首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Introduction: We examined the cumulative effect of 4 consecutive bouts of noninvasive brain stimulation on corticospinal plasticity and motor performance, and whether these responses were influenced by the brain‐derived neurotrophic factor (BDNF) polymorphism. Methods: In a randomized double‐blinded cross‐over design, changes in strength and indices of corticospinal plasticity were analyzed in 14 adults who were exposed to 4 consecutive sessions of anodal and sham transcranial direct current stimulation (tDCS). Participants also undertook a blood sample for BDNF genotyping (N = 13). Results: We observed a significant increase in isometric wrist flexor strength with transcranial magnetic stimulation revealing increased corticospinal excitability, decreased silent period duration, and increased cortical voluntary activation compared with sham tDCS. Conclusions: The results show that 4 consecutive sessions of anodal tDCS increased cortical voluntary activation manifested as an improvement in strength. Induction of corticospinal plasticity appears to be influenced by the BDNF polymorphism. Muscle Nerve 54 : 903–913, 2016  相似文献   

3.
Long-term potentiation (LTP) and long-term depression (LTD) underlie most models of learning and memory, but neural activity would grow or shrink in an uncontrolled manner, if not guarded by stabilizing mechanisms. The Bienenstock-Cooper-Munro (BCM) rule proposes a sliding threshold for LTP/LTD induction: LTP induction becomes more difficult if neural activity was high previously. Here we tested if this form of homeostatic plasticity applies to the human motor cortex (M1) in vivo by examining the interactions between two consecutive sessions of paired associative stimulation (PAS). PAS consisted of repeated pairs of electrical stimulation of the right median nerve followed by transcranial magnetic stimulation of the left M1. The first PAS session employed an interstimulus interval equalling the individual N20-latency of the median nerve somatosensory-evoked cortical potential plus 2 ms, N20-latency minus 5 ms, or a random alternation between these intervals, to induce an LTP-like increase in motor-evoked potential (MEP) amplitudes in the right abductor pollicis brevis muscle (PAS(LTP)), an LTD-like decrease (PAS(LTD)), or no change (PAS(Control)), respectively. The second PAS session 30 min later was always PAS(LTP). It induced an moderate LTP-like effect if conditioned by PAS(Control), which increased if conditioned by PAS(LTD), but decreased if conditioned by PAS(LTP). Effects on MEP amplitude induced by the second PAS session exhibited a negative linear correlation with those in the first PAS session. Because the two PAS sessions activate identical neuronal circuits, we conclude that 'homosynaptic-like' homeostatic mechanisms in accord with the BCM rule contribute to regulating plasticity in human M1.  相似文献   

4.
We used single‐pulse transcranial magnetic stimulation of the left primary hand motor cortex and motor evoked potentials of the contralateral right abductor pollicis brevis to probe motor cortex excitability during a standard mental rotation task. Based on previous findings we tested the following hypotheses. (i) Is the hand motor cortex activated more strongly during mental rotation than during reading aloud or reading silently? The latter tasks have been shown to increase motor cortex excitability substantially in recent studies. (ii) Is the recruitment of the motor cortex for mental rotation specific for the judgement of rotated but not for nonrotated Shepard & Metzler figures? Surprisingly, motor cortex activation was higher during mental rotation than during verbal tasks. Moreover, we found strong motor cortex excitability during the mental rotation task but significantly weaker excitability during judgements of nonrotated figures. Hence, this study shows that the primary hand motor area is generally involved in mental rotation processes. These findings are discussed in the context of current theories of mental rotation, and a likely mechanism for the global excitability increase in the primary motor cortex during mental rotation is proposed.  相似文献   

5.

Objective

Repetitive application of peripheral electrical stimuli paired with transcranial magnetic stimulation (rTMS) of M1 cortex at low frequency, known as paired associative stimulation (PAS), is an effective method to induce motor cortex plasticity in humans. Here we investigated the effects of repetitive peripheral magnetic stimulation (rPMS) combined with low frequency rTMS (‘magnetic-PAS’) on intracortical and corticospinal excitability and whether those changes were widespread or circumscribed to the cortical area controlling the stimulated muscle.

Methods

Eleven healthy subjects underwent three 10 min stimulation sessions: 10 Hz rPMS alone, applied in trains of 5 stimuli every 10 s (60 trains) on the extensor carpi radialis (ECR) muscle; rTMS alone at an intensity 120% of ECR threshold, applied over motor cortex of ECR and at a frequency of 0.1 Hz (60 stimuli) and magnetic PAS, i.e., paired rPMS and rTMS. We recorded motor evoked potentials (MEPs) from ECR and first dorsal interosseous (FDI) muscles. We measured resting motor threshold, motor evoked potentials (MEP) amplitude at 120% of RMT, short intracortical inhibition (SICI) at interstimulus interval (ISI) of 2 ms and intracortical facilitation (ICF) at an ISI of 15 ms before and immediately after each intervention.

Results

Magnetic-PAS, but not rTMS or rPMS applied separately, increased MEP amplitude and reduced short intracortical inhibition in ECR but not in FDI muscle.

Conclusion

Magnetic-PAS can increase corticospinal excitability and reduce intracortical inhibition. The effects may be specific for the area of cortical representation of the stimulated muscle.

Significance

Application of magnetic-PAS might be relevant for motor rehabilitation.  相似文献   

6.
The corticotectal projection from cortical motor areas is one of several descending pathways involved in the indirect control of spinal motoneurons. In non‐human primates, previous studies reported that cortical projections to the superior colliculus (SC) originated from the premotor cortex (PM) and the primary motor cortex, whereas no projection originated from the supplementary motor area (SMA). The aim of the present study was to investigate and compare the properties of corticotectal projections originating from these three cortical motor areas in intact adult macaques (n = 9). The anterograde tracer biotinylated dextran amine was injected into one of these cortical areas in each animal. Individual axonal boutons, both en passant and terminaux, were charted and counted in the different layers of the ipsilateral SC. The data confirmed the presence of strong corticotectal projections from the PM. A new observation was that strong corticotectal projections were also found to originate from the SMA (its proper division). The corticotectal projection from the primary motor cortex was quantitatively less strong than that from either the premotor or SMAs. The corticotectal projection from each motor area was directed mainly to the deep layer of the SC, although its intermediate layer was also a consistent target of fairly dense terminations. The strong corticotectal projections from non‐primary motor areas are in position to influence the preparation and planning of voluntary movements.  相似文献   

7.
Extradural motor cortex stimulation (EMCS) is a surgical procedure proposed for patients with advanced Parkinson's disease (PD) who cannot undergo deep brain stimulation (DBS). Five PD patients with motor fluctuations and dyskinesia underwent EMCS of the left hemisphere. All fulfilled CAPSIT criteria for DBS, with the exception of age > 70 years. Patients were assessed preoperatively and 6 months after surgery on and off medications, with stimulator on, and 2 weeks later with stimulator off. Outcome measures included changes in mean medication dosage (levodopa and dopamine agonists), Unified Parkinson's Disease Rating Scale (UPDRS Parts II-III and Item 39), and dyskinesias (Abnormal Involuntary Movements Scale [AIMS]). We found no significant mean changes following EMCS. However, there was a trend for a reduction of mean daily medication intake (-30%) and AIMS (-19%). There were 3 patients who reported reduced OFF time (UPDRS Item 39) and 4 of 5 who felt a subjective benefit in stability and gait. In our PD cohort, EMCS induced no objective benefit, although some subjective improvement was reported mostly on axial symptoms.  相似文献   

8.
The anterograde transport of wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) was used to demonstrate the corticospinal fibres which originate in the motor cortex and project to the cervical spinal cord, specifically to the phrenic nucleus, in the cat. Following injections of WGA-HRP into the pericruciate cortex large numbers of fibres were labelled in the contralateral lateral and ventral funiculi and fewer fibres were labelled in the ipsilateral and ventral funiculi. Labelled corticospinal motor fibres entered the gray matter laterally in laminae V and VI and terminated within these two laminae as well as throughout the entire extent of lamina VII. A few labelled fibres were present in medial lamina VIII and also in lamina IX where they were in close association with the phrenic motoneuron pool. Labelling was present in the gray matter at both sides, with a stronger labelling contralaterally. Labelled axons were also seen crossing from each side of the gray matter to the other side. The results suggest that in the cat the corticospinal motor fibres have a wider distribution in the spinal gray matter than has been previously shown, and that corticospinal motor axons may be in direct contact with phrenic motoneurons.  相似文献   

9.
Motor imagery (MI) training and anodal transcranial direct current stimulation (tDCS) applied over the primary motor cortex can independently improve hand motor function. The main objective of this double‐blind, sham‐controlled study was to examine whether anodal tDCS over the primary motor cortex could enhance the effects of MI training on the learning of a finger tapping sequence. Thirty‐six right‐handed young human adults were assigned to one of three groups: (i) who performed MI training combined with anodal tDCS applied over the primary motor cortex; (ii) who performed MI training combined with sham tDCS; and (iii) who received tDCS while reading a book. The MI training consisted of mentally rehearsing an eight‐item complex finger sequence for 13 min. Before (Pre‐test), immediately after (Post‐test 1), and at 90 min after (Post‐test 2) MI training, the participants physically repeated the sequence as fast and as accurately as possible. An anova showed that the number of sequences correctly performed significantly increased between Pre‐test and Post‐test 1 and remained stable at Post‐test 2 in the three groups (< 0.001). Furthermore, the percentage increase in performance between Pre‐test and Post‐test 1 and Post‐test 2 was significantly greater in the group that performed MI training combined with anodal tDCS compared with the other two groups (< 0.05). As a potential physiological explanation, the synaptic strength within the primary motor cortex could have been reinforced by the association of MI training and tDCS compared with MI training alone and tDCS alone.  相似文献   

10.
Psychogenic paralysis presents a real treatment challenge. Despite psychotherapy, physiotherapy, antidepressants, acupuncture, or hypnosis, the outcome is not always satisfactory with persistent symptoms after long‐term follow‐up. We conducted a retrospective study to assess clinical features and to propose an alternative treatment based on repetitive transcranial magnetic stimulation (rTMS). Seventy patients (44 F/26 M, mean age: 24.7 ± 16.6 years) experienced paraparesis (57%), monoparesis (37%), tetraparesis (3%), or hemiparesis (3%). A precipitating event was observed in 42 patients, primarily as a psychosocial event or a physical injury. An average of 30 stimuli over the motor cortex contralateral to the corresponding paralysis was delivered at low frequency with a circular coil. The rTMS was effective in 89% of cases, with a significantly better outcome for acute rather than chronic symptoms. In conclusion, motor cortex rTMS seem to be very effective in patients with psychogenic paralysis and could be considered a useful therapeutic option. © 2010 Movement Disorder Society  相似文献   

11.
Two magnetic coils (MCs) of special design (Cadwell Laboratories) were used to elicit movements predominantly of one or a few digits by percutaneous stimulation of human motor cortex. When cortically elicited movements were ischemically blocked, the MC still elicited discrete sense of digit movement; a sense of movement map was constructed by stimulating at different scalp sites. Our findings support the existence of corollary discharge.  相似文献   

12.
There has been some evidence that electrical stimulation of the primary motor cortex (MCS) may relieve motor symptoms of Parkinson's disease (PD). This surgical technique is being studied as alternative for PD patients who are considered poor candidates for deep brain stimulation (DBS) of subthalamic nucleus (STN). In 4 PD patients with unilateral MCS, we used [(15)O] H(2)O positron emission tomography to measure changes in regional cerebral blood flow (rCBF) while testing motor performance with a joystick motor task during different stimulation frequencies, OFF-condition, 50 and 130 Hz. We found that different stimulation settings did neither improve performance on joystick task nor modify the pattern of movement-related rCBF. Similarly, no changes were observed in UPDRS motor score between Off and On stimulation while off medication. We conclude that while MCS may be a simpler and safer surgical procedure than DBS of STN, it failed to provide evidence of clear effect on motor performance and movement-related activation pattern in patients with advanced PD.  相似文献   

13.
Summary. We examined the influence of right handed pinch grips and the effect of a motor training on motor cortex excitability of the left first dorsal interosseus muscle (FDI). TMS single and paired pulses were applied over the right human motor cortex (M1) during and after right handed pinch grips with low force. In another experiment, these stimulations were performed before and after a 30-minute right handed pinch grip training. Results: MEP amplitudes in left FDI were reduced when TMS single pulses were applied during the pinch grip. Simultaneously, motor cortex excitability was enhanced but returned to baseline after the training period. Conclusion: Phasic pinch grips of the right hand exert an inhibiting effect on the corticospinal excitability of the ipsilateral motor cortex and lead to an increase of intracortical excitability. These changes are distinct and independent of each other. Motor training has an interhemispheric effect on intracortical excitability.  相似文献   

14.
Abnormally large tremor during movement is a symptom of many movement disorders and significantly impairs activities of daily living. The aim of this study was to investigate whether repetitive magnetic brain stimulation (rTMS) can reduce tremor size during human movement. We hypothesised that inhibitory rTMS over motor cortex would reduce tremor size during subsequent movement. The study involved 26 healthy young adults (21 ± 2 years) and began with application of single TMS stimuli to measure baseline corticospinal excitability. The response to stimulation was recorded in hand muscles with electromyography. Subjects then performed a 3‐min task to measure baseline tremor during movement. This involved matching index finger position with a moving target on a computer screen. Tremor was recorded with an accelerometer on the fingernail. Finger acceleration was analysed with fast‐Fourier transform to quantify tremor in the physiological range (7.8–12.2 Hz). Subjects then received 10 min of real (= 13) or sham (= 13) inhibitory rTMS. Tremor and corticospinal excitability were then remeasured. Real rTMS significantly decreased corticospinal excitability by ~30% (= 0.022) and increased tremor size during movement by ~120% (= 0.047) relative to sham rTMS. However, the direction of tremor change was opposite to that hypothesised for inhibitory rTMS. The results suggest that rTMS over human motor cortex can modulate action tremor and the level of corticospinal excitability may be important for setting the amplitude of action tremor in healthy young adults.  相似文献   

15.
OBJECTIVES: In order to learn more about the physiology of the motor cortex during motor imagery, we evaluated the changes in excitability of two different hand muscle representations in the primary motor cortex (M1) of both hemispheres during two imagery conditions. MATERIALS AND METHODS: We applied focal transcranial magnetic stimulation (TMS) over each M1, recording motor evoked potentials (MEPs) from the contralateral abductor pollicis brevis (APB) and first dorsal interosseus (FDI) muscles during rest, imagery of contralateral thumb abduction (C-APB), and imagery of ipsilateral thumb abduction (I-APB). We obtained measures of motor threshold (MT), MEP recruitment curve (MEP-rc) and F waves. RESULTS: Motor imagery compared with rest significantly decreased the MT and increased MEPs amplitude at stimulation intensities clearly above MT in condition C-APB, but not in condition I-APB. These effects were not significantly different between right and left hemisphere. MEPs simultaneously recorded from the FDI, which was not involved in the task, did not show facilitatory effects. There were no significant changes in F wave amplitude during motor imagery compared with rest. CONCLUSIONS: Imagery of unilateral simple movements is associated with increased excitability only of a highly specific representation in the contralateral M1 and does not differ between hemispheres.  相似文献   

16.
Transcranial stimulation of the leg area of the motor cortex in humans   总被引:3,自引:0,他引:3  
We used transcranial magnetic stimulation on nine normal volunteers to establish an effective way to stimulate the leg area of the motor cortex. Three types of coils: a large figure-eight coil, small figure-eight coil, and a round coil were used. Surface electromyographic activities were recorded from the left tibialis anterior muscle, and the latencies and amplitudes compared with those obtained by anodal electrical stimulation. The most stable responses were obtained when the large figure-eight coil was centered over the vertex and backward current was run through it or when the round coil was centered two to three centimeters anterior to the vertex with left-flowing current in it at the posterior widening. The latencies obtained under these stimulation conditions were the same as those obtained by electrical stimulation. We conclude that direct activation of the pyramidal cells occurs in the leg area of the motor cortex in all forms of magnetic and electrical stimulation.  相似文献   

17.
The role of movement repetition and practice has been extensively studied as an aspect of motor skill learning but has rarely been investigated in its own right. As practice is considered a prerequisite for motor learning we expected that even the repetitive execution of a simple movement would rapidly induce changes in neural activations without changing performance. We used 64-channel event-related potential mapping to investigate these effects of movement repetition on corresponding brain activity in humans. Ten healthy right-handed young adults performed a power grip task under visual force control to ensure constant behaviour during the experimental session. The session consisted of two parts intersected by a break. For analysis each part was subdivided into two runs to control for potential attention or fatigue effects, which would be expected to disappear during the break. Microstate analysis revealed that distinct topographies and source configurations during movement preparation, movement execution and feedback integration are responsive to repetition. The observed patterns of changes differed for the three microstates, suggesting that different, repetition-sensitive neural mechanisms are involved. Moreover, this study clearly confirms that movement repetition, in the absence of skill learning, is capable of inducing changes in neural networks.  相似文献   

18.
ObjectiveTo investigate the effects of paired associated stimulation (PAS) with different stimulation position on motor cortex excitability and upper limb motor function in patients with cerebral infarction.MethodA total of 120 volunteers with cerebral infarction were randomly divided into four groups. Based on conventional rehabilitation treatment, the PAS stimulation group was given the corresponding position of PAS treatment once a day for 28 consecutive days. The MEP amplitude and RMT of both hemispheres were assessed before and after treatment, and a simple upper limb Function Examination Scale (STEF) score, simplified upper limb Fugl–Meyer score (FMA), and improved Barthel Index (MBI) were used to assess upper limb motor function in the four groups.ResultsFollowing PAS, the MEP amplitude decreased, and the RMT of abductor pollicis brevis (APB) increased on the contralesional side, while the MEP amplitude increased and the RMT of APB decreased on the ipsilesional side. After 28 consecutive days the scores of STEF, FMA, and MBI in the bilateral stimulation group were significantly better than those in the ipsilesional stimulation group and the contralesional stimulation group, but there was no significant difference in the scores of STEF, FMA, and MBI between the ipsilesional stimulation group and the contralesional stimulation group.ConclusionThe excitability of the motor cortex can be changed when the contralesional side or the ipsilesional side was given the corresponding PAS stimulation, while the bilateral PAS stimulation can more easily cause a change of excitability of the motor cortex, resulting in better recovery of the upper limb function.  相似文献   

19.

Objective

To examine the effect of priming paired associative stimulation (PAS) on the modulation of motor cortex (M1) plasticity in young and old adults.

Methods

Fifteen young (20–27 yrs) and 15 old (61–79 yrs) subjects participated in 3 experimental sessions, with each session involving two consecutive PAS protocols separated by 10 mins. The first (priming) protocol was either PASLTP (ISI = N20 latency + 2 ms), PASLTD (ISI = N20 latency ? 10 ms), or PASControl (ISI = 100 ms), whereas the second (test) protocol was always PASLTP. Changes in M1 excitability were assessed from motor evoked potentials (MEPs) in a hand muscle.

Results

In young subjects, MEPs were larger after PASLTP + PASLTP than PASLTD + PASLTP (P < 0.0001) and PASControl + PASLTP (P = 0.0008), whereas the response to PASControl + PASLTP was not different to PASLTD + PASLTP (P = 0.3). In old subjects, MEPs were smaller after PASLTP + PASLTP compared with PASControl + PASLTP (P = 0.02), whereas PASLTD + PASLTP was similar to PASControl + PASLTP (P = 0.08). Age-related comparisons within each priming condition showed that the response to PASLTP + PASLTP was significantly greater in young subjects (P = 0.03).

Conclusion

Data show that priming with PASLTP was effective in young but not old subjects.

Significance

These findings suggest a limited utility of priming PAS for augmenting plasticity induction in old adults.  相似文献   

20.
Theta‐burst stimulation (TBS) is currently used for inducing long‐lasting changes in primary motor cortex (M1) excitability. More information is needed on how M1 is involved in early motor learning (practice‐related improvement in motor performance, motor retention and motor consolidation). We investigated whether inhibitory continuous TBS (cTBS) is an effective experimental approach for modulating early motor learning of a simple finger movement in healthy humans. In a short task, 11 subjects practised 160 movements, and in a longer task also testing motor consolidation ten subjects practised 600 movements. During both experiments subjects randomly received real or sham cTBS over the left M1. Motor evoked potentials were tested at baseline and 7 min after cTBS. In the 160‐movement experiment to test motor retention, 20 movements were repeated 30 min after motor practice ended. In the 600‐movement experiment motor retention was assessed 15 and 30 min after motor practice ended, motor consolidation was tested by performing 20 movements 24 h after motor practice ended. Kinematic variables – movement amplitude, peak velocity and peak acceleration – were measured. cTBS significantly reduced the practice‐related improvement in motor performance of finger movements in the experiment involving 160 movements and in the first part of the experiment involving 600 movements. After cTBS, peak velocity and peak acceleration of the 20 movements testing motor retention decreased whereas those testing motor consolidation remained unchanged. cTBS over M1 degrades practice‐related improvement in motor performance and motor retention, but not motor consolidation of a voluntary finger movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号