首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, we report the synthesis and screening of 4′‐((5‐benzylidene‐2,4‐dioxothiazolidin‐3‐yl)methyl)biphenyl‐2‐carbonitrile analogs 11(a–j) as bacterial peptide deformylase (PDF) enzyme inhibitors. The compounds 11b (IC50 value = 139.28 μm ), 11g (IC50 value = 136.18 μm ), and 11h (IC50 value = 131.65 μm ) had shown good PDF inhibition activity. The compounds 11b (MIC range = 103.36–167.26 μg/mL), 11g (MIC range = 93.75–145.67 μg/mL), and 11h (MIC range = 63.61–126.63 μg/mL) had also shown potent antibacterial activity when compared with standard ampicillin (MIC range = 100.00–250.00 μg/mL). Thus, the active derivatives were not only PDF inhibitors but also efficient antibacterial agents. To gain more insight on the binding mode of the compounds with PDF enzyme, the synthesized compounds 11(a–j) were docked against PDF enzyme of Escherichia coli and compounds exhibited good binding properties. The results suggest that this class of compounds has potential for development and use in future as antibacterial drugs.  相似文献   

2.
In an attempt to discover a new class of antibacterial agents with improved efficacy and to overcome the drug‐resistant problems, some novel 4‐substituted thieno[2,3‐d]pyrimidines have been synthesized via microwave‐assisted methodology and evaluated for their in vitro antibacterial activity against various pathogenic bacterial strains. Compounds 12 b and 13 c showed the promising inhibitory potencies against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli with MICs ranging from 2 to 10 μg/ml. Compound 13 c was also found to be highly potent against methicillin‐resistant S. aureus (MRSA) with MIC value of 4 μg/ml. Docking simulation studies have been performed to unravel the mode of action and association study indicate the binding of potent compounds with DHPS enzyme. In silico ADME studies suggest the drug‐like characteristics of the potent compounds.  相似文献   

3.
《Pharmaceutical biology》2013,51(11):1085-1089
Screening tests of hydroethanolic crude extracts of six species of Aspidosperma (Apocynaceae) against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa were performed. Aspidosperma ramiflorum Muell. Arg. showed good activity against Bacillus subtilis with MIC and MBC of 15.7 and 125?μg/mL, moderate activity against Staphylococcus aureus with MIC and MBC of 250 and 500?μg/mL, and weak activity against Escherichia coli with MIC and MBC of 1000?μg/mL. Aspidosperma pyricolum Muell. Arg. (MIC/MBC 125/250?μg/mL) and Aspidosperma olivaceum Muell. Arg. (MIC/MBC 250/?>?1000?μg/mL) displayed moderate antibacterial activity against Bacillus subtilis. Separation of the crude extract of Aspidosperma ramiflorum was performed according to the usual acid–base process, which produces alkaloid mixtures and closely related metabolites. The basic fraction was active against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli, with MICs of 31.2, 62.5, and 250?μg/mL, respectively. The basic fractions were more active than the acid fractions, probably because they contained some active alkaloids and/or closely related metabolites absent from the other fractions, or they contained a higher concentration of these active compounds.  相似文献   

4.
A novel series of 2‐hydroxy‐3‐(nitroimidazolyl)‐propyl‐derived quinolones 6a – o were synthesized and evaluated for their in vitro antibacterial activity. Most of the target compounds exhibited potent activity against Gram‐positive strains. Among them, moxifloxacin analog 6n displayed the most potent activity against Gram‐positive strains including S. epidermidis (MIC = 0.06 μg/mL), MSSE (MIC = 0.125 μg/mL), MRSE (MIC = 0.03 μg/mL), S. aureus (MIC = 0.125 μg/mL), MSSA (MIC = 0.125 μg/mL), (MIC = 2 μg/mL). Its activity against MRSA was eightfold more potent than reference drug gatifloxacin. Finally, docking study of the target compound 6n revealed that the binding model of quinolone nucleus was similar to that of gatifloxacin and the 2‐hydroxy‐3‐(nitroimidazolyl)‐propyl group formed two additional hydrogen bonds.  相似文献   

5.
A series of novel hybrid molecules between sulfonamides and active antimicrobial 14‐o‐(3‐carboxy‐phenylsulfide)‐mutilin were synthesized, and their in vitro antibacterial activities were evaluated by the broth microdilution. Results indicated that these compounds displayed potent antimicrobial activities in vitro against various drug‐susceptible and drug‐resistant Gram‐positive bacteria such as Staphylococci and streptococci, including methicillin‐resistant Staphylococcus aureus, and mycoplasma. In particular, sulfapyridine analog ( 6c ) exhibited more potent inhibitory activity against Gram‐positive bacteria and mycoplasma, including Staphylococcus aureus (MIC = 0.016–0.063 μg/mL), methicillin‐resistant Staphylococcus aureus (MIC = 0.016 μg/mL), Streptococcus pneumoniae (MIC = 0.032–0.063 μg/mL), Mycoplasma gallisepticum (MIC = 0.004 μg/mL), with respect to other synthesized compounds and reference drugs sulfonamide (MIC = 8–128 μg/mL) and valnemulin (MIC = 0.004–0.5 μg/mL). Furthermore, comparison between MIC values of pleuromutilin‐sulfonamide hybrids 6a–f with pleuromutilin parent compound 3 revealed that these modifications at 14 position side chain of the pleuromutilin with benzene sulfonamide could greatly improve the antibacterial activity especially against Gram‐positives.  相似文献   

6.
A series of novel polyhalogenated 2‐phenylbenzimidazoles have been synthesized and evaluated for in vitro antistaphylococcal activity against drug‐resistant bacterial strains (methicillin‐resistant Staphylococcus aureus, and vancomycin‐resistant Enterococcus faecium. Certain compounds inhibit bacterial growth perfectly. 11 was active than vancomycin (0.78  μ g/mL) with the lowest MIC values with 0.19  μ g/mL against methicillin‐resistant Staphylococcus aureus, 8 and 35 exhibited best inhibitory activity against vancomycin‐resistant Enterococcus faecium (1.56  μ g/mL). The mechanism of action for this class of compounds appears to be different than clinically used antibiotics. These polyhalogenated benzimidazoles have potential for further investigation as a new class of potent anti‐methicillin‐resistant Staphylococcus aureus and anti‐vancomycin‐resistant Enterococcus faecium agents.  相似文献   

7.
A new series of fluoroquinolone‐based benzothiazolyl‐4‐thiazolidinone hybrids has been yielded via sulfated tungstate‐promoted highly accelerated N‐formylation at a piperazine residue of ciprofloxacin and norfloxacin entities. The formylated fluoroquinolone moieties were then coupled with substituted 2‐aminobenzothiazoles, which were generated from their respective para‐substituted amines to form corresponding Schiff base intermediates. The Schiff bases were then treated with thioglycolic acid to equip a new class of 4‐thiazolidinones to be analyzed for their antibacterial effects against two Gram‐positive (Staphylococcus aureus and Bacillus subtilis) and two Gram‐negative (Escherichia coli and Pseudomonas aeruginosa) bacterial strains and were found highly potent with lowest Minimum inhibitory concentrations (MIC), 1–2 μg/mL, that is, more potent than control drugs ciprofloxacin (3.12–6.25 μg/mL). Initial outcomes provided for these novel molecular systems will aid researchers to design and develop new antibacterial drugs. The structural assignments of the new products were done on the basis of FT‐IR, 1H NMR and 13C NMR spectroscopy, and elemental analysis.  相似文献   

8.
Antibiotic resistance has been the subject of interest in clinical practice due to high prevalence of antibiotic‐resistant pathogenic organisms. In view of the prevalence of lesser resistance in antibiotics belonging to aminoglycoside class of compounds viz. Food and Drug Administration‐approved gentamicin for the treatment of Staphylococcus infections, which also has instances of resistance in the clinical isolates of Staphylococcus aureus, a series of novel glycoconjugates of 8‐fluoro norfloxacin analogues with high regio‐selectivity by employing copper (I)‐catalyzed 1, 3‐dipolar cycloaddition of 1‐O‐propargyl monosaccharides has been synthesized and evaluated for the antibacterial activity against gentamicin resistance Staphylococcus aureus. Among these compounds, the compound 10g showed better antibacterial activity (MIC = 3.12  μ g/ml) than gentamicin (Escherichia coli (12.5  μ g/ml), Staphylococcus aureus (6.25  μ g/ml) and Klebsiella pneumonia (6.25  μ g/ml), including gentamicin resistant (>50  μ g/ml) strain in vitro). The docking studies suggest DNA gyrase of Staphylococcus aureus as a probable target for the antibacterial action of compound 10g .  相似文献   

9.
A series of novel 4‐chloro‐3‐nitrophenylthiourea derivatives were synthesized and evaluated for their antimicrobial, antibiofilm and tuberculostatic activities. Most of compounds exhibited high antibacterial activity against both standard and hospital strains (MIC values 0.5–2 μg/mL), as compared to Ciprofloxacin. Derivatives with 3,4‐dichlorophenyl ( 11 ) and 3‐chloro‐4‐methylphenyl ( 13 ) substituents were the most promising towards Gram‐positive pathogens. Both of them exhibited antibiofilm potency and effectively inhibited the formation of biofilms of methicillin‐resistant and standard strains of Staphylococcus epidermidis. Two N‐alkylthioureas ( 20, 21 ) showed twofold to fourfold increase in in vitro potency against isolates of Mycobacterium tuberculosis, as compared to Isoniazid. An action of 7, 10 , 11, 13, 20 and 21 against activity of topoisomerases isolated from Staphylococcus aureus was studied. Synthesized compounds were found as non‐genotoxic.  相似文献   

10.
In this study, we report the synthesis and antimicrobial evaluation of several new 4‐(1H‐benzimidazol‐2‐yl)benzamides ( 11 – 30 ) and 5‐chloro‐1‐(p‐fluorobenzyl)‐2‐{4‐[(4‐methylpiperazin‐1‐yl)carbonyl]phenyl}‐1H‐benzimidazole ( 33 ). Compound 20 exhibited the best antibacterial activity with MIC value of 6.25 μg/mL against Staphylococcus aureus and methicillin‐resistant Staphylococcus aureus (MRSA). Significant antifungal activities were obtained with the compounds 13 , 14, 18 , 19, and 33 with MIC values of 3.12 μg/mL which are close to fluconazole.  相似文献   

11.
The compounds were tested against panel of three Gram‐positive, viz. Staphylococcus aureus, Bacillus subtilis, Bacillus cereus and three Gram‐negative bacterial strains viz. Pseudomonas aeruginosa, Escherichia coli, and Proteus vulgaris where they showed significant to moderate antibacterial activity. The compound also showed considerable antibiofilm activity against S. aureus and B. subtilis. The most potent compounds 7l and 7m found bacteriostatic in time‐kill assay via inhibition of DNA gyrase enzyme and interacting with Glu58, Val130, Ile175 and Ile186 via numerous H‐bonds as revealed by docking. In S. aureus‐induced murine infection model, compound 7m showed dose‐dependent reduction of viability of bacteria with maximum activity in 25 mg/kg treated group. The antifungal activity against human fungal pathogens was also estimated, where these compounds showed considerable inhibitory activity as compared to standard. The metabolic liability of compound 7m was determined using RS‐Predictor and MetaPrint 2D React. The molecules were proved as effective antibacterial agent via inhibition of DNA gyrase as a mechanism together with significant antifungal activity.  相似文献   

12.
A series of N‐substituted‐1H‐benzimidazole‐5(6)‐sulfonamides and 3‐(5,6‐dichloro‐1H‐benzimidazol‐2‐yl)‐N‐substituted benzensulfonamides were synthesized and evaluated for antibacterial activity against Staphylococcus aureus and methicillin‐resistant S. aureus (MRSA). Certain compounds inhibit bacterial growth with low MIC (μg/mL) values. The most active compounds 30 , 31 , and 32 have the lowest MIC values with 0.39 to 0.19 μg/mL. Among the compounds having sulfonamido moities, 16 , 23 , and 24 exhibited the strongest antibacterial activity with 1.56 μg/mL MIC values.  相似文献   

13.
New series of chrysin derivatives ( 4a – 4t ) were designed and synthesized by introducing different substituted piperazines at C‐7 position. Their inhibitory effects on FabH were evaluated using two Gram‐negative bacterial strains, Escherichia coli and Pseudomonas aeruginosa, and two Gram‐positive bacterial strains, Bacillus subtilis and Staphylococcus aureus. To our delight, most of these compounds exhibited a dramatic increase in inhibitory potency, compared with the control positive drugs. Among them, compound 4s exhibited the most potent inhibitory activity with IC50 values of 5.78 ± 0.24 μm inhibiting E. coli FabH and potent antibacterial activity against S. aureus and E. coli with MIC of 1.25 ± 0.01, 1.15 ± 0.12 μg/mL, respectively, comparing to the control positive drugs penicillin G (7.56 ± 0.30 μm ). Docking simulation was performed to position compound 4s into the FabH active site, and the result showed that compound 4s could bind well with the FabH as potent FabH inhibitor.  相似文献   

14.
Peptidoglycan glycosyltransferase (PGT) has been shown to be an important pharmacological target for the inhibition of bacterial cell wall biosynthesis. Structure‐based virtual screening of about 3 000 000 commercially available compounds against the crystal structure of the glycosyltransferase (GT) domain of the Staphylococcus aureus penicillin‐binding protein 2 (S. aureus PBP2) resulted in identification of an isatin derivative, 2‐(3‐(2‐carbamimidoylhydrazono)‐2‐oxoindolin‐1‐yl)‐N‐(m‐tolyl)acetamide ( 4 ) as a novel potential GT inhibitor. A series of 4 derivatives were synthesized. Several compounds showed more active antimicrobial activity than the initial hit compound 4 , in particular 2‐(3‐(2‐carbamimidoylhydrazono)‐2‐oxoindolin‐1‐yl)‐N‐(3‐nitrophenyl)acetamide ( 4l ), against Gram‐positive Bacillus subtilis and S. aureus with MIC values of 24 and 48 μg/mL, respectively. Saturation transfer difference (STD) NMR study revealed that there is a binding contact between 4l and the GT domain of S. aureus PBP2. Competitive STD‐NMR further proved that 4l and moenomycin A bind to GT domain in a competitive manner. Molecular docking study suggests a potential binding pocket of 4l in the GT domain of S. aureus PBP2. Taken together, compound 4l would provide a new scaffold for further development of potent GT inhibitors.  相似文献   

15.
In this study, seventeen novel quinoline‐based carboxylic hydrazides were designed as potential anti‐tubercular agents using molecular hybridization approach and evaluated in‐silico for drug‐likeness behavior. The compounds were synthesized, purified, and characterized using spectral techniques (like FTIR, 1H NMR, and Mass). The in‐vitro anti‐tubercular activity (against Mycobacterium tuberculosisH37Ra) and cytotoxicity against human lung fibroblast cells were studied. Among the tested hydrazides, four compounds ( 6h , 6j , 6l, and 6m ) exhibited significant anti‐tubercular activity with MIC values below 20 μg/mL. The two most potent compounds of the series, 6j and 6m exhibited MIC values 7.70 and 7.13 μg/mL, respectively, against M. tuberculosis with selectivity index >26. Structure–activity relationship studies were performed for the tested compounds in order to explore the effect of substitution pattern on the anti‐tubercular activity of the synthesized compounds.  相似文献   

16.
A series of novel 7‐(3‐alkoxyimino‐4‐methyl‐4‐methylaminopiperidin‐1‐yl)fluoroquinolone derivatives were designed, synthesized, and characterized by 1H‐NMR, MS, and HRMS. These fluoroquinolones were evaluated for their in‐vitro antibacterial activity against representative Gram‐positive and Gram‐negative strains. Generally, all of the target compounds have considerable antibacterial activity against the tested forty strains, and exhibit exceptional potency in inhibiting the growth of methicillin‐sensitive Staphylococcus aureus (MSSA) and methicillin‐resistant S. aureus (MRSA) ATCC33591 (MICs: 0.06 to 2 μg/mL). In particular, compounds 14 , 19 , 28 , and 29 are fourfold more potent than ciprofloxacin against MSSA 08‐49. Compounds 23 , 26 , and 27 are twofold more potent than ciprofloxacin against MRSA ATCC33591 and MSSA ATCC29213. In addition, compound 14 exhibits excellent activity (MIC: 0.06 μg/mL) against Acinetobactes calcoaceticus, which is two‐ to 16‐fold more potent than the reference drugs gemifloxacin, levofloxacin, and ciprofloxacin.  相似文献   

17.
A new series of indole appended dihydronaphthalenone hybrid analogs ( 5a–t ) have been synthesized through the Lewis acid catalyzed Michael addition of indoles to the arylidene/hetero arylidene ketones. All the synthesized derivatives are well characterized through the 1H‐NMR, 13C‐NMR, HRMS spectroscopic techniques, compound 5r was further confirmed through single crystal X‐ray analysis and screened for antibacterial and antitubercular activities. Among the synthesized compounds, the minimum inhibition concentration of 5l (against Escherichia coli) and 5o & 5p (against E. coli & Staphylococcus aureus) was found to be as low as 3.12 μg/ml as compared to the standard antibacterial drug ciprofloxacin 2.5 μg/ml. In antitubercular activity, compounds 5o and 5p with minimum inhibition concentration 6.25 μg/ml were found to be comparable with that of the drugs Pyrazinamide 5 μg/ml and Streptomycin 5 μg/ml. Compounds 5i , 5j , 5m , 5n , 5q , and 5r also showed promising activity against group of organisms tested.  相似文献   

18.
A series of novel pleuromutilin derivatives possessing piperazine moieties were synthesized under mild conditions. The in vitro antibacterial activities of these derivatives against Staphylococcus aureus and Escherichia coli were tested by the agar dilution method. Structure–activity relationship studies resulted in compounds 11b , 13b , and 14a with the most potent in vitro antibacterial activity among the series (minimal inhibitory concentration = 0.0625–0.125 μg/mL). The binding of compounds 11b , 13b , and 14a to the E. coli ribosome was investigated by molecular modeling, and it was found that there is a reasonable correlation between the binding free energy and the antibacterial activity.  相似文献   

19.
A novel series of thiepine derivatives were synthesized and evaluated as potential antimicrobials. All the synthesized compounds were evaluated for their antimicrobial activities in vitro against the fungi Candida albicans (ATCC 10231), C. parapsilosis (clinical isolate), Gram‐negative bacterium Pseudomonas aeruginosa (ATCC 44752), and Gram‐positive bacterium Staphylococcus aureus (ATCC 25923). Synthesized compounds showed higher antifungal activity than antibacterial activity, indicating that they could be used as selective antimicrobials. Selected thiepines efficiently inhibited Candida hyphae formation, a trait necessary for their pathogenicity. Thiepine 8‐phenyl[1]benzothiepino[3,2‐c]pyridine ( 16 ) efficiently killed Candida albicans at 15.6 μg/mL and showed no embryotoxicity at 75 μg/mL. Derivative 8‐[4‐(4,5‐dihydro‐1H‐imidazol‐2‐yl)phenyl][1]benzothiepino[3,2‐c]pyridine ( 23 ) caused significant hemolysis and in vitro DNA interaction. The position of the phenyl ring was essential for the antifungal activity, while the electronic effects of the substituents did not significantly influence activity. Results obtained from in vivo embryotoxicity on zebrafish (Danio rerio) encourage further structure optimizations.  相似文献   

20.
A one‐pot method for the synthesis of structural type urease inhibitors, 2‐amino‐1,3,4‐oxadiazoles, was developed. The structures of the compounds were established using spectroanalytical techniques and unambiguously confirmed by single‐crystal X‐ray analysis of compound 3o . The synthesized compounds were tested against jack beans urease, and most of the compounds ( 3c , 3g , 3j , 3k , 3n , 3r – 3v ) were found more active than the standard. The most potent compound ( 3u ) had an IC50 value of 6.03 ± 0.02 μm as compared to the IC50 value of the standard (thiourea; 22.0 ± 1.2 μm ). The prominent urease inhibition activity of these compounds may serve as an important finding in the development of less toxic and more potent antiulcer drugs. The compounds were also investigated against four bacterial strains, and some of the compounds ( 3g and 3r ) were found more potent than the standard drug (ciprofloxacin) against all the tested strains. The MIC value for compound 3g was 0.156 μmol/mL against the tested bacterial strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号