus provides two essential computational processes. Pattern separation refers to the differentiation of overlapping memory representations, whereas pattern completion reactivates memories based on noisy or degraded input. Evidence from human and rodent studies suggest that pattern separation specifically relies on neuronal ensemble activity in hippocampal subnetworks in the dentate gyrus and CA3. Although a role for CA1 in pattern separation has been shown in animal models, its contribution in the human hippocampus remains elusive. In order to elucidate the contribution of CA1 neurons to pattern separation, we examined 14 patients with an acute transient global amnesia (TGA), a rare self‐limiting dysfunction of the hippocampal system showing specific lesions to CA1. Patients' pattern separation performance was tested during the acute amnestic phase and follow‐up using an established mnemonic similarity test. Patients in the acute phase showed a profound deficit in pattern separation (p < .05) as well as recognition memory (p < .001) that recovered during follow‐up. Specifically, patients tested in a later stage of the amnesia were less impaired in pattern separation than in recognition memory. Considering the time dependency of lesion‐associated hippocampal deficits in early and late acute stages of the TGA, we showed that the pattern separation function recovered significantly earlier than recognition memory. Our results provide causal evidence that hippocampal CA1 neurons are critical to pattern separation performance in humans.  相似文献   

4.
Patient RB became amnesic following an episode of global ischemia that resulted in a bilateral lesion of the CA1 field of the hippocampus. This finding suggested that damage restricted to the hippocampus is sufficient to produce clinically significant memory impairment. To evaluate further the effect of ischemic brain damage on memory, we have developed an animal model of cerebral ischemia in the monkey. Monkeys were subjected to 15 min of reversible ischemia, using a noninvasive technique involving carotid occlusion and pharmacologically induced hypotension. These monkeys sustained significant loss of pyramidal cells in the CA1 and CA2 fields of the hippocampus, as well as loss of somatostatin-immunoreactive cells in the hilar region of the dentate gyrus. Cell loss occurred bilaterally throughout the rostrocaudal extent of the hippocampus but was greater in the caudal portion. Except for patchy loss of cerebellar Purkinje cells, significant damage was not detected in areas outside the hippocampus, including adjacent cortical regions, that is, entorhinal, perirhinal, and parahippocampal cortex, and other regions that have been implicated in memory function. On behavioral tests, the ischemic monkeys exhibited significant and enduring memory impairment. On the delayed nonmatching to sample task, the ischemic monkeys were as impaired as monkeys with lesions of the hippocampal formation and adjacent parahippocampal cortex (the H+ lesion). On two other memory tasks, the ischemic monkeys were less impaired than monkeys with the H+ lesion. In neuropathological evaluations, it has always been difficult to rule out the possibility that significant areas of neuronal dysfunction have gone undetected. The finding that ischemic lesions produced overall less memory impairment than H+ lesions indicates that the ischemic monkeys (and by extension, patient RB) are unlikely to have widespread neuronal dysfunction affecting memory that was undetected by histological examination. These results provide additional evidence that the hippocampus is a focal site of pathological change in cerebral ischemia, and that damage limited to the hippocampus is sufficient to impair memory.  相似文献   

5.
The amnesic effects of excitotoxic lesions of the rat retrosplenial cortex (RS) and hippocampus (HPC) in the spontaneous object recognition (SOR) performance were investigated. The SOR test consisted of the sample‐exposure session(s) and a test session. First, to test retrograde amnesia, rats received four sample‐exposure sessions within a day at 4 weeks and 1 day before the surgery, respectively. In the test sessions conducted 1 week after the surgery, both lesion groups showed a temporally ungraded retrograde amnesia. Second, to test anterograde amnesia, 1‐ and 4‐week retention intervals were inserted between the four sample‐exposure sessions and the test session. The RS‐lesioned rats showed a retention interval‐dependent impairment in the test sessions, while the HPC‐lesioned rats showed an impairment regardless of the retention interval. Finally, to test short‐term recognition memory, 5‐ or 30‐min delay was interposed between the single sample‐exposure session and the test session. Both lesion groups performed normally irrespective of the delay length. These results suggest that both the RS and HPC are important for long‐term object recognition memory, but these areas have different roles in it. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Space and time are both essential features of episodic memory, for which the hippocampus is critical (Howard & Eichenbaum, 2015). Spatial tasks have been used effectively to study the behavioral relevance of place cells. However, the behavioral paradigms utilized for the study of time cells have not used time duration as a variable that animals need to be aware of to solve the task. Therefore, the behavioral relevance of this cell firing is unclear. In order to directly study the role of the hippocampus in processing elapsed time, we created a novel time duration discrimination task. Rats learned to make a decision to turn left or right depending on the preceding tone duration (10 s, left turn; 20 s, right turn). Once the rats reached criterion performance of 90% correct on two out of three consecutive days, they received either an excitotoxic hippocampal lesion or a sham‐lesion surgery. After recovery, rats were tested to determine hippocampal involvement in discriminating time duration. Rats with hippocampal lesions performed at chance level on their first testing day postlesion, and they were impaired relative to the sham‐lesioned rats. Although the hippocampal‐lesioned rats began discriminating at above chance level, their performance never returned to criterion even with 50 days of postoperative testing. Furthermore, while sham rats showed no difference in the number of errors they made on 10‐ versus 20‐s delay trials, hippocampal lesion rats similarly improved their performance under the 10‐s delay condition, but not under the 20‐s delay condition. Results indicate that hippocampal lesions resulted in a selective impairment in discriminating elapsed time only during the longer delay trials. The implications of these results are discussed in relation to the limits of working‐memory capacity and to the role of sustained hippocampal time cell activity in memory performance depending on the perceived relevance of the delay period.  相似文献   

7.
Evaluating the temporal context of episodic memory: the role of CA3 and CA1   总被引:1,自引:0,他引:1  
It has been suggested that the hippocampus mediates episodic memory processing involving snapshot memory and temporal sequence learning. To test this theory, rats learned trial-unique sequences of spatial locations along a runway box and were tested on recall by removing one of the locations in the sequence and making the rat choose the correct location to be rewarded. Once animals were able to reliably perform this episodic memory task, they received lesions to either CA3 or CA1. Animals with lesions to either CA3 or CA1 had difficulty with episodic memory processing, although CA1 lesioned animals had a much greater deficit. However, when animals were trained on a non-episodic version of the same task, hippocampal lesions had no effect. These results suggest that CA3 and CA1 both contribute to episodic memory processing since lesions to CA3 or CA1 result in an inability to process spatial information episodically, whereas they have no effect on non-episodic information processing.  相似文献   

8.
Recognizing the individual and sexual identities of conspecifics is critical for adaptive social behavior and, in most mammals this information is communicated primarily by chemosensory cues. Due to its heavy reliance on odor cues, we have used the Syrian hamster as our model species for investigating the neural regulation of social recognition. Using lesion, electrophysiological and immunocytochemical techniques, separate neural pathways underlying recognition of individual odors and guidance of sex-typical responses to opposite-sex odors have been identified in both male and female hamsters. Specifically, we have found that recognition of individual odor identity requires olfactory bulb connections to entorhinal cortex (ENT) rather than other chemoreceptive brain regions. This kind of social memory does not appear to require the hippocampus and may, instead, depend on ENT connections with piriform cortex. In contrast, sexual recognition, through either differential investigation or scent marking toward opposite-sex odors, depends on both olfactory and vomeronasal system input to the corticomedial amygdala. Preference for investigating opposite-sex odors requires primarily olfactory input to the medial amygdala (ME) whereas appropriately targeted scent marking responses require vomeronasal input to ME as well as to other structures. Within the ME, the anterior section (MEa) appears important for evaluating or classifying social odors whereas the posterodorsal region (MEpd) may be more involved in generating approach to social odors. Evidence is presented that analysis of social odors may initially be done in MEa and then communicated to MEpd, perhaps through micro-circuits that separately process male and female odors.  相似文献   

9.
The aim of this study was to test the hypothesis that the dorsal hippocampus plays a critical role in pontine-wave (P-wave) generator activation-dependent memory processing of two-way active avoidance (TWAA) learning. To achieve this objective, rats were given small bilateral lesions in the CA1, dentate gyrus (DG), or CA3 region of the dorsal hippocampus by microinjecting ibotenic acid. After recovery, lesioned and sham-lesioned rats were trained on a TWAA learning paradigm, allowed a 6-hr period of undisturbed sleep, and then were tested on the same TWAA paradigm. It was found that lesions in the CA3 region impaired retention of avoidance learning. Conversely, lesions in the CA1 and DG regions had no effect on TWAA learning retention. None of the groups showed any changes in the baseline sleep-wake cycle or in the acquisition of TWAA learning. All rats showed increased rapid eye movement (REM) sleep and increased REM sleep P-wave density during the subsequent 6-hr recording period. Impaired retention in the CA3 group occurred despite an increase in REM sleep and P-wave density, suggesting that during REM sleep, the P-wave generator interacts with the CA3 region of the dorsal hippocampus to aid in consolidation of TWAA learning. The results of the present study thus demonstrate that P-wave generator activation-dependent consolidation of memory requires an intact CA3 subfield of the dorsal hippocampus. The results also provide evidence that under mnemonic pressure, the dorsal hippocampus may not be involved directly in regulating the sleep-wake cycle.  相似文献   

10.
A new apparatus, the olfactory tubing maze for mice, was developed recently to study learning and memory processes in mice in regard to their ethological abilities. As in humans, BALB/c mice with selective bilateral lesions of the hippocampal formation showed selective impairment of subcategories of long-term memory when tested with the olfactory tubing maze. After three learning sessions, control mice reached a high percentage of correct responses. They consistently made the olfactory-reward associations, but antero-dorsal and postero-ventral hippocampal-lesioned mice did not. However, all lesioned mice learned the paradigm and the timing of the task as fast and as well as control mice. These data suggest that the olfactory tubing maze can be used to study subcategories of memory, such as declarative and non-declarative memory, which are similar in some respects to those observed in humans. Consequently, possible memory effects of classical approaches (i.e., pharmacological or lesion studies) or genetic modifications in transgenic or gene-targeting mice can be effectively analyzed using this new apparatus.  相似文献   

11.
Young adult Long-Evans female rats were subjected to intracerebroventricular injections of 150 microg 5,7-dihydroxytryptamine (5,7-DHT), 2 microg 192 IgG-saporin, or a combination of both neurotoxins. All rats were tested for olfactory recognition (short-term memory) using a task based on spontaneous exploration of odor sources. Compared with animals undergoing sham operations, 5,7-DHT reduced the concentration of serotonin by 60-80% in the frontoparietal cortex, hippocampus, striatum and the olfactory bulbs. After 192 IgG-saporin treatment, acetylcholine concentrations were reduced by approximately 40% in all these structures, except the striatum. Neither lesion induced a significant deficit in olfactory recognition. These data suggest that combined lesions of cholinergic and serotonergic neurons in the rat brain do not alter olfactory perception or olfactory short-term memory.  相似文献   

12.
Zaman V  Shetty AK 《Hippocampus》2003,13(5):618-632
Aging impairs the conduciveness of the lesioned hippocampus for robust survival of neurons derived from homotopic fetal cell grafts (Zaman and Shetty, Neuroscience 109:537-553, 2002), suggesting a need for graft augmentation in fetal graft-mediated therapeutic strategies for the lesioned aging hippocampus. We hypothesize that pretreatment and grafting of donor hippocampal CA3 cells with fibroblast growth factor-2 (FGF-2) considerably enhances graft neuronal integration into the lesioned CA3 region of the aging hippocampus. We employed the optical fractionator cell counting method and quantified the number of surviving cells and neurons derived from 5'-bromodoxyuridine-labeled embryonic day 19 CA3 cell grafts pre-treated and transplanted with FGF-2 into the lesioned CA3 region of the middle-aged and aged rat hippocampus at 4 days post-lesion. In both middle-aged and aged hippocampus, pre-treatment and transplantation of CA3 cell grafts with FGF-2 resulted in a robust yield of surviving cells (72-80% of injected cells) and neurons (62-69% of injected cells) from grafts. The overall yield was dramatically greater than the yield observed earlier from standard (untreated) fetal CA3 cell grafts into the lesioned aging hippocampus but was highly comparable to that observed for standard fetal CA3 cell grafts into the lesioned young hippocampus (Zaman and Shetty, Neuroscience 109:537-553, 2002). Thus, a robust neuronal integration from fetal CA3 cell grafts can be achieved into the lesioned CA3 region of the aging hippocampus with a simple pre-treatment and grafting of donor fetal CA3 cells with FGF-2. These results have implications toward the development of suitable cell grafting strategies for repair of the lesioned aging hippocampus in neurodegenerative diseases, particularly the temporal lobe epilepsy, stroke, and Alzheimer's disease.  相似文献   

13.
Prolonged permanence of animals under social isolation (SI) arouses a variety of psychological symptoms like aggression, stress, anxiety and depression. However, short-term SI is commonly used to evaluate social memory. Interestingly, the social memory cannot be accessed with delays higher than 30min in SI mice. Our hypothesis is that SI with intermediate duration, like one week (1w), impairs the long-term storage of new social information (S-LTM), without affecting anxiety or other types of memories, because the SI compromises the olfactory function of the animal. Our results demonstrated that SI impaired S-LTM, without affecting other kinds of memory or anxiety. In addition, the SI increased the latency in the buried-food finding task, but did not affect the habituation or the discrimination of odors. Next, we postulated that if continuous input to the olfactory system is fundamental for the maintenance of the olfactory function and social memory persistence, isolated mice under odor-enriched environment (OEE) should behave like group-housed (GH) animals. In fact, the OEE prevented the S-LTM deficit imposed by the SI. However, OEE did not restore the SI mice olfaction to the GH mice level. Our results suggest that SI modulates olfaction and social memory persistence, probably, by independent mechanisms. We also showed for the first time that OEE rescued S-LTM in SI mice through a mechanism not necessarily involved with olfaction.  相似文献   

14.
Previous studies of rodents reported that the hippocampus plays an important role in social behavior as well as spatial behavior. However, there are inconsistencies between reports of the effects of hippocampal lesions on social behavior. The present study sought to clarify the aspects of social behavior in which the hippocampus plays a role in the degu, Octodon degus, a social rodent. We examined the effects of hippocampal lesions on social behavior in the degu using familiar and novel partners. When placed in a familiar environment with a familiar partner after surgery, sham operation control (S.Cont) degus exhibited affinitive behavior longer compared with hippocampal lesioned (HPC) degus. In a novel environment, S.Cont degus exhibited longer aggressive behavior toward novel partners, and longer affinitive behavior with familiar partners compared with HPC degus. HPC degus did not show evidence of differentiation in social behavior, regardless of partner's novelty. The results of an anxiety test confirmed that these findings could not be attributed to changes in emotional state. We conducted an object-recognition test with the same subjects. HPC degus showed an impairment in spatial recognition but not object recognition. Taken together, these results suggest that the degu hippocampus plays an important role not only in spatial recognition but also social recognition. The changes in social behavior resulting from hippocampal lesions were interpreted as due to an impairment of social recognition rather than an impairment in novelty detection.  相似文献   

15.
Subcortical damage in neonates often has more severe consequences than in adults. Unilateral electrolytic hippocampal lesions in adult rats typically result in transient memory deficits, whereas neonatal lesions cause lasting memory impairments. We hypothesized that unilateral lesions made at birth may affect synaptic physiology in the contralateral hippocampus. Consequently, the ability to sustain long-term potentiation (LTP), a form of synaptic plasticity believed to underlie certain forms of memory, was compared between slices from the remaining hippocampus of rats lesioned as newborns and as adults. Initial studies showed that a train of 10 stimulation bursts patterned after the hippocampal theta rhythm produced robust and stable LTP both in slices from controls and rats lesioned at birth. However, a theta burst pattern of stimulation closer to intrinsic physiology (five burst pairs separated by 30 s each), induced significantly less LTP in slices from rats lesioned at birth compared to those from controls and rats lesioned as adults. To investigate possible mechanisms underlying the deficit, the degree of paired-pulse facilitation (PPF) as well as the amount of depolarization occurring between two successive theta bursts were analyzed. The lesion did not detectably change PPF characteristics, suggesting that presynaptic mechanisms are normal. However, the extent to which a burst response was increased by a prior burst was significantly diminished in slices from rats lesioned at birth compared to those from controls and rats lesioned as adults, indicating that postsynaptic factors involved in the initial triggering events of LTP are affected by the lesion. Reduced ability to sustain LTP in the remaining hippocampus may contribute to impaired memory function after unilateral neonatal hippocampal lesion.  相似文献   

16.
Studies examining the effects of hippocampal lesions on object recognition memory in rats have produced conflicting results. The present study investigated how methodological differences and lesion size may have contributed to these discrepancies. In Experiment 1 we compared rats with complete, partial (septal) and sham hippocampal lesions on a spontaneous object recognition task, using a protocol previously reported to result in deficits following large hippocampal lesions . Rats with complete and partial hippocampal lesions were unimpaired, suggesting the hippocampus is not required for object recognition memory. However, rats with partial lesions showed relatively poor performance raising the possibility that floor effects masked a deficit on this group. In Experiment 2, we used a second spontaneous object recognition protocol similar to that used by the two other studies that have reported deficits following hippocampal lesions . Rats with complete hippocampal lesions were significantly impaired, whereas rats with partial lesions were unimpaired. However, the complete lesion group showed less object exploration during the sample phase. Thus, the apparent recognition memory deficit in Experiment 2 may be attributable to differential encoding. Together, these findings suggest that the hippocampus is not required for intact spontaneous object recognition memory. These findings suggest that levels of object exploration during the sample phase may be a critical issue, and raise the possibility that previous reports of object recognition deficits may be due to differences in object exploration rather than deficits in object recognition per se.  相似文献   

17.
The lateral entorhinal cortex (LEC) provides one of the two major input pathways to the hippocampus and has been suggested to process the nonspatial contextual details of episodic memory. Combined with spatial information from the medial entorhinal cortex it is hypothesised that this contextual information is used to form an integrated spatially selective, context‐specific response in the hippocampus that underlies episodic memory. Recently, we reported that the LEC is required for recognition of objects that have been experienced in a specific context (Wilson et al. (2013) Hippocampus 23:352‐366). Here, we sought to extend this work to assess the role of the LEC in recognition of all associative combinations of objects, places and contexts within an episode. Unlike controls, rats with excitotoxic lesions of the LEC showed no evidence of recognizing familiar combinations of object in place, place in context, or object in place and context. However, LEC lesioned rats showed normal recognition of objects and places independently from each other (nonassociative recognition). Together with our previous findings, these data suggest that the LEC is critical for associative recognition memory and may bind together information relating to objects, places, and contexts needed for episodic memory formation. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

18.
目的 应用海人藻酸(KA)在C57BL/6小鼠建立神经退行性病变动物模型并观察其对嗅球神经元的影响。方法 经鼻滴人KA应用尼氏和嗜银染色观察海马及嗅球的病理变化,免疫组化检测Cyclooxygenase2(COX-2)的表达。结果 经鼻滴入KA成功地在C57BL/6小鼠建立了神经退行性病变动物模型,KA通过嗅神经引起双侧嗅球和海马损伤,其病变程度与小鼠体重和滴入KA剂量有关,同时KA引起了脑内明显的胶质细胞增生和炎症因子COX-2在嗅球部的表达。结论 经鼻滴入KA能够引起嗅球和海马的损伤。  相似文献   

19.
The Ts65Dn mouse is segmentally trisomic for a part of mouse chromosome 16 and is a genetic model for Down syndrome and Alzheimer's disease. Although many studies have examined the learning and memory processes in Ts65Dn mice, it has yet to be determined if Ts65Dn mice are specifically impaired in learning tasks that require an intact hippocampus. Context discrimination learning is dependent on the dorsal hippocampus in mice. In this task, mice learn to discriminate two similar contexts, one of which is associated with foot shock. In the current study, Ts65Dn mice learned almost identically to what has been reported for mice with dorsal hippocampal lesions, while controls behaved similarly to sham lesioned mice. Therefore, Ts65Dn mice have learning deficits in a hippocampal dependent task that may be related to the loss of cholinergic input to the hippocampus, which occurs after 6 months of age.  相似文献   

20.
The 5XFAD mice are an early‐onset transgenic model of Alzheimer's disease (AD) in which amyloid plaques are first observed between two and four months of age in the cortical layer five and in the subiculum of the hippocampal formation. Although cognitive alterations have been described in these mice, there are no studies that focused on the onset of hippocampus‐dependent memory deficits, which are a hallmark of the prodromal stage of AD. To identify when the first learning and memory impairments appear, 5XFAD mice of two, four, and six months of age were compared with their respective wild‐type littermates using the olfactory tubing maze, which is a very sensitive hippocampal‐dependent task. Deficits in learning and memory started at four months with a substantial increase at six months of age while no olfactory impairments were observed. The volumetric study using magnetic resonance imaging of the whole brain and specific areas (olfactory bulb, striatum, and hippocampus) did not reveal neuro‐anatomical difference. Slight memory deficits appeared at 4 months of age in correlation with an increased astrogliosis and amyloid plaque formation. This early impairment in learning and memory related to the hippocampal dysfunction is particularly suited to assess preclinical therapeutic strategies aiming to delay or suppress the onset of AD. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号