首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whereas paralysis is the hallmark for paralytic rabies, the precise pathological basis of paralysis is not known. It is unclear whether weakness results from involvement of anterior horn cells or of motor nerve fibers. There is also no conclusive data on the cause of the neuropathic pain which occurs at the bitten region, although it has been presumed to be related to sensory ganglionopathy. In this study, six laboratory-proven rabies patients (three paralytic and three furious) were assessed clinically and electrophysiologically. Our data suggests that peripheral nerve dysfunction, most likely demyelination, contributes to the weakness in paralytic rabies. In furious rabies, progressive focal denervation, starting at the bitten segment, was evident even in the absence of demonstrable weakness and the electrophysiologic study suggested anterior horn cell dysfunction. In two paralytic and one furious rabies patients who had severe paresthesias as a prodrome, electrophysiologic studies suggested dorsal root ganglionopathy. Postmortem studies in two paralytic and one furious rabies patients, who had local neuropathic pain, showed severe dorsal root ganglionitis. Intense inflammation of the spinal nerve roots was observed more in paralytic rabies patients. Inflammation was mainly noted in the spinal cord segment corresponding to the bite in all cases; however, central chromatolysis of the anterior horn cells could be demonstrated only in furious rabies patient. We conclude that differential sites of neural involvement and possibly different neuropathogenetic mechanisms may explain the clinical diversity in human rabies.  相似文献   

2.
Furious and paralytic rabies differ in clinical manifestations and survival periods. The authors studied magnetic resonance imaging (MRI) and cytokine and virus distribution in rabies-infected dogs of both clinical types. MRI examination of the brain and upper spinal cord was performed in two furious and two paralytic dogs during the early clinical stage. Rabies viral nucleoprotein RNA and 18 cytokine mRNAs at 12 different brain regions were studied. Rabies viral RNA was examined in four furious and four paralytic dogs during the early stage, and in one each during the late stage. Cytokine mRNAs were examined in two furious and two paralytic dogs during the early stage and in one each during the late stage. Larger quantities of rabies viral RNA were found in the brains of furious than in paralytic dogs. Interleukin-1beta and interferon-gamma mRNAs were found exclusively in the brains of paralytic dogs during the early stage. Abnormal hypersignal T2 changes were found at hippocampus, hypothalamus, brainstem, and spinal cord of paralytic dogs. More widespread changes of less intensity were seen in furious dog brains. During the late stage of infection, brains from furious and paralytic rabid dogs were similarly infected and there were less detectable cytokine mRNAs. These results suggest that the early stage of furious dog rabies is characterized by a moderate inflammation (as indicated by MRI lesions and brain cytokine detection) and a severe virus neuroinvasiveness. Paralytic rabies is characterized by delayed viral neuroinvasion and a more intense inflammation than furious rabies. Dogs may be a good model for study of the host inflammatory responses that may modulate rabies virus neuroinvasiveness.  相似文献   

3.
Rabies is inevitably fatal and presents a horrifying clinical picture. Human rabies can manifest in either encephalitic (furious) or paralytic (dumb) forms. The brainstem is preferentially involved in both clinical forms, though there are no clinical signs of brainstem dysfunction. Differences in tropism at the inoculation site or the CNS, in the route of spread, or in the triggering of immune cascades in the brainstem may account for clinical variation. Rabies still poses diagnostic problems, particularly the paralytic form, which closely resembles Guillain-Barré syndrome, or when a patient is comatose and cardinal signs may be lacking. Molecular methods allow reliable detection of rabies-virus RNA in biological fluids or tissue before death. Deviations from the recommendations on prophylaxis of the World Health Organization lead to unnecessary loss of life. To date, attempts to treat human rabies have been unsuccessful.  相似文献   

4.
Rabies   总被引:1,自引:0,他引:1  
Despite increases in our understanding of rabies pathogenesis, it remains an inevitably fatal disease. Lack of awareness, low level of political commitment to rabies control, and failure to recognize and correlate clinical, laboratory, and neuroimaging features contribute to continuing deaths. Clinical symptomatology, once believed to be unique, may be variable, even in patients associated with lyssaviruses of the same genotype. This article discusses virus transport, the role of virus and host response mechanisms in relation to protean clinical manifestations, and mechanisms responsible for relative intactness of consciousness in human rabies. Differential involvement of the anterior horn cell in furious rabies and the peripheral nerve in paralytic rabies is summarized. Escape mechanisms from host defenses explain why a fatal outcome is unavoidable regardless of therapy. Neuroprotective treatment, using a coma-induction regimen, proves not to be beneficial. Survival of patients with excellent recovery relies on early innate and adaptive immunity plus adequate intensive care support.  相似文献   

5.
Human rabies still continues to be a significant health problem in India and other developing countries where dogs are the major vectors of transmission. Rabies in humans can present in two clinical forms, i.e., furious and paralytic. While diagnosis of furious rabies can be made based on the typical symptoms and signs, paralytic rabies poses a diagnostic dilemma to the neurologists who may encounter these cases in their practice. Although there are certain clinical features that distinguish this disease from other forms of Guillain-Barre syndromes, confirmation of diagnosis may require laboratory assistance. Conventional techniques such as antigen detection, antibody assays and virus isolation have limited success. The recently introduced molecular techniques show more promise in confirming the cases of paralytic rabies. There has not been much success in the treatment of confirmed rabies cases and recovery from rabies is extremely rare. Therefore, preventive measures of this dreaded disease after an exposure become extremely important. The present article reviews the current status of human rabies with regard to antemortem diagnosis, disease management and post-exposure prophylaxis.  相似文献   

6.
Summary The proposal that the bizarre behavioral changes which occur during rabies infection are due to selective infection of limbic system neurons was further studied in skunks (a species important in naturally occurring disease). A detailed immunohistochemical study of brains of skunks experimentally infected with either Challenge virus standard (CVS) or street rabies virus revealed only trace amounts of viral antigen in many limbic system neurons and marked differences in viral distribution between street and CVS virus. These data were collected during early stage rabies when behavioral changes occur. Areas which contained heavy accumulations of street rabies virus but low amounts of CVS rabies virus were the neuronal perikarya and processes of the dorsal motor nucleus of the vagus, midbrain raphe, hypoglossal and red nuclei. In contrast, large accumulations of CVS virus were found in the Purkinje cells of the cerebellum, the habenular nuclei and in pyramidal cells throughout the cerebral cortex, while corresponding areas in all street virus-infected skunks contained minimal antigen. These findings were very consistent for animals of the same experimental group and between skunks inoculated both intramuscularly and intranasally with skunk street virus. Skunks inoculated intramuscularly with CVS rabies virus failed to develop rabies. Since, in this model, street virus infection generally produces furious rabies and CVS infection results in dumb rabies, we speculate that the behavioral changes which occur in these two different clinical syndromes are due to the heavy and specific accumulation of virus in different regions of the CNS. These results show that regions other than those of the limbic system may also be involved in the pathogenesis of behavior changes in rabid animals.Supported by an MRC fellowship (NLS)  相似文献   

7.
Summary The spread of rabies virus in the central nervous system of mice was examined after hindlimb footpad and intracerebral inoculation of the CVS strain of fixed rabies virus. All mice developed paralytic rabies. After intracerebral inoculation there was early simultaneous infection of neurons in the cerebral cortex and pyramidal neurons of the hippocampus, and later there was spread to the cerebellum. After high-dose intracerebral inoculation there was early infection ependymal cells lining the lateral ventricles and neurons adjacent to the central canal of the spinal cord, suggesting that rabies virus entry into the CNS occurs, at least in part, by a cerebrospinal fluid pathway. The sequence of involvement was different after hindlimb footpad inoculation. Infection became established in the cerebellum on day 5, in the cerebral cortex on day 6, and in the hippocampus on day 8. CA3 was initially affected, CA1 became infected 2 days later, and there was much less involvement of the dentate gyrus. Hippocampal infection occurred late relative to the rest of the brain after peripheral inoculation, but not after intracerebral inoculation. The hippocampus is not a good location for the detection of early brain infection after peripheral inoculation, although it may be involved when a natural rabies vector has the ability to transmit infection. These findings also raise questions about the mechanisms for the limbic dysfunction observed in clinical rabies.Supported by grant MA-10068 from the Medical Research Council of Canada  相似文献   

8.
Rabies virus is a neurotropic lyssavirus which is 100% fatal in its pathogenic form when reaching unprotected CNS tissues. Death can be prevented by mechanisms delivering appropriate immune effectors across the blood-brain barrier which normally remains intact during pathogenic rabies virus infection. One therapeutic approach is to superinfect CNS tissues with attenuated rabies virus which induces blood-brain barrier permeability and immune cell entry. Current thinking is that peripheral rabies immunization is sufficient to protect against a challenge with pathogenic rabies virus. While this is undoubtedly the case if the virus is confined to the periphery, what happens if the virus reaches the CNS is less well-understood. In the current study, we find that peripheral immunization does not fully protect mice long-term against an intranasal challenge with pathogenic rabies virus. Protection is significantly better in mice that have cleared attenuated virus from the CNS and is associated with a more robust CNS recall response evidently due to the presence in CNS tissues of elevated numbers of lymphocytes phenotypically resembling long-term resident immune cells. Adoptive transfer of cells from rabies-immune mice fails to protect against CNS challenge with pathogenic rabies virus further supporting the concept that long-term resident immune cell populations must be established in brain tissues to protect against a subsequent CNS challenge with pathogenic rabies virus.  相似文献   

9.
The attenuated rabies virus (RV) strain Challenge Virus Standard (CVS)-F3 and a highly pathogenic strain associated with the silver-haired bats (SHBRV) can both be cleared from the central nervous system (CNS) tissues by appropriate antiviral immune mechanisms if the effectors are provided access across the blood-brain barrier (BBB). In the case of SHBRV infection, antiviral immunity develops normally in the periphery but fails to open the BBB, generally resulting in a lethal outcome. To determine whether or not an absence in the CNS targeted immune response is associated with the infection with other pathogenic RV strains, we have assessed the development of immunity, BBB permeability, and immune cell infiltration into the CNS tissues of mice infected with a variety of RV strains, including the dog variants responsible for the majority of human rabies cases. We demonstrate that the lethal outcomes of infection with a variety of known pathogenic RV strains are indeed associated with the inability to deliver immune effectors across the BBB. Survival from infection with certain of these viruses is improved in mice prone to CNS inflammation. The results suggest that competition between the activity of the immune effectors reaching CNS tissues and the inherent pathological attributes of the virus dictates the outcome and that intervention to deliver RV-specific immune effectors into CNS tissues may have general therapeutic value in rabies.  相似文献   

10.
Following its injection into the hindlimbs of mice, CVS, a highly pathogenic strain of rabies virus, invades the spinal cord and brain resulting in the death of the animal. In contrast, central nervous system (CNS) invasion by PV, a strain of attenuated pathogenicity, is restricted to the spinal cord and mice infected with this virus survive. Lymphocytes display transient migration into the infected CNS in fatal rabies and sustained migration in nonfatal rabies. The transient migration of T cells in fatal rabies is associated with an increase in T-cell apoptosis. We found that the early production of Fas ligand (FasL) mRNAs was up-regulated only in fatal rabies. FasL is produced by several neuronal cells and mainly in infected neurons. In mice lacking FasL (gld), infection with the neuroinvasive rabies virus strain was less severe, and the number of CD3 T cells undergoing apoptosis was smaller than that in normal mice. These data provide strong evidence that fatal rabies virus infection involves the early triggering of FasL production leading to the destruction of migratory T cells by the Fas/FasL apoptosis pathway. This mechanism could be in part responsible for the fact that T cells cannot control neuroinvasive rabies infection. Thus, rabies virus seems to use an immunosubversive strategy that takes advantage of the immune privilege status of the CNS.  相似文献   

11.
12.
Rabies is an acute encephalomyelitis in humans and animals caused by rabies virus (RABV) infection. Because the neuropathological changes are very mild in rabies, it has been assumed that neuronal dysfunction likely explains the severe clinical disease. Recently, degenerative changes have been observed in neuronal processes (dendrites and axons) in experimental rabies. In vitro studies have shown evidence of oxidative stress that is caused by mitochondrial dysfunction. Recent work has shown that the RABV phosphoprotein (P) interacts with mitochondrial Complex I leading to overproduction of reactive oxygen species, which results in injury to axons. Amino acids at positions 139 to 172 of the P are critical in this process. Rabies vectors frequently show behavioral changes. Aggressive behavior with biting is important for transmission of the virus to new hosts at a time when virus is secreted in the saliva. Aggression is associated with low serotonergic activity in the brain. Charlton and coworkers performed studies in experimentally infected striped skunks with skunk rabies virus and observed aggressive behavioral responses. Heavy accumulation of RABV antigen was found in the midbrain raphe nuclei, indicating that impaired serotonin neurotransmission from the brainstem may account for the aggressive behavior. We now have an improved understanding of how RABV causes neuronal injury and how the infection results in behavioral changes that promote viral transmission to new hosts.  相似文献   

13.
Rabies virus infection: An update   总被引:5,自引:0,他引:5  
There are still many unanswered questions in the pathogenesis of rabies, but recent progress has been made. During most of the long incubation period of rabies, the virus likely remains close the site of viral entry. Centripetal spread to the central nervous system and spread within the central nervous system occur by fast axonal transport. Neuronal dysfunction, rather than neuronal death, is responsible for the clinical features and fatal outcome in natural rabies. Recent work has changed our perspective on the ecology of rabies virus under particular circumstances in certain species. Hopefully, advances in our understanding of rabies pathogenesis will lead to advances in the treatment of this dreaded disease.  相似文献   

14.
We studied the distribution of rabies viral antigen in the brain and spinal cord of 7 patients with rabies by immunohistochemical techniques. Four patients presented with encephalitis, the remaining 3 had paralysis. Neither the rabies viral antigen distribution nor inflammation paralleled clinical presentations. Patients who had survival times of 7 days or less (4/7) had a greater amount of antigen-positive neurons in brainstem and spinal cord regardless of the clinical type. Neuroglial cells were also found to contain rabies antigen. Our findings suggest that virus localization may not account for the difference in clinical manifestations.  相似文献   

15.
Nonfatal paralysis, induced by the attenuated Pasteur strain of rabies virus, is characterised by local and irreversible flaccid paralysis of the inoculated limbs. We characterised the spread and localisation of virus in the CNS of infected mice, determined the nature of cell injury and examined the role of the immune response. Data indicate that infection of BALB/c mice induced paralysis in 60% of infected mice, the others recovering without sequelae. In both groups of mice, virus was detected in restricted sub-populations of neurons from the brain and spinal cord, and intensity of the neuropathology correlated with levels of rabies RNA and apoptotic infected neurons. However, apoptosis of neurons and paralysis were not due to a direct deleterious effect of the virus, but induced by a T-dependent immune response, as evidenced by their absence in nude mice. Paralysed and asymptomatic mice developed a similar rabies virus-specific IgG2a antibody response, thus excluding the role of any modification of the humoral immune response. In contrast, three events were critically associated with the development of neurological symptoms: the amount of virus in the CNS, the level of apoptosis in both infected neurons and uninfected surrounding cells and the progressive parenchymal infiltration of CD4+ and CD8+ T cells at the site of infection. These data suggest that during nonfatal rabies infection, the levels of viral replication and primary degeneration of infected neurons by apoptosis could be responsible for the infiltration of T lymphocytes capable of inducing secondary degeneration of neural cells.  相似文献   

16.
Neuronal dysfunction and death in rabies virus infection   总被引:6,自引:0,他引:6  
Because morphologic changes in natural rabies are usually relatively mild, it is thought that the severe clinical disease with a fatal outcome must be due to neuronal dysfunction of rabies virus-infected neurons. The precise bases of this functional impairment are unknown, and current knowledge on electro-physiological alterations, effects on ion channels and neurotransmission, and neurotoxicity are reviewed. Rabies virus may induce neuronal death, possibly through apoptotic mechanisms. Neuronal apoptosis has been observed in vitro and also in vivo under particular experimental conditions. The relevance of neuronal apoptosis in these situations to natural rabies has not yet been fully elucidated.  相似文献   

17.
Theiler's murine encephalomyelitis virus (TMEV) belongs the family Picornaviridae. TMEV not only replicates in the gastrointestinal tract but also spreads to the central nervous system (CNS) either by a hematogenous or a neural pathway during natural infection. The DA strain of TMEV infects neurons during the acute phase, and glial cells and macrophages during the chronic phase, leading to a demyelinating disease similar to multiple sclerosis. Different virus-host receptor interactions in the peripheral and the neuronal cells could explain the pathways of viral spread from the peripheral to the CNS and neurons to glial cells. However, the receptor for TMEV remains unknown. P0 protein, a 28-31 kD glycoprotein, belongs to the immunoglobulin superfamily and constitutes 50% of the total myelin protein in the peripheral nerve. Other picornaviruses use members of the immunoglobulin superfamily as receptors. Thus we hypothesized P0 protein could act as a receptor for TMEV. In a virus overlay assay, radiolabeled TMEV bound to a 28-30 kD protein from the peripheral nerve of wild-type C57BL/6, but no binding was found in the peripheral nerve from P0-knockout mice. TMEV replicated fourfold higher in P0-transfected BW5147.G.1.4 cells than in mock-transfected cells. The increase in virus replication in the P0-transfected cell line was blocked by preincubation of the cells with anti-P0 antibody. A virus binding study showed that TMEV bound to P0-transfected cells but not to mock-transfected cells. The use of the P0 protein in Schwann cells as a receptor may be one mechanism by which TMEV spreads from the gastrointestinal tract to the CNS.  相似文献   

18.
The involvement of dorsal root ganglia was studied in an in vivo model of experimental rabies virus infection using the challenge virus standard (CVS-11) strain. Dorsal root ganglia neurons infected with CVS in vitro show prolonged survival and few morphological changes, and are commonly used to study the infection. It has been established that after peripheral inoculation of mice with CVS the brain and spinal cord show relatively few neurodegenerative changes, but detailed studies of pathological changes in dorsal root ganglia have not previously been performed in this in vivo experimental model. In this study, adult ICR mice were inoculated in the right hindlimb footpad with CVS. Spinal cords and dorsal root ganglia were evaluated at serial time points for histopathological and ultrastructural changes and for biochemical markers of cell death. Light microscopy showed multifocal mononuclear inflammatory cell infiltrates in the sensory ganglia and a spectrum of degenerative neuronal changes. Ultrastructural changes in gangliocytes included features characteristic of the axotomy response, the appearance of numerous autophagic compartments, and aggregation of intermediate filaments, while the neurons retained relatively intact mitochondria and plasma membranes. Later in the process, there were more extensive degenerative neuronal changes without typical features of either apoptosis or necrosis. The degree of degenerative neuronal changes in gangliocytes contrasts with observations in CNS neurons in experimental rabies. Hence, gangliocytes exhibit selective vulnerability in this animal model. This contrasts markedly with the fact that they are, unlike CNS neurons, highly permissive to CVS infection in vitro. Further study is needed to determine mechanisms for this selective vulnerability, which will give us a better understanding of the pathogenesis of rabies.  相似文献   

19.
Colchicine was used to inhibit axonal transport and to demonstrate that rabies virus spread from the peripheral inoculation site to the CNS by the retrograde axoplasmic flow. Colchicine was applied by the mean of elastomer implants around the sciatic nerve of young rats in order to obtain higher local concentrations of the drug. This procedure avoided the systemic effects of colchicine encountered with the usual treatment. To confirm the efficiency of the axoplasmic flow inhibition by colchicine, 125I-tetanus toxin was used as a marker. Uptake of colchicine by the sciatic nerve was monitored by the use of 3H-labelled colchicine. Interruption of the retrograde axoplasmic flow resulted in prevention of fixed and street rabies virus propagation. Moreover, the centrifugal spread of rabies could be inhibited using this experimental procedure.  相似文献   

20.
Rabies caused by fox bite is uncommon, most cases being caused by bite of rabid dogs (95%). We report a 45-year-old lady with rabies encephalomyelitis caused by bite of a rabid wild fox (Vulpes vulpes), a species prevalent in the Deccan plateaus of Central India. Though foxes are known to be susceptible to rabies, literature on the pathological changes caused by fox bite rabies in humans is scarce. Unlike the mild histological alterations described in canine rabies, a florid encephalitic process evolved in fox bite rabies, in our case, with intense microglial reaction, neuronophagia and perivascular inflammatory infiltrates despite clinical manifestation as a paralytic rabies. Immunostaining using polyclonal antibodies to the rabies viral nucleocapsid antigen and to the whole virion demonstrated high viral load within neurons with extensive spread along dendritic arborization and axonal tracts. Genomic sequence analysis demonstrated close homology with canine virus strain with only minor variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号