首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of clonidine (0.05 mg/kg i.p.) on 5-hydroxytryptamine (5-HT) turnover has been studied in the whole brain and in various cerebral areas of the rat (brain stem, hypothalamus, striatum and "rest" of the brain). In the whole brain, clonidine produced a significant decrease (-23%) in 5-hydroxyindole acetic acid level and a slight increase (+7%) in 5-HT level. These variations were not observed in all the cerebral structures. The 5-hydroxyindole acetic acid levels were reduced in the hypothalamus and in the rest of the brain; they were not significantly altered in the brain stem and increased in the striatum. The effect of clonidine on the 5-HT synthesis has been studied by evaluation of the rises in 5-HT levels induced by pargyline: these rises were found significantly increased in the brain stem and the hypothalamus and not significantly altered in the other cerebral structures. These findings give support to the hypothesis according to which the norepinephrine receptor stimulation inhibits the activtity in the 5-HT neurons: clonidine reduces primarily the relase of 5-HT without an immediate effect on its synthesis. The differences observed among the various cerebral areas might be explained by the fact that relations between nor-epinephrine and 5-HT neurons do not exist identically in all cerebral structures.  相似文献   

2.
Summary The concentration of adenosine 3, 5-monophosphate (cAMP) was investigated in the rat pineal organ after bilateral orchidectomy. Orchidectomy caused a decrease in pineal cAMP concentration.This paper has been supported by a grant of the Polish Academy of Sciences, No. 10.4.2.01.5.6.  相似文献   

3.
BACKGROUND:Motoneurons from the Onuf’s nucleus of the spinal cord, which innervate the striated muscle of the pelvic floor, play an important role in erection, ejaculation, and urine control. Serotonin (5-hydroxytryptamine, 5-HT) regulates motoneuron activity from the Onuf’s nucleus of the spinal cord. However, few studies exist that describe 5-HT receptor distribution in the Onuf’s nucleus. In addition, the nature of the effects of 5-HT receptor on the innervating striated muscle of the pelvic floor is controversial. OBJECTIVE: To investigate the distribution of serotonin 5-HT2A and 5-HT7 receptors in motoneurons of Onuf’s nucleus in the spinal cord of male rats, and to analyze the relationship of 5-HT2A and 5-HT7 receptor to central modulation of urogenital function. DESIGN, TIME AND SETTING: The neural morphology experiment was performed at the Ultramicro-structure Laboratory of Reproductive Medicine, Basic Medical College, Chongqing Medical University, China from April to December 2007. MATERIALS: Ten adult, Sprague Dawley rats (eight males and two females) were randomly divided into gender control group (n = 4, 50% male and 50% female) and a retrograde tracing group (n = 6, 100% male) Recombinant pseudorabies virus (PRV-152) was provided by Professor LW Enquist from Princeton University, USA. Rabbit anti-5-HT2A and 5-HT7 receptor antibodies were purchased from Diasorin, France. METHODS: In the gender control group, the spinal L5-6 segments were harvested, sliced, and then incubate antibodies specific against 5-HT2A or 5-HT7 receptors for immunohistochemical staining. In the retrograde tracing group, PRV-152 was separately injected into the right ischiocavernosus (ischiocavernosus subgroup, n = 3) and the right external urethral sphincter (external urethral sphincter subgroup, n = 3). Four days after injection, L5-6 segments were harvested, sliced, and incubated with antibodies specific against 5-HT2A or 5-HT7 receptors for double-labeling immunofluorescence stain  相似文献   

4.
The age at onset of bipolar disorder ranging from childhood to adolescent to adult has significant implications for frequency, severity and duration of mood episodes, comorbid psychopathology, heritability, response to treatment, and opportunity for early intervention. There is increasing evidence that recognition of prodromal symptoms in at-risk populations and mood type at onset are important variables in understanding the course of this illness in youth. Very early childhood onset of symptoms including anxiety/depression, mood lability, and subthreshold manic symptoms, along with family history of a parent with early onset bipolar disorder, appears to predict the highest risk of early onset disorder with the most severe course.  相似文献   

5.
Aim: Breast milk is rich in docosahexaenoic acid (DHA), which is selectively concentrated in neuronal membranes and is thought to be necessary for optimal neurodevelopment. This study evaluated the relationship between breastfeeding, especially the resultant DHA level in the red blood cell (RBC) membranes of infants, and the cognitive function of very-low-birth-weight infants at 5 years of age. Methods: Eighteen patients were classified into groups that were breastfed or formula-fed or both. We measured the DHA concentration in the RBC membranes of 18 preterm infants at 4 weeks of age. To evaluate cognitive function at the age of 5 years, we asked the children to perform five tests: the Kaufman Assessment Battery for Children, Day–Night Test, Kansas Reflection Impulsivity Scale for Preschoolers (KRISP), Motor Planning Test, and Strengths and Difficulties Questionnaire. Results: The DHA level at 4 weeks after birth was significantly higher in the breastfed infants than in the formula-fed infants. The scores for the Day–Night Test, KRISP, and Motor Planning Test were significantly higher in the breastfed group. There were significant correlations between the scores for the Day–Night Test and for the KRISP and the level of DHA at 4 weeks of age. Conclusion: Breastfeeding in the neonatal periods increases the DHA level in preterm infants and may have an important influence on brain development not only during early infancy but also during the preschool years, especially in terms of cognitive function.  相似文献   

6.
Objective To investigate changes of 5-hydroxytryptamine (5-HT) and its synthesis rate-limiting enzyme tryp-tophan hydroxylase (TPH) in the ventral horn of spinal cord after exercise-induced fatigue, and to further discuss the mecha- nism of exercise-induced central fatigue at spinal level. Methods Sixteen healthy adult Wistar rats were randomly divided into 2 groups: exercise-induced fatigue group and control group. Immunohistochemical staining for 5-HT and TPH in the ventral horn were performed and analysized quantitatively. The mean optic densities of 5-HT and TPH positive fibers or terminals were measured by computerized image analyzer. Results Both 5-HT and TPH positive fibers/terminals decreased in the exercise-induced fatigue group. The immunohistochemical staining was weaker and the mean optic densities decreased obviously in the fatigue group compared with those in the control group (P 〈 0.05). Conclusion 5-HT and TPH in the ventral horn of spinal cord might be involved in exercise-induced fatigue.  相似文献   

7.
Summary. A characteristic change in the substantia nigra of Parkinson's disease patients is an apparent accelerated rate of dopamine oxidation as evidenced by an increased 5-S-cysteinyldopamine (5-S-CyS-DA) to dopamine ratio. However, 5-S-CyS-DA is more easily oxidized than dopamine to give 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid (DHBT-1). Previous studies have demonstrated that DHBT-1 can be accumulated by intact rat brain mitochondria and inhibits complex I but not complex II respiration. In this study, it is shown that DHBT-1 also inhibits the α-ketoglutarate dehydrogenase complex (α-KGDH) but not cytochrome c oxidase (complex IV). The inhibition of α-KGDH is dependent on the oxidation of DHBT-1, catalyzed by an unknown constituent of the inner mitochondrial membrane, to an electrophilic o-quinone imine that covalently modifies active site sulfhydryl residues. The latter conclusion is based on the ability of ≧ equimolar glutathione to block the inhibition of α-KGDH by DHBT-1, without altering its rate of mitochondrial membrane-catalyzed oxidation, by scavenging the electrophilic o-quinone intermediate forming glutathionyl conjugates which have been isolated and spectroscopically characterized. Activities of mitochondrial α-KGDH and complex I, but not other respiratory complexes, are decreased in the parkinsonian substantia nigra. Such changes together with evidence for accelerated dopamine oxidation, increased formation of 5-S-CyS-DA and the ease of oxidation of this conjugate to DHBT-1 which inhibits α-KGDH and complex I, without affecting other respiratory enzyme complexes, suggests that the latter putative metabolite might be an endotoxin that contributes to the α-KGDH and complex I defects in Parkinson's disease. Received October 5, 1999; accepted February 18, 2000  相似文献   

8.
Neural steroids, as well as the enzymes that produce these hormones, are important for sexual differentiation of the brain during development. Aromatase converts testosterone into oestradiol. 5α‐reductase converts testosterone to 5α‐dihydrotestosterone and occurs in two isozymes: type 1 (5αR1) and type 2 (5αR2). Each of these enzymes is present in the developing brain in many species, although no work has been carried out examining the expression of all three enzymes in non‐avian reptiles with genetic sex determination. In the present study, we evaluated mRNA expression of neural aromatase, 5αR1 and 5αR2, on the day of hatching and at day 50 in one such lizard, the green anole. We describe the distribution of these enzymes throughout the brain and the quantification of mRNA expression in three regions that control adult sexual behaviours: the preoptic area (POA) and ventromedial amygdala (AMY), which are involved in male displays, as well as the ventromedial hypothalamus, which regulates female receptivity. Younger animals had a greater number (POA) and density (AMY) of 5αR1 mRNA expressing cells. We detected no effects of sex or age on aromatase or 5αR2. In comparison with data from adults, the present results support the idea that the green anole forebrain has not completely differentiated by 50 days after hatching and that 5αR1 may play a role in the early development of regions important for masculine function.  相似文献   

9.
10.
The 5α-reductase (5αR) enzyme converts testosterone to 5α-dihydrotestosterone. This local metabolism within the brain is important for the full expression of male sexual behavior in many species, including green anole lizards. Two isozymes of 5αR exist and little is known about their specific distributions. We conducted in situ hybridization for both isozymes in intact male and female green anole brains during the breeding (BS) and non-breeding (NBS) seasons. 5αR1 mRNA was only detected in the brainstem, while 5αR2 was expressed in specific areas throughout the brain. As our primary interest was evaluating the potential role of 5αR in forebrain regulation of reproductive behavior, we quantified 5αR2 expression in the preoptic area, amygdala (AMY), and ventromedial hypothalamus (VMH). More 5αR2 cells were detected during the NBS than BS in the AMY, and the density of these cells was greater in females than males. In the VMH, the right side contained more 5αR2 cells than the left, an effect driven by a lateralized increase in the NBS. These data expand understanding of the distribution and potential roles of both isozymes in the adult brain, and differences in expression patterns between mammals and birds suggest that they may have been co-opted for different functions later in evolution.  相似文献   

11.
12.
Cyclin-dependent kinase 5 (Cdk5) is a member of the serine-threonine kinase family of cyclin-dependent kinases. Cdk5 is critical to normal mammalian nervous system development and plays important regulatory roles in multiple cellular functions. Recent evidence indicates that Cdk5 is inappropriately activated in sev-eral neurodegenerative conditions, including Parkinson’s disease (PD). PD is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. During neurotoxicity, p35 is cleaved to form p25. Binding of p25 with Cdk5 leads deregulation of Cdk5 resulting in number of neurodegenerative pathologies. To date, strategies to speciifcally inhibit Cdk5 hyperactivity have not been successful without affecting normal Cdk5 activity. Here we show that inhibition of p25/Cdk5 hyperactivation through TFP5/TP5, truncated 24-aa peptide derived from the Cdk5 activator p35 rescues nigrostriatal dopaminergic neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) in a mouse model of PD. TP5 pep-tide treatment also blocked dopamine depletion in the striatum and improved gait dysfunction after MPTP administration. The neuroprotective effect of TFP5/TP5 peptide is also associated with marked reduction in neuroinlfammation and apoptosis. Here we show inhibition of Cdk5/p25-hyperactivation by TFP5/TP5 pep-tide, which identiifes Cdk5/p25 as a potential therapeutic target to reduce neurodegeneration in PD.  相似文献   

13.
Expression of therapeutic gene products in differentiated human NT2 neurons (NT2/Ns) is being explored for ex vivo gene therapy of human neurological diseases. In this study we determined the efficiency of adenovirus (Ad)-mediated gene delivery into NT2/Ns and characterized the expression of several key receptors known to be required for efficient Ad-mediated gene delivery. Undifferentiated NT2 cells and NT2/Ns were infected by Ad expressing green fluorescent protein at an efficiency of 33% and 17%, respectively—percentages much lower than the 92% infectivity obtained from a human non-neuronal cell line A549 cells. This relatively low infectivity of NT2/Ns might be caused by the extremely low expression of integrin subunit β3 and the reduced expression of β5 during differentiation. The expression of coxsackie-Ad receptor (CAR) was relatively high and remained constant during differentiation. Blocking CAR receptor using an antibody specific against CAR reduced Ad infectivity in a dose-dependent manner. These observations suggest that modulating the expression of integrin subunits β3/5 or the functional heterodimer αvβ3/5 in human NT2/Ns may enhance adenoviral infectivity of NT2/Ns.  相似文献   

14.
15.
The effects of the selective 5-HT3 receptor agonist m-chlorophenylbiguanide (m-CPBG), and of the NMDA (N-methyl-D-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate)/kainate antagonists AP-5 [(±)-2-amino-5-phosphono-pentanoic acid] and CNQX (6-cyano-7-nitroquinoxaline-2,3-dione), respectively, were studied in adult male Wistar rats implanted for chronic sleep recordings. The compounds were microinjected directly into the dorsal raphe nucleus (DRN) during the light period of the 12-h light/12-h dark cycle. Infusion of m-CPBG (2 and 4 mM) into the DRN induced a significant reduction of rapid-eye-movement sleep (REMS) and of the number of REM periods. Local infusion of AP-5 (0.5-1 mM) and CNQX (2 mM) significantly increased slow wave sleep (SWS). Pretreatment with AP-5 (0.5 mM) or CNQX (0.5 mM) antagonized the m-CPBG-induced suppression of REMS. It is proposed that the reduction of REMS after microinjection of m-CPBG into de DRN is related to the activation of glutamatergic interneurons that express the 5-HT3 receptor and make synaptic contacts with serotonergic cells. The resultant increase of serotonin release at postsynaptic sites involved in the induction of REMS would provoke the suppression of the behavioral state. Our findings provide, in addition, new details concerning the pharmacology of DRN serotonergic neurons in the rat that may become relevant to the development of drugs for enhancing cortical and subcortical serotonergic neurotransmission.  相似文献   

16.
Many studies have shown that fibronectin type III domain-containing protein 5(FDNC5) and brain-derived neurotrophic factor(BDNF) play vital roles in plasticity after brain injury. An enriched environment refers to an environment that provides animals with multi-sensory stimulation and movement opportunities. An enriched environment has been shown to promote the regeneration of nerve cells, synapses, and blood vessels in the animal brain after cerebral ischemia;however, the exact mechanisms have not been clarified. This study aimed to determine whether an enriched environment could improve neurobehavioral functions after the experimental inducement of cerebral ischemia and whether neurobehavioral outcomes were associated with the expression of FDNC5 and BDNF. This study established ischemic mouse models using permanent middle cerebral artery occlusion(pMCAO) on the left side. On postoperative day 1, the mice were randomly assigned to either enriched environment or standard housing condition groups. Mice in the standard housing condition group were housed and fed under standard conditions. Mice in the enriched environment group were housed in a large cage, containing various toys, and fed with a standard diet. Sham-operated mice received the same procedure, but without artery occlusion, and were housed and fed under standard conditions. On postoperative days 7 and 14, a beam-walking test was used to assess coordination, balance, and spatial learning. On postoperative days 16–20, a Morris water maze test was used to assess spatial learning and memory. On postoperative day 15, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex were analyzed by western blot assay. The results showed that compared with the standard housing condition group, the motor balance and coordination functions(based on beam-walking test scores 7 and 14 days after operation), spatial learning abilities(based on the spatial learning scores from the Morris water maze test 16–19 days after operation), and memory abilities(based on the memory scores of the Morris water maze test 20 days after operation) of the enriched environment group improved significantly. In addition, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex increased in the enriched environment group compared with those in the standard housing condition group. Furthermore, the Pearson correlation coefficient showed that neurobehavioral functions were positively associated with the expression levels of FDNC5 and BDNF(r = 0.587 and r = 0.840, respectively). These findings suggest that an enriched environment upregulates FDNC5 protein expression in the ipsilateral cerebral cortex after cerebral ischemia, which then activates BDNF protein expression, improving neurological function. BDNF protein expression was positively correlated with improved neurological function. The experimental protocols were approved by the Institutional Animal Care and Use Committee of Fudan University, China(approval Nos. 20160858 A232, 20160860 A234) on February 24, 2016.  相似文献   

17.
18.
The dopamine hypothesis of schizophrenia proposes an inherited or acquired presynaptic hyperactivity of dopaminergic neurons. The human dopamine transporter gene (hSLC6A3; hDAT) represents one major mechanism for the termination of dopaminergic neurotransmission. This study examines the degree of genetic association of the 5′-untranslated region (5′-UTR) of the hSLC6A3 to schizophrenia in a family-based association design. Five single nucleotide polymorphisms (SNPs) derived by a previous systematic mutation scan ∼1.2 kb of the 5′-UTR of the hSLC6A3 locus were genotyped for transmission disequilibrium between 82 index cases (56 males) with schizophrenia and their biological parents. We observed no preferential transmission of alleles from heterozygous parents to affected offspring. Five estimated haplotypes accounted for a frequency of 90% in the index cases, and were identical in cases and non-transmitted parental control haplotypes. Distinct five-locus-genotypes accumulated in schizophrenia compared to parental controls at P-value 0.0038 with odds-ratio of 2.02 (95% CI 0.99–4.14). In conclusion, our present findings support the genetic involvement of distinct hSLC6A3 genotypes in schizophrenia. We propose replication in extended samples and examination of the functional relevance of the associated genotypes on human dopamine transporter expression.  相似文献   

19.
OBJECTIVE: Chronically mentally ill patients in community mental health care report a better quality of life (QOL) than those in long-term hospital care, which suggests that the treatment setting per se influences their QOL. METHOD: In a region where both treatment settings are of a comparable high standard, we assessed the QOL of 96 schizophrenic patients from these two treatment settings, and the factors which most influenced their QOL. RESULTS: Community-care patients reported a better QOL than long-term hospital-care patients. However, when other factors influencing QOL were included in a regression analysis, the place of treatment was no longer significant, but rather the social support, the severity of the illness, educational level and certain illness concepts. CONCLUSION: It is probably not the place per se which influences the QOL, but apart from personal, sociodemographic and illness-related factors, the amount of social support that is provided in different settings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号