首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The current 'isolate, inactivate, inject' vaccine development strategy has served the field of vaccinology well, and such empirical vaccine candidate development has even led to the eradication of smallpox. However, such an approach suffers from limitations, and as an empirical approach, does not fully utilize our knowledge of immunology and genetics. A more complete understanding of the biological processes culminating in disease resistance is needed. The advent of high-dimensional assay technology and 'systems biology' along with a vaccinomics approach [1,2?] is spawning a new era in the science of vaccine development. Here we review recent developments in systems biology and strategies for applying this approach and its resulting data to expand our knowledge base and drive directed development of new vaccines. We also provide applied examples and point out new directions for the field in order to illustrate the power of systems biology.  相似文献   

6.
Epidemiology of hypersensitivity drug reactions   总被引:5,自引:0,他引:5  
PURPOSE OF REVIEW: Hypersensitivity drug reactions are but one of the many different types of adverse drug reactions. They may be potentially life-threatening, prolong hospitalization, affect drug prescribing patterns of physicians and result in socioeconomic costs. This review summarizes current knowledge on the incidence, prevalence, mortality and risk factors for these reactions in different populations. RECENT FINDINGS: Hypersensitivity reactions represent about one third of all adverse drug reactions. Adverse drug reactions affect 10-20% of hospitalized patients and more than 7% of the general population. Severe reactions including anaphylaxis, drug hypersensitivity syndromes, Stevens Johnson syndrome and toxic epidermal necrolysis are also associated with significant morbidity and mortality. Although several risk factors have been identified, their clinical importance has not been fully understood. Future progress in immunogenetics and pharmacogenetics may help identify populations at risk for specific types of reactions. SUMMARY: Well designed epidemiological studies on hypersensitivity drug reactions are lacking as most studies have been on adverse drug reactions. Such studies will be helpful in identifying patients at risk of developing such reactions, in particular severe reactions, and implementing early preventive measures.  相似文献   

7.
8.
Advances in experimental tools have allowed for the systematic identification of components and biological processes as well as quantification of their activities over time. Together with computational analysis, these measurement and perturbation technologies have given rise to the field of systems biology, which seeks to discover, analyze and model the interactions of physical components in a biological system. Although in its infancy, recent application of this approach has resulted in novel insights into the machinery that regulates and modifies innate immune cell functions. Here, we summarize contributions that have been made through the unbiased interrogation of the mammalian innate immune system, emphasizing the importance of integrating orthogonal datasets into models. To enable application of approaches more broadly, however, a concerted effort across the immunology community to develop reagent and tool platforms will be required.  相似文献   

9.
Immediate drug hypersensitivity reactions (DHRs) are historically thought to be because of immunoglobulin E (IgE) cross-linking, causing mast cell degranulation and release of mediators like tryptase and histamine. With the increasing use of monoclonal antibodies, it has become apparent that some patients present atypical features during immediate DHRs, including occurrence in initial exposure, a lack of urticaria and angioedema, and the presence of fever, chills, rigors and musculoskeletal pain as the predominant symptoms. This observation led to the recognition of a novel phenotype of immediate DHRs called cytokine release syndrome (CRS). Other types of immediate DHRs include infusion-related reactions (which present similarly to CRS), and mixed reactions (which share overlapping features of both type 1 reactions and CRS). Desensitization to culprit drugs can be a lifesaving option in patients who develop immediate DHRs to first-line treatment. Whereas robust data are supporting the safety and efficacy of drug desensitization, breakthrough reactions can still occur and CRS seems to be a more common cause than type 1 reactions. Tryptase has been the only available biomarker for immediate DHRs and is associated with type 1 reactions. Emerging evidence consistently found the association between increased serum interleukin 6 level and DHR-related CRS, suggesting that interleukin 6 can be a novel biomarker, in addition to tryptase, to distinguish various types of DHRs. In the era of precision medicine, phenotyping and endotyping hypersensitivity reactions to chemotherapy and monoclonal antibodies using validated biomarkers should be part of routine drug allergy care.  相似文献   

10.
Mechanisms in cutaneous drug hypersensitivity reactions   总被引:1,自引:0,他引:1  
Up to 3% of all hospital admissions are due to adverse drug reactions (ADRs), and between 10% and 20% of hospital inpatients develop ADRs. Individual susceptibility to becoming 'sensitized' or allergic to a drug is thought to result from altered metabolic handling of the drug. Reactive intermediate compounds form haptens, bind to proteins and induce immune responses. Depending on whether the immune system generates antibodies or sensitized T cells, different clinical patterns of hypersensitivity may result. At present, both in vivo or in vitro tests to identify the culprit drug or to confirm the presence of hypersensitivity are not widely used because they are either not generally robust or not readily accessible. In vitro tests require the true immunogen/antigen to detect antibodies or sensitized T cells. As the metabolic basis underlying susceptibility to adverse drug reactions is elucidated, the resolution of immunological mechanisms and development of reliable tests will ensue. This will also become of great value for prediction of individuals at risk of becoming sensitized by a particular drug.  相似文献   

11.
The human leucocyte antigen (HLA) system is well known for its association with certain diseases such as ankylosing spondylitis, celiac disease and many others. More recently, severe and even fatal drug hypersensitivity reactions linked to particular HLA alleles have been discovered. The significance of these discoveries has led the European Medicines Agency (EMA) and its member state agencies to recommend HLA gene testing before initiation of drug treatment. To date, the following drugs have been identified as causing significant drug hypersensitivity reactions in patients who have the following HLA alleles: abacavir and HLA-B*57:01, carbamazepine and HLA-B*15:02/A*31:01 and finally allopurinol and HLA-B*58:01. This review will outline and discuss these three drugs and their associated HLA alleles as well as examine the pathogenesis of the drug hypersensitivity reactions.  相似文献   

12.
13.
Idiosyncratic hypersensitivity reactions may account for up to 25% of all adverse drug reactions, and pose a constant problem to physicians because of their unpredictable nature, potentially fatal outcome and resemblance to other disease processes. Current understanding of how drug allergy arises is based largely on the hapten hypothesis: since most drugs are not chemically reactive per se, they must be activated metabolically to reactive species which may become immunogenic through interactions with cellular macromolecules. The role of drug metabolism is thus pivotal to the hapten hypothesis both in activation of the parent compound and detoxification of the reactive species. Although conjugation reactions may occasionally produce potential immunogens (for example, the generation of acylglucuronides from non-steroidal anti-inflammatory drugs such as diclofenac), bioactivation is catalysed most frequently by cytochrome P450 (P450) enzymes. The multifactorial nature of hypersensitivity reactions, particularly the role of often unidentified, reactive drug metabolites in antigen generation, has hampered the routine diagnosis of these disorders by classical immunological methods designed to detect circulating antibodies or sensitized T cells. Similarly, species differences in drug metabolism and immune system regulation have largely precluded the establishment of appropriate animal models with which to examine the immunopathological mechanisms of these toxicities. However, the combined use of in vitro toxicity assays incorporating human tissues and in vivo phenotyping (or, ultimately, in vitro genotyping) methods for drug detoxification pathways may provide the metabolic basis for hypersensitivity reactions to several drugs. This brief review highlights recent efforts to unravel the bases for hypersensitivity reactions to these therapeutic agents (which include anticonvulsants and sulphonamides) using drug metabolism and Immunochemical approaches. In particular, examples are provided which illustrate breakthroughs in the identification of the chemical nature of the reactive metabolites which become bound to cellular macromolecules, the enzyme systems responsible for their generation and (possibly) detoxification, and the target proteins implicated in the subsequent immune response.  相似文献   

14.
Nonimmune hypersensitivity reactions are unpredictable adverse drug reactions that are clinically similar to allergic reactions for which no drug-specific antibodies or T lymphocytes are identified. Few tools allow a definite diagnosis, and most of the available ones need to be validated. True epidemiologic data are limited, and most of the available information on the incidence, mortality, and socioeconomic impact should be discussed with caution.  相似文献   

15.
16.
17.
18.
Immune reactions to small molecular compounds such as drugs can cause a variety of diseases mainly involving skin, but also liver, kidney, lungs and other organs. In addition to the well-known immediate, IgE-mediated reactions to drugs, many drug-induced hypersensitivity reactions appear delayed. Recent data have shown that in these delayed reactions drug-specific CD4(+) and CD8(+) T cells recognize drugs through their T cell receptors (TCR) in an MHC-dependent way. Immunohistochemical and functional studies of drug-reactive T cells in patients with distinct forms of exanthems revealed that distinct T cell functions lead to different clinical phenotypes. Taken together, these data allow delayed hypersensitivity reactions (type IV) to be further subclassified into T cell reactions, which by releasing certain cytokines and chemokines preferentially activate and recruit monocytes (type IVa), eosinophils (type IVb), or neutrophils (type IVd). Moreover, cytotoxic functions by either CD4(+) or CD8(+) T cells (type IVc) seem to participate in all type IV reactions. Drugs are not only immunogenic because of their chemical reactivity, but also because they may bind in a labile way to available TCRs and possibly MHC-molecules. This seems to be sufficient to stimulate certain, probably preactivated T cells. The drug seems to bind first to the fitting TCR, which already exerts some activation. For full activation, an additional interaction of the TCR with the MHC molecules is needed. The drug binding to the receptor structures is reminiscent of a pharmacological interaction between a drug and its (immune) receptor and was thus termed the p-i concept. In some patients with drug hypersensitivity, such a response occurs within hours even upon the first exposure to the drug. The T cell reaction to the drug might thus not be due to a classical, primary response, but is due to peptide-specific T cells which happen to be stimulated by a drug. This new concept has major implications for understanding clinical and immunological features of drug hypersensitivity and a model to explain the frequent skin symptoms in drug hypersensitivity is proposed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号