首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Following peripheral nerve injury (PNI) microglia proliferates and adopts inflammation that contributes to development and maintenance of neuropathic pain. miRNAs and autophagy are two important factors in the regulation of inflammation. However, little is known about whether miRNAs regulate neuroinflammation and neuropathic pain by controlling autophagy. In the study, we demonstrated that miR‐195 levels were markedly increased in rats subjected to L5 spinal nerve ligation (SNL). Upregulated miR‐195 was also found in spinal microglia of rats with SNL. The overexpression of miR‐195 contributed to lipopolysaccharide‐induced expression of proinflammatory cytokines IL‐1β, TNF‐α, and iNOS in cultured microglia. Upregulated miR‐195 also resulted in increased mechanical and cold hypersensitivity after PNI, whereas miR‐195 inhibition reduced mechanical and cold sensitivity. We further demonstrated that PNI significantly inhibited microglial autophagy activation, whereas miR‐195 inhibitor treatment increased autophagy activation and suppressed neuroinflammation in vivo and in vitro. More important, autophagy inhibition impaired miR‐195 inhibitor‐induced downregulation of neuroinflammation and neuropathic pain. Additionally, ATG14 was identified as the functional target of miR‐195. Conclusions: These data demonstrated that miR‐195/autophagy signaling represents a novel pathway regulating neuroinflammation and neuropathic pain, thus offering a new target for therapy of neuropathic pain.  相似文献   

2.
3.
The role of microRNAs (miRNAs) in the regulation of nerve injury-induced neuropathic pain is unclear. The aims of this study were to assess and compare miRNA expression profiles in dorsal root ganglia (DRG) following three different kinds of peripheral nerve injury, including spinal nerve ligation (SNL), dorsal root transection (DRT), and ventral root transection (VRT), in Sprague–Dawley rats. Responses to thermal and mechanical stimuli were measured preoperatively and on postoperative days (PODs) 1, 4, and 7. A miRNA microarray analysis was used to detect the miRNA expression profiles in injured L5 DRG from SNL, DRT, and VRT on POD 7. Validation of miRNA expression was performed by qPCR and in situ hybridization. Rats receiving SNL displayed significantly higher mechanical hypersensitivity, but those receiving DRT developed higher thermal hypersensitivity. The number of miRNAs that were significantly upregulated in L5 DRG was 49 (7.2%), 25 (3.7%), and 146 (21.5%) following SNL, DRT, and VRT, respectively. On the other hand, 35 (5.1%) miRNAs were significantly downregulated in the SNL group, 21 (3.1%) miRNAs in the DRT group, and 41 (6.0%) miRNAs in the VRT group. Of the four miRNAs that were mutually aberrant in all three models, two were significantly upregulated (twofold), miR-21 and miR-31, and two were significantly downregulated, miR-668 and miR-672. Using in situ hybridization, miRNA-21, miRNA-31, miRNA-668, and miRNA-672 were found to localize to neurons in the DRG. Collectively, the mutual abnormal miRNA expression of miR-21, miR-31, miR-668, and miR-677 implied that these miRNAs may be therapeutic targets for alleviating multiple forms of neuropathic pain.  相似文献   

4.
We compared the distribution of the α‐subunit mRNAs of voltage‐gated sodium channels Nav1.1–1.3 and Nav1.6–1.9 and a related channel, Nax, in histochemically identified neuronal subpopulations of the rat dorsal root ganglia (DRG). In the naïve DRG, the expression of Nav1.1 and Nav1.6 was restricted to A‐fiber neurons, and they were preferentially expressed by TrkC neurons, suggesting that proprioceptive neurons possess these channels. Nav1.7, ‐1.8, and ‐1.9 mRNAs were more abundant in C‐fiber neurons compared with A‐fiber ones. Nax was evenly expressed in both populations. Although Nav1.8 and ‐1.9 were preferentially expressed by TrkA neurons, other α‐subunits were expressed independently of TrkA expression. Actually, all IB4+ neurons expressed both Nav1.8 and ‐1.9, and relatively limited subpopulations of IB4+ neurons (3% and 12%, respectively) expressed Nav1.1 and/or Nav1.6. These findings provide useful information in interpreting the electrophysiological characteristics of some neuronal subpopulations of naïve DRG. After L5 spinal nerve ligation, Nav1.3 mRNA was up‐regulated mainly in A‐fiber neurons in the ipsilateral L5 DRG. Although previous studies demonstrated that nerve growth factor (NGF) and glial cell‐derived neurotrophic factor (GDNF) reversed this up‐regulation, the Nav1.3 induction was independent of either TrkA or GFRα1 expression, suggesting that the induction of Nav1.3 may be one of the common responses of axotomized DRG neurons without a direct relationship to NGF/GDNF supply. J. Comp. Neurol. 510:188–206, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
Neurostimulation approaches including spinal cord and peripheral nerve stimulation are typically used to treat intractable chronic pain in individuals who are refractory to pain medications. Our earlier studies have shown that a voltage controlled capacitive discharge (VCCD) method of stimulation of nerve activation is able to selectively recruit activity in large myelinated nerve fibers. In this study, we were able to wirelessly activate the sciatic nerve using the VCCD waveform. The purpose of this study was to determine whether this waveform can effectively improve two of the most troublesome pain symptoms experienced by patients with chronic neuropathic pain mechanical and cold hyperalgesia. Neuropathic mechanical hyperalgesia was reproduced using the Spinal Nerve Ligation (SNL) rat model whereas cold allodynia was reproduced using the Chronic Constriction Injury (CCI) model in male rats. Von Frey and cold plate tests were used to evaluate paw withdrawal threshold and latency to withdrawal before and after stimulation in experimental and control rats. Paw withdrawal threshold increased significantly compared to post-lesion baseline after VCCD stimulation in SNL rats. We also observed a significant improvement in cold allodynia in the active implant CCI rats after stimulation. These results suggest that the VCCD stimulation using a wireless microstimulator may be effective in the treatment of neuropathic pain.  相似文献   

6.
The ectopic discharges observed in uninjured dorsal root ganglion (DRG) neurons following various lesions of spinal nerves have been attributed to functional alterations of voltage-gated sodium channels (VGSCs). Such mechanisms may be important for the development of neuropathic pain. However, the pathophysiology underlying the functional modulation of VGSCs following nerve injury is largely unknown. Here, we studied this issue with use of a selective lumbar 5 ventral root transection (L5-VRT) model, in which dorsal root ganglion (DRG) neurons remain intact. We found that the L5-VRT increased the current densities of TTX-sensitive Na channels as well as currents in Nav1.8, but not Nav1.9 channels in uninjured DRG neurons. The thresholds of action potentials decreased and firing rates increased in DRG neurons following L5-VRT. As we found that levels of tumor necrosis factor-alpha (TNF-α) increased in cerebrospinal fluid (CSF) and in DRG tissue after L5-VRT, we tested whether the increased TNF-α might result in the changes in sodium channels. Indeed, recombinant rat TNF (rrTNF) enhanced the current densities of TTX-S and Nav1.8 in cultured DRG neurons dose-dependently. Furthermore, genetic deletion of TNF receptor 1 (TNFR-1) in mice attenuated the mechanical allodynia and prevented the increase in sodium currents in DRG neurons induced by L5-VRT. These data suggest that the increase in sodium currents in uninjured DRG neurons following nerve injury might be mediated by over-production of TNF-α.  相似文献   

7.
Previous studies have demonstrated that glutamate plays an important role in the development of pathological pain. This study investigates the expression changes of glutamate and the roles of different types of glutamate receptors in the red nucleus (RN) in the development of neuropathic allodynia induced by spared nerve injury (SNI). Immunohistochemistry indicated that glutamate was constitutively expressed in the RN of normal rats. After SNI, the expression levels of glutamate were significantly increased in the RN at 1 week and reached the highest level at 2 weeks postinjury compared with sham‐operated and normal rats. The RN glutamate was colocalized with neurons, oligodendrocytes, and astrocytes but not microglia under physiological and neuropathic pain conditions. To elucidate further the roles of the RN glutamate and different types of glutamate receptors in the development of neuropathic allodynia, antagonists to N‐methyl‐D‐aspartate (NMDA), non‐NMDA, or metabotropic glutamate receptors (mGluRs) were microinjected into the RN contralateral to the nerve‐injury side of rats with SNI, and the paw withdrawal threshold (PWT) was dynamically assessed with von Frey filaments. Microinjection of the NMDA receptor antagonist MK‐801 into the RN did not show any effect on SNI‐induced mechanical allodynia. However, microinjection of the non‐NMDA receptor antagonist 6,7‐dinitroquinoxaline‐2,3(1H,4H)‐dione or the mGluR antagonist (±)‐α‐methyl‐(4‐carboxyphenyl) glycine into the RN significantly increased the PWT and alleviated SNI‐induced mechanical allodynia. These findings suggest that RN glutamate is involved in regulating neuropathic pain and facilitates the development of SNI‐induced neuropathic allodynia. The algesic effect of glutamate is transmitted by the non‐NMDA glutamate receptor and mGluRs. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
The enzyme calcium/calmodulin‐dependent protein kinase II (CaMKII) is associated with memory and its α isoform is critical for development of activity‐induced synaptic changes. Therefore, we hypothesized that CaMKII is involved in altered function of dorsal root ganglion (DRG) neurons after neuronal injury. To test this hypothesis, Sprague–Dawley rats were made hyperalgesic by L5 and L6 spinal nerve ligation (SNL), and changes in total phosphorylated and unphosphorylated CaMKII (tCaMKII) and phosphorylated form of its α isoform (pCaMKIIα) were analyzed using immunochemistry in different subpopulations of DRG. SNL did not induce any changes in tCaMKII between experimental groups, while the overall percentage of pCaMKIIα‐positive neurons in injured L5 DRG SNL (24.8%) decreased significantly when compared to control (41.7%). SNL did not change the percentage of pCaMKIIα/N52 colabeled neurons but decreased the percentage of N52‐negative nonmyelinated neurons that expressed pCaMKIIα from 27% in control animals to 11% after axotomy. We also observed a significant decrease in the percentage of small nonpeptidergic neurons labeled with IB4 (37.6% in control vs. 4.0% in L5 SNL DRG), as well as a decrease in the percentage of pCaMKIIα/IB4 colabeled neurons in injured L5 DRGs (27% in control vs. 1% in L5 DRG of SNL group). Our results show that reduction in pCaMKIIα levels following peripheral injury is due to the loss of IB4‐positive neurons. These results indicate that diminished afferent activity after axotomy may lead to decreased phosphorylation of CaMKIIα. J. Comp. Neurol. 518:64–74, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Zhao M  Wang JY  Jia H  Tang JS 《Brain research》2006,1076(1):68-77
Previous studies have indicated that the ventrolateral orbital cortex (VLO) is involved in opioid-mediated antinociception in the tail flick test and formalin test. The aim of the current study was to examine the effect of opioids microinjected into the VLO on allodynia in the rat L5/L6 spinal nerve ligation (SNL) model of neuropathic pain and determine the roles of different subtypes of opioid receptors in this effect. The allodynia was assessed by both mechanical (von Frey filaments) and cold plate (4 degrees C) stimuli. Morphine (1.0, 2.5, and 5.0 microg) microinjected into the VLO contralateral to the nerve ligation dose-dependently depressed the mechanical and cold allodynia and these effects were reversed by nonselective opioid receptor antagonist naloxone (1.0 microg) administrated into the same site. Microinjection of endomorphin-1 (5.0 microg), a highly selective mu-opioid receptor agonist, and [D-Ala2, D-Leu5]-enkephalin (DADLE, 10 microg), a delta-/mu-opioid receptor agonist, also depressed the allodynia, and the effects of both drugs were blocked by selective mu-receptor antagonist beta-funaltrexamine (beta-FNA, 3.75 microg), but the effects of DADLE were not influenced by the selective delta-receptor antagonist naltrindole (5.0 microg). Microinjection of U-62066 (100 microg), a kappa-opioid receptor agonist, into the VLO had no effect on the allodynia. These results suggest that the VLO is involved in opioid-induced antiallodynia and mu- but not delta- and kappa-opioid receptor mediates these effects in the rat with neuropathic pain.  相似文献   

10.
The profile of tetrodotoxin sensitive (TTX-S) and resistant (TTX-R) Na(+) channels and their contribution to action potentials and firing patterns were studied in isolated small dorsal root ganglion (DRG) neurons after L5/L6 spinal nerve ligation (SNL). Total TTX-R Na(+) currents and Na(v) 1.8 mRNA were reduced in injured L5 DRG neurons 14 days after SNL. In contrast, TTX-R Na(+)currents and Na(v) 1.8 mRNA were upregulated in uninjured L4 DRG neurons after SNL. Voltage-dependent inactivation of TTX-R Na(+) channels in these neurons was shifted to hyperpolarized potentials by 4 mV. Two types of neurons were identified in injured L5 DRG neurons after SNL. Type I neurons (57%) had significantly lower threshold but exhibited normal resting membrane potential (RMP) and action potential amplitude. Type II neurons (43%) had significantly smaller action potential amplitude but retained similar RMP and threshold to those from sham rats. None of the injured neurons could generate repetitive firing. In the presence of TTX, only 26% of injured neurons could generate action potentials that had smaller amplitude, higher threshold, and higher rheobase compared with sham rats. In contrast, action potentials and firing patterns in uninjured L4 DRG neurons after SNL, in the presence or absence of TTX, were not affected. These results suggest that TTX-R Na(+) channels play important roles in regulating action potentials and firing patterns in small DRG neurons and that downregulation in injured neurons and upregulation in uninjured neurons confer differential roles in shaping electrogenesis, and perhaps pain transmission, in these neurons.  相似文献   

11.
The role of glutamate receptors present in the medullary dorsal reticular nucleus (DRt) in the formalin test and formalin‐induced secondary nociception was studied in rats. Secondary mechanical allodynia was assessed with von Frey filaments applied to the rat's hindpaw, and secondary thermal hyperalgesia was evaluated with the tail‐immersion test. The selective glutamate receptor antagonists MK801 (N‐methyl‐d ‐aspartate receptor antagonist), 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX) (AMPA/KA receptor antagonist) and A841720 (metabotropic glutamate 1 receptor antagonist) were injected into the DRt before or 6 days after formalin injection in the rat. In the formalin test, the three antagonists significantly reduced the number of flinches in both phases of the test. DRt microinjection of MK801 or A841720, but not of CNQX, reduced both secondary nociceptive behaviors. Moreover, pre‐treatment with the three antagonists injected into the DRt prevented the development of secondary mechanical allodynia and secondary thermal hyperalgesia. Similarly, in these rats, the number of c‐Fos‐like immunoreactive neurons were markedly reduced in both the superficial and deep lamina of the dorsal horn. Our findings support the role of DRt as a pain facilitator in acute and chronic pain states, and suggest a key role of glutamate receptors during the development and maintenance of formalin‐induced secondary allodynia.  相似文献   

12.
N-Acetylated-alpha-linked acidic dipeptidase (NAALADase) hydrolyzes N-acetyl-aspartyl-glutamate (NAAG) to liberate N-acetyl-aspartate and glutamate. NAAG is a putative neurotransmitter and acts as a mixed agonist/antagonist on N-methyl-D-aspartate (NMDA) receptors and acts as an agonist on the metabotropic glutamate receptor 3 (mGluR3). In the present study, we examined the role of spinal NAALADase in the maintenance of mechanical allodynia induced by carrageenan injection, skin incision and mild thermal injury using 2-(phosphonomethyl)pentanedioic acid (2-PMPA), a specific NAALADase inhibitor, in rats. Mechanical allodynia was induced by injection of 2 mg carrageenan into the paw (carrageenan model), by creating a 1-cm longitudinal skin incision of the plantar aspect of the foot (post-operative model), or by application of thermal stimulation (52.5 degrees C) for 45 s to the hind paw (mild thermal injury model). 2-PMPA was administered intrathecally at the time when the maximum mechanical allodynia occurred. Mechanical allodynia was assessed by the measurement of mechanical threshold using von Frey filaments. The mechanical threshold was measured 5, 15, 30, 60 and 90 min after the drug administration. In the carrageenan model, 100 microg of 2-PMPA attenuated the level of mechanical allodynia. 2-PMPA had no effect on the level of mechanical allodynia in both the post-operative pain model and the mild thermal injury model. These data suggested that the inhibition of spinal NAALADase alleviated mechanical allodynia induced by paw carrageenan injection.  相似文献   

13.
Alcohol abuse is a major health, economic and social concern in modern societies, but the exact molecular mechanisms underlying ethanol addiction remain elusive. Recent findings show that small non‐coding microRNA (miRNA) signaling contributes to complex behavioral disorders including drug addiction. However, the role of miRNAs in ethanol‐induced conditioned‐place preference (CPP) and voluntary alcohol consumption has not yet been directly addressed. Here, we assessed the expression profile of miR124a in the dorsal striatum of rats upon ethanol intake. The results show that miR124a was downregulated in the dorso‐lateral striatum (DLS) following alcohol drinking. Then, we identified brain‐derived neurotrophic factor (BDNF) as a direct target of miR124a. In fact, BDNF mRNA was upregulated following ethanol drinking. We used lentiviral vector (LV) gene transfer technology to further address the role of miR124a and its direct target BDNF in ethanol‐induced CPP and alcohol consumption. Results reveal that stereotaxic injection of LV‐miR124a in the DLS enhances ethanol‐induced CPP as well as voluntary alcohol consumption in a two‐bottle choice drinking paradigm. Moreover, miR124a‐silencer (LV‐siR124a) as well as LV‐BDNF infusion in the DLS attenuates ethanol‐induced CPP as well as voluntary alcohol consumption. Importantly, LV‐miR124a, LV‐siR124a and LV‐BDNF have no effect on saccharin and quinine intake. Our findings indicate that striatal miR124a and BDNF signaling have crucial roles in alcohol consumption and ethanol conditioned reward.  相似文献   

14.
The facet joint is commonly associated with neck and low back pain and is susceptible to loading‐induced injury. Although tensile loading of the cervical facet joint has been associated with inflammation and neuronal hyperexcitability, the mechanisms of joint loading‐induced pain remain unknown. Altered brain‐derived neurotrophic factor (BDNF) levels are associated with a host of painful conditions, but the role of BDNF in loading‐induced joint pain remains undefined. Separate groups of rats underwent a painful cervical facet joint distraction or a sham procedure. Bilateral forepaw mechanical hypersensitivity was assessed and BDNF mRNA and protein levels were quantified in the dorsal root ganglion (DRG) and spinal cord at days 1 and 7. Facet joint distraction induced significant (P < 0.001) mechanical hypersensitivity at both time points. Painful joint distraction did not alter BDNF mRNA in the DRG compared with sham levels but did significantly increase (P < 0.016) BDNF protein expression over sham in the DRG at day 7. Painful distraction also significantly increased BDNF mRNA (P = 0.031) and protein expression (P = 0.047) over sham responses in the spinal cord at day 7. In a separate study, intrathecal administration of the BDNF‐sequestering molecule trkB‐Fc on day 5 after injury partially attenuated behavioral sensitivity after joint distraction and reduced pERK in the spinal cord at day 7 (P < 0.045). Changes in BDNF after painful facet joint injury and the effect of spinal BDNF sequestration in partially reducing pain suggest that BDNF signaling contributes to the maintenance of loading‐induced facet pain but that additional cellular responses are also likely involved. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
《Neuromodulation》2022,25(7):980-988
ObjectivesTo investigate the analgesic effect of high-voltage pulsed radiofrequency (HV-PRF) on the dorsal root ganglion (DRG) for neuropathic pain induced by spared nerve injury (SNI) in rats, especially the influence of this treatment on the DRG ultrastructure and voltage-gated sodium channel 1.7 (Nav1.7) level in the DRG.Materials and MethodsOne hundred fifty adult male Sprague-Dawley rats were randomly divided into five groups: Sham, SNI, Free-PRF, standard-voltage PRF (SV-PRF), and HV-PRF. The 45V-PRF and 85V-PRF procedures applied to the left L5 DRG were performed in SV-PRF group and the HV-PRF group, respectively, on day 7 after SNI, whereas no PRF was concurrently delivered in Free-PRF group. The paw mechanical withdrawal threshold (PMWT) was detected before SNI (baseline) and on days 1, 3, 7, 8, 10, 14, and 21. The changes of left L5 DRG ultrastructure were analyzed with transmission electron microscopy on days 14 and 21. The expression levels of Nav1.7 in left L5 DRG were detected by immunofluorescence and Western blot.ResultsCompared with the Free-PRF group, PMWT in the SV-PRF group and HV-PRF group were both significantly increased after PRF (all p < 0.05). Meanwhile, the PMWT was significantly higher in the HV-PRF group than that in the SV-PRF group on days 14 and 21 (all p < 0.05). There were statistically significant differences between the SV-PRF and Free-PRF groups (p < 0.05). Similarly, statistically significant difference was found between the HV-PRF and Free-PRF groups (p < 0.05). Especially, comparison of the SV-PRF group and the HV-PRF group revealed statistically significant difference (p < 0.05). The Nav1.7 levels were significantly downregulated in the SV-PRF group and HV-PRF groups compared to that in the Free-PRF group (all p < 0.01). A significantly lower Nav1.7 level was also found in the HV-PRF group compared to that in the SV-PRF group (p < 0.05).ConclusionsThe HV-PRF produces a better analgesic effect than SV-PRF applied to the DRG in SNI rats. The underlying mechanisms may be associated with improving the histopathological prognosis and the downregulation of Nav1.7 levels in the DRG.  相似文献   

16.
17.
N-ethylmaleimide-sensitive fusion (NSF) protein is a homohexameric ATPase that binds to the GluR2 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors. The stability and movement of AMPA receptors at synapses are important factors that control synaptic strength. NSF is involved in the surface expression regulation of AMPA receptors and consequently synaptic activity. Reduced expression of NSF or reduced interaction of NSF with GluR2 leads to a number of neurological disorders. Using a rat model of L5 spinal nerve ligation (SNL), we investigated the temporal and spatial expression of NSF in injured L5 and uninjured L4 dorsal root ganglion (DRG) neurons during mechanical allodynia. L5 SNL led to a significant decrease of NSF in both L4 and L5 DRGs observed at 3, 7, and 14 days after injury. In particular, NSF expression in calcitonin gene-related peptide (CGRP)-immunoreactive (IR) and IB4-IR neurons was reduced, whereas NSF expression in NF-200-IR neurons remained unaltered. These results indicate a role for NSF in CGRP-IR and IB4-IR neurons in SNL, with reduced NSF expression possibly contributing to SNL derived neuropathic pain.  相似文献   

18.
Nerve injury leads to novel sympathetic innervation of the dorsal root ganglion (DRG). We have hypothesized previously that the degenerating nerve increases the sympathetic sprouting in the DRG and pain after chronic sciatic constriction injury (CCI) by virtue of its influence on sensory and sympathetic axons spared by the injury. However, L5 spinal nerve ligation and transection (SNL) results in the complete isolation of the L5 DRG from the degenerating stump, yet sympathetic axons invade the ganglion, and sympathetically dependent pain develops. We investigated the role of Wallerian degeneration in both sympathetic sprouting and neuropathic pain in these two models of painful peripheral neuropathy by comparing responses of normal C57B1/6J and C57B1/Wldsmice in which degeneration is impaired. After CCI, Wldsmice, unlike 6J mice, did not develop thermal or mechanoallodynia or sympathetic innervation of the L5 DRG. After SNL, both strains developed mechanoallodynia and sympathetic sprouts in L5, but only 6J mice developed thermal allodynia. Observation of the origins of the invading sympathetic axons revealed that after CCI, sympathetics innervating blood vessels and dura (probably intact) sprouted into the ganglion, but after SNL sympathetics (probably axotomized) invaded from the injured spinal nerve. Based on these findings, we hypothesize that there are two mechanisms for sympathetic sprouting into DRG, differentially dependent on Wallerian degeneration. Analysis of pain behavior in these animals reveals that (i) mechanoallodynia and sympathetic innervation of the DRG tend to coincide and (ii) thermal allodynia and Wallerian degeneration, but not sympathetic innervation of the DRG tend to coincide.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号