首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spontaneous seizures are the hallmark of human epilepsy but they do not occur in most of the epilepsy models that are used to investigate the mechanisms of epilepsy or to test new antiepileptic compounds. This study was designed to develop a new focal epilepsy model that mimics different aspects of human temporal lobe epilepsy (TLE), including the occurrence of spontaneous seizures. Self-sustained status epilepticus (SSSE) lasting for 6-20 h was induced by a 20-30 min stimulation of the lateral nucleus of the amygdala (100 ms train of 1 ms, 60 Hz bipolar pulses, 400 microA, every 0.5 s). Stimulated rats (n = 16) were monitored with a video-EEG recording system every other day (24 h/day) for 6 months, and every other video-EEG recording was analyzed. Spontaneous epileptic seizures (total number 3698) were detected in 13 of the 15 animals (88%) after a latency period of 6 to 85 days (median 33 days). Four animals (31%) had frequent (697-1317) seizures and 9 animals (69%) had occasional seizures (1-107) during the 6-months follow-up period. Fifty-seven percent of the seizures occurred during daytime (lights on 07:00-19:00 h). At the end of the follow-up period, epileptic animals demonstrated impaired spatial memory in the Morris water-maze. Histologic analysis indicated neuronal loss in the amygdala, hippocampus, and surrounding cortical areas, and mossy fiber sprouting in the dentate gyrus. The present data indicate that focal stimulation of the amygdala initiates a cascade of events that lead to the development of spontaneous seizures in rats. This model provides a new tool to better mimic different aspects of human TLE for investigation of the pathogenesis of TLE or the effects of new antiepileptic compounds on status epilepticus, epileptogenesis, and spontaneous seizures.  相似文献   

2.
The contribution of mossy fiber sprouting to the generation of spontaneous seizures in the epileptic brain is under dispute. The present study addressed this question by examining whether sprouting of mossy fibers is present at the time of appearance of the first spontaneous seizures in rats, and whether all animals with increased sprouting have spontaneous seizures. Epileptogenesis was induced in 16 rats by electrically stimulating the lateral nucleus of the amygdala for 20-30 min until the rats developed self-sustained status epilepticus (SSSE). During and after SSSE, rats were monitored in long-term by continuous video-electroencephalography until they developed a second spontaneous seizure (8-54 days). Thereafter, monitoring was continued for 11 days to follow seizure frequency. The density of mossy fiber sprouting was analyzed from Timm-stained preparations. The density of hilar neurons was assessed from thionin-stained sections. Of 16 rats, 14 developed epilepsy. In epileptic rats, the density of mossy fiber sprouting did not correlate with the severity or duration (115-620 min) of SSSE, delay from SSSE to occurrence of first (8-51 days) or second (8-54 days) spontaneous seizure, or time from SSSE to perfusion (20-63 days). In the temporal end of the hippocampus, the sprouting correlated with the severity of neuronal damage (ipsilateral: r = -0.852, P < 0.01 contralateral: r = -0.748, P < 0.01). The two animals without spontaneous seizures also had sprouting. Increased density of sprouting in animals without seizures, and its association with the severity of neuronal loss was confirmed in another series of 30 stimulated rats that were followed-up with video-EEG monitoring for 60 d. Our data indicate that although mossy fiber sprouting is present in all animals with spontaneous seizures, its presence is not necessarily associated with the occurrence of spontaneous seizures.  相似文献   

3.
The Neuropathology of Hyperthermic Seizures in the Rat   总被引:21,自引:2,他引:19  
Summary: Purpose: Single and repeated hyperthermic seizures were induced in rats beginning at age 22 days to determine the neuroanatomic consequences to the hippocampus and to compare these changes with those in the hippocampi of patients with temporal lobe epilepsy (TLE) experiencing febrile seizures.
Methods: Hyperthermic seizures were induced by placing rats in a bath of water at 45°C for 4 min. Seizures were visually observed, and some animals also were monitored electroen-cephalographically. Neurodegeneration was examined with a silver stain, whereas granule cell sprouting was detected with the Timm stain.
Results: In a majority of rats, hyperthermia-induced tonicclonic seizures ranged in duration from 30 s to 6 min; the seizure duration increased with the number of seizures. No neurodegeneration was detectable in these animals, although there was sprouting of granule cell collaterals into the inner molecular layer (IML) of the dentate. In a small number of animals, the short seizures evolved into status epilepticus, and neuronal degeneration was present in the hippocampus and other parts of the temporal lobe, and the mediodorsal thalamus.
Conclusions: This study confirms the relation between hyperthermia and seizure occurrence. It shows in particular that, as in the human, only prolonged seizures such as status epilepticus cause a pattern of neurodegeneration similar to that observed in human TLE.  相似文献   

4.
Epilepsy after early-life seizures can be independent of hippocampal injury   总被引:6,自引:0,他引:6  
Prolonged early-life seizures are considered potential risk factors for later epilepsy development, but mediators of this process remain largely unknown. Seizure-induced structural damage in hippocampus, including cell loss and mossy fiber sprouting, is thought to contribute to the hyperexcitability characterizing epilepsy, but a causative role has not been established. To determine whether early-life insults that lead to epilepsy result in similar structural changes, we subjected rat pups to lithium-pilocarpine-induced status epilepticus during postnatal development (day 20) and examined them as adults for the occurrence of spontaneous seizures and alterations in hippocampal morphology. Sixty-seven percent of rats developed spontaneous seizures after status epilepticus, yet only one third of these epileptic animals exhibited visible hippocampal cell loss or mossy fiber sprouting in dentate gyrus. Most epileptic rats had no apparent structural alterations in the hippocampus detectable using standard light microscopy methods (profile counts and Timm's staining). These results suggest that hippocampal cell loss and mossy fiber sprouting can occur after early-life status epilepticus but may not be necessary prerequisites for epileptogenesis in the developing brain.  相似文献   

5.
Granule Cell Neurogenesis After Status Epilepticus in the Immature Rat Brain   总被引:16,自引:7,他引:9  
Summary: Purpose : Several experimental paradigms of seizure induction that produce epilepsy as a consequence have been shown to be associated with the proliferation of dentate granule cells. In developing animals, the acute sequela of hilar damage and the chronic sequelae of spontaneous seizures and mossy fiber synaptic reorganization, in response to status epilepticus, occur in an age-dependent manner. We investigated seizure-induced granule cell neurogenesis in developing rat pups to study the association between hilar injury, granule cell neurogenesis, and epilepsy.
Methods : Rat pups of 2 and 3 weeks postnatal age were subjected to lithium-pilocarpine status epilepticus (LiPC SE). Rats were given bromodeoxyuridine (BrdU; 50 mg/kg intra-peritoneal) twice daily for 4 days beginning 3 days after SE to label dividing cells. Routine immunocytochemistry and quantification of BrdU labeling by image analysis were performed. Results were compared with previously reported data on cellular injury, mossy fiber sprouting, and spontaneous seizures in rat pups of these ages after LiPC SE.
Results : In 3-week-old pups, which demonstrate SE-induced hilar damage and develop spontaneous seizures accompanied by mossy fiber sprouting, the BrdU-immunoreactive area (percent) in the subgranular proliferative zone increased to 10·6 ± 2·5 compared with 1·4 ± 0·5 in the control animals (p < 0·05). The 2-week-old animals, which show neither hilar damage nor sprouting and rarely develop spontaneous seizures, also showed a comparable extent of SE-induced neurogenesis [8·0 ± 1·4 (LiPC SE) versus 0·4 ± 0·2 (control), p < 0·05].
Conclusions : Seizure-induced granule cell neurogenesis does not appear to be a function of seizure-induced hilar cellular damage. Granule cell neurogenesis induced by SE does not determine epileptogenesis in the developing rat.  相似文献   

6.
Summary:  Purpose: We describe the use of a clinically relevant pharmacological intervention that alters the clinical history of status epilepticus (SE)-induced spontaneous recurrent seizures (SRS) in the pilocarpine model and the possible plastic changes underlying such an effect.
Methods: Two hours after pilocarpine-induced SE (320–350 mg/kg, i.p.), rats received scopolamine 1–2 mg/kg i.p. or saline, every 6 h for 3 days. After that, osmotic minipumps were implanted for continuous delivery of scopolamine or saline for an additional 14 days. Animals were video-monitored for 12 h/week during the following 3-month period for the occurrence of SRS and, thereafter, were perfused, processed, and coronal brain sections were stained for acetylcholinesterase (AChE) and for the presence of supragranular mossy fibers (Timm).
Results: Treatment with scopolamine led to significantly fewer SRS. Staining for AChE in the dentate gyrus was significantly more intense in naïve animals. The scopolamine group had the least intense AChE staining of all groups. However, regression analysis of the AChE staining for this group did not correlate with the presence or absence of SRS, or the latency or frequency of SRS. Supragranular mossy fiber sprouting developed in all animals experiencing pilocarpine-induced SE, irrespective of whether or not they were treated with scopolamine.
Conclusions: Pilocarpine-induced SE in the presence of scopolamine might produce animals that, despite mossy fiber sprouting, were not seen to exhibit spontaneous seizures. In addition, our data suggest that the encountered changes in the AChE staining in the dentate gyrus that followed treatment with scopolamine do not help to explain its disease-modifying effects.  相似文献   

7.
Several rodent models are available to study the cellular mechanisms associated with the development of temporal lobe epilepsy (TLE), but few have been successfully transferred to inbred mouse strains commonly used in genetic mutation studies. We examined spontaneous seizure development and correlative axon sprouting in the dentate gyrus of CD-1 and C57BL/6 mice after systemic injection of pilocarpine. Pilocarpine induced seizures and status epilepticus (SE) after systemic injection in both strains, although SE onset latency was greater for C57BL/6 mice. There were also animals of both strains which did not experience SE after pilocarpine treatment. After a period of normal behavior for several days after the pilocarpine treatment, spontaneous tonic-clonic seizures were observed in most CD-1 mice and all C57BL/6 that survived pilocarpine-induced SE. Robust mossy fiber sprouting into the inner molecular layer was observed after 4-8 weeks in mice from both strains which had experienced SE, and cell loss was apparent in the hippocampus. Mossy fiber sprouting and spontaneous seizures were not observed in mice that did not experience a period of SE. These results indicate that pilocarpine induces spontaneous seizures and mossy fiber sprouting in both CD-1 and C57BL/6 mouse strains. Unlike systemic kainic acid treatment, the pilocarpine model offers a potentially useful tool for studying TLE development in genetically modified mice raised on the C57BL/6 background.  相似文献   

8.
Aberrant mossy fiber sprouting, which presumably results from hilar mossy cell death after status epilepticus (SE), is a frequently studied feature of temporal lobe epilepsy. Although mossy fiber sprouting can be suppressed by the protein synthesis inhibitor cycloheximide, spontaneous seizures remain unaltered. We have investigated the mechanisms underlying the ability of cycloheximide to block SE-induced mossy fiber sprouting in the inner molecular layer of dentate gyrus (IML). Pilocarpine-induced SE in the presence of cycloheximide resulted in a reduced number of injured hilar cells compared to rats not pretreated with cycloheximide. Presumed mossy cells, identified by calcitonin gene related peptide (CGRP) immunohistochemistry, were not significantly reduced in either group 60 days after SE. Whereas controls had a strong band of CGRP-positive fibers (putative mossy cell axons) and no neo-Timm stained fibers in the IML, pilocarpine-treated rats had no CGRP fibers and strong neo-Timm staining. Cycloheximide-pilocarpine-treated animals, in contrast, had CGRP and neo-Timm staining similar to controls. Cycloheximide might protect hilar CGRP-positive cells during SE and, by allowing those cells to retain their normal axonal projection, prevent mossy fiber sprouting. The recently suggested "irritable" mossy cell hypothesis relies on the survival of mossy cells for network hyperexcitability. We hypothesized that CGRP may be a marker for a subpopulation of relatively resistant mossy cells in rats, which, if they survive injury, may become irritable and contribute to hyperexcitability. We suggest that cycloheximide prevents SE-induced mossy fiber sprouting by preventing the loss of hilar CGRP-positive cells (putative mossy cells).  相似文献   

9.
Genetic deficits have been discovered in human epilepsy, which lead to alteration of the balance between excitation and inhibition, and ultimately result in seizures. Rodents show similar genetic determinants of seizure induction. To test whether seizure‐prone phenotypes exhibit increased seizure‐related morphological changes, we compared two standard rat strains (Long–Evans hooded and Wistar) and two specially bred strains following status epilepticus. The special strains, namely the kindling‐prone (FAST) and kindling‐resistant (SLOW) strains, were selectively bred based on their amygdala kindling rate. Although the Wistar and Long–Evans hooded strains experienced similar amounts of seizure activity, Wistar rats showed greater mossy fiber sprouting and hilar neuronal loss than Long–Evans hooded rats. The mossy fiber system was affected differently in FAST and SLOW rats. FAST animals showed more mossy fiber granules in the naïve state, but were more resistant to seizure‐induced mossy fiber sprouting than SLOW rats. These properties of the FAST strain are consistent with those observed in juvenile animals, further supporting the hypothesis that the FAST strain shares circuit properties similar to those seen in immature animals. Furthermore, the extent of mossy fiber sprouting was not well correlated with sensitivity to status epilepticus, but was positively correlated with the frequency of spontaneous recurrent seizures in the FAST rats only, suggesting a possible role for axonal sprouting in the development of spontaneous seizures in these animals. We conclude that genetic factors clearly affect seizure development and related morphological changes in both standard laboratory strains and the selectively bred seizure‐prone and seizure‐resistant strains.  相似文献   

10.
PURPOSE: Unilateral intrahippocampal injections of kainic acid (KA) in rats produce spontaneous recurrent limbic seizures and morphologic changes in hippocampus that resemble hippocampal sclerosis in patients with medically refractory mesial temporal lobe epilepsy (MTLE), that form of temporal lobe epilepsy (TLE) associated with hippocampal sclerosis. Interictal in vivo electrophysiologic studies have revealed high-frequency (250-500 Hz) oscillations, termed fast ripples (FRs). These oscillations may uniquely occur in or adjacent to the site of hippocampal KA injection, in areas that generate spontaneous seizures. Similar field potentials also have been demonstrated in the epileptogenic region of patients with TLE. We have now characterized ictal electrographic patterns in this rat model for comparison with those in human TLE and begun to evaluate the role of FRs in the transition to ictus in the KA-treated rat. METHODS: Rats received unilateral intrahippocampal injections of KA and, after the development of spontaneous seizures, were implanted with multiple fixed and moveable microelectrodes for single unit, field potential, and EEG recording. They were then monitored by using video-EEG telemetry for several weeks to capture and evaluate electrographic and behavioral seizure types. Results were correlated with Timm's stain demonstration of mossy fiber sprouting. RESULTS: Low-voltage fast (LVF) and hypersynchronous electrographic ictal-onset patterns were seen in the KA-treated rat that resembled similar ictal-onset patterns in patients with TLE. Hypersynchronous, but not LVF, ictal discharges were associated with recurrent FRs. As in the human, hypersynchronous ictal onsets originated predominantly in hippocampus, whereas LVF ictal onsets more often involved extrahippocampal structures. LVF ictal onsets occurred during wakefulness or paradoxical sleep and were usually associated with motor behavior, whereas hypersynchronous ictal onsets occurred during slow-wave sleep or periods of immobility and were not associated with motor behavior unless there was transition to another ictal electrographic pattern. Mossy fiber sprouting did not correlate with the frequency of ictal EEG discharges exhibited by each rat but was greater in those rats that demonstrated frequent behavioral seizures. CONCLUSIONS: The electrographic features of spontaneous seizures in the KA-treated rat resemble those of patients with medically refractory TLE with respect to EEG pattern and localization. Our data suggest that hypersynchronous ictal onsets represent epileptogenic disturbances in hippocampal circuits, whereas LVF ictal onsets may involve extrahippocampal areas having more direct connections to the motor system. Hypersynchronous seizures may involve the same neuronal mechanisms that generate interictal FRs.  相似文献   

11.
The Pilocarpine Model of Epilepsy in Mice   总被引:29,自引:3,他引:26  
Summary: Purpose : To characterize the acute and chronic behavioral, electrographic and histologic effects of sustained seizures induced by pilocarpine in mice.
Methods : After status epilepticus, the surviving animals were continuously monitored for 24 h/day for 120 days. The brains were processed by using neo-Timm and Nissl stains.
Results : The first spontaneous seizures occurred between 4 and 42 days after status epilepticus. The mean "seizure-silent period" lasted for 14.4 ± 11.9 days. During the chronic phase, recurrent spontaneous seizures were observed 1–5 times per animal per week and were associated with sprouting in the supragranular layer of the dentate gyrus.
Conclusions : Structural brain damage promoted by pilocar-pine-induced status epilepticus may underlie or be associated with recurrent spontaneous seizures in mice.  相似文献   

12.
Locus Coeruleus and Neuronal Plasticity in a Model of Focal Limbic Epilepsy   总被引:1,自引:0,他引:1  
Summary:  Purpose: A lesion of the noradrenergic nucleus Locus Coeruleus (LC) converts sporadic seizures evoked by microinfusion of bicuculline into the anterior piriform cortex (APC) of rats into limbic status epilepticus (SE). The purpose of this study was to evaluate the chronic effects of this new model of SE on the onset of secondary epileptogenesis. We further related the loss of noradrenaline (NE) with hippocampal mossy fiber sprouting.
Methods: Male Sprague Dawley rats were treated with systemic saline or DSP-4 (a neurotoxin selective for noradrenergic terminals originating from the LC), microinfused with bicuculline into the APC three days later, and sacrificed after 45 days. Naïve and DSP-4 pretreated sham-operated rats served as respective controls. The following evaluations were performed: (a) monitoring of acute seizures and delayed occurrence of spontaneous recurrent seizures (SRS); (b) NE levels in the hippocampus, frontal and olfactory cortex; (c) occurrence of mossy fiber sprouting into the inner molecular layer of the dentate gyrus of the dorsal hippocampus.
Results: In 30% of rats lacking noradrenergic terminals, SE evoked from the APC was followed by SRS. Conversely, seizures evoked in intact rats did not result in chronic epileptogenesis. Seizures/SE did not modify NE levels as compared with baseline levels both in naïve and DSP-4-pretreated rats. Rats undergoing SE following DSP-4 + bicuculline developed SRS which were accompanied by hippocampal mossy fiber sprouting.
Conclusions: Noradrenergic loss converts focally induced sporadic seizures into an epileptogenic SE, which is accompanied by mossy fiber sprouting within the dentate gyrus.  相似文献   

13.
Summary:  Purpose: Local synaptic circuits, particularly recurrent excitation, are hypothesized to contribute to the generation and synchronization of epileptiform activity. The present study tested whether local excitatory circuits in the hippocampus are increased in an animal model of temporal lobe epilepsy, and thus may contribute to epileptic seizures.
Methods: Rats were given hourly injections of kainic acid to induce status epilepticus, which led to chronic epilepsy with spontaneous recurrent seizures. Whole-cell recording was performed in hippocampal slices, and focal flash photolysis of caged glutamate was used to detect local excitatory circuits.
Results: In the dentate gyrus of rats with kainate-induced epilepsy and mossy fiber sprouting, focal stimulations with caged glutamate at many different sites in the granule cell layer consistently evoked repetitive excitatory postsynaptic currents (EPSCs) in normal medium and prolonged bursts of action potentials in bicuculline; these responses were not observed in similarly treated slices from control rats. In CA1, focal flash photolysis of caged glutamate in stratum pyramidale revealed significantly more excitatory connections between CA1 pyramidal cells in rats with kainate-induced epilepsy than saline-treated control animals.
Conclusion: Focal flash photolysis of caged glutamate revealed that new local excitatory circuits are formed in both the dentate gyrus and CA1 area of rats with kainate-induced epilepsy, which supports the hypothesis that the progressive formation of new local excitatory circuits occurs in many locations during epileptogenesis.  相似文献   

14.
Purpose: Mossy fiber sprouting (MFS) is a frequent finding following status epilepticus (SE). The present study aimed to test the feasibility of using manganese‐enhanced magnetic resonance imaging (MEMRI) to detect MFS in the chronic phase of the well‐established pilocarpine (Pilo) rat model of temporal lobe epilepsy (TLE). Methods: To modulate MFS, cycloheximide (CHX), a protein synthesis inhibitor, was coadministered with Pilo in a subgroup of animals. In vivo MEMRI was performed 3 months after induction of SE and compared to the neo‐Timm histologic labeling of zinc mossy fiber terminals in the dentate gyrus (DG). Key Findings: Chronically epileptic rats displaying MFS as detected by neo‐Timm histology had a hyperintense MEMRI signal in the DG, whereas chronically epileptic animals that did not display MFS had minimal MEMRI signal enhancement compared to nonepileptic control animals. A strong correlation (r = 0.81, p < 0.001) was found between MEMRI signal enhancement and MFS. Significance: This study shows that MEMRI is an attractive noninvasive method for detection of mossy fiber sprouting in vivo and can be used as an evaluation tool in testing therapeutic approaches to manage chronic epilepsy.  相似文献   

15.
We used the pilocarpine model of chronic spontaneous recurrent seizures to evaluate the time course of supragranular dentate sprouting and to assess the relation between several changes that occur in epilep tic tissue with different behavioral manifestations of this experimental model of temporal lobe epilepsy. Pilo carpine-induced status epilepticus (SE) invariably led to cell loss in the hilus of the dentate gyrus (DG) and to spontaneous recurrent seizures. Cell loss was often also noted in the DG and in hippocampal subfields CA1 and CA3. The seizures began to appear at a mean of 15 days after SE induction (silent period), recurred at variable frequencies for each animal, and lasted for as long as the animals were allowed to survive (325 days). The granule cell layer of the DG was dispersed in epileptic animals, and neo-Timm stains showed supra-and intragranular mossy fiber sprouting. Supragranular mossy fiber sprout ing and dentate granule cell dispersion began to appear early after SE (as early as 4 and 9 days, respectively) and reached a plateau by 100 days. Animals with a greater degree of cell loss in hippocampal field CAS showed later onset of chronic epilepsy (r= 0.83, p < 0.0005), suggest ing that CA3 represents one of the routes for seizure spread. These results demonstrate that the pilocarpine model of chronic seizures replicates several of the fea tures of human temporal lobe epilepsy (hippocampal cell loss, suprar and intragranular mossy fiber sprouting, den tate granule cell dispersion, spontaneous recurrent sei zures) and that it may be a useful model for studying this human condition. The results also suggest that even though a certain amount of cell loss in specific areas may be essential for chronic seizures to occur, excessive cell loss may hinder epileptogenesis.  相似文献   

16.
Purpose: We have recently reported that viral vector–mediated supplementation of fibroblast growth factor‐2 (FGF‐2) and brain‐derived neurotrophic factor (BDNF) in a lesioned, epileptogenic rat hippocampus limits neuronal damage, favors neurogenesis, and reduces spontaneous recurrent seizures. To test if this treatment can also prevent hippocampal circuit reorganization, we examined here its effect on mossy fiber sprouting, the best studied form of axonal plasticity in epilepsy. Methods: A herpes‐based vector expressing FGF‐2 and BDNF was injected into the rat hippocampus 3 days after an epileptogenic insult (pilocarpine‐induced status epilepticus). Continuous video–electroencephalography (EEG) monitoring was initiated 7 days after status epilepticus, and animals were sacrificed at 28 days for analysis of cell loss (measured using NeuN immunofluorescence) and mossy fiber sprouting (measured using dynorphin A immunohistochemistry). Key Findings: The vector expressing FGF‐2 and BDNF decreased both mossy fiber sprouting and the frequency and severity of spontaneous seizures. The effect on sprouting correlated strictly with the cell loss in the terminal fields of physiologic mossy fiber innervation (mossy cells in the dentate gyrus hilus and CA3 pyramidal neurons). Significance: These data suggest that the supplementation of FGF‐2 and BDNF in an epileptogenic hippocampus may prevent epileptogenesis by decreasing neuronal loss and mossy fiber sprouting, that is, reducing some forms of circuit reorganization.  相似文献   

17.
Purpose: To study the development of epilepsy following hypoxia‐induced neonatal seizures in Long‐Evans rats and to establish the presence of spontaneous seizures in this model of early life seizures. Methods: Long‐Evans rat pups were subjected to hypoxia‐induced neonatal seizures at postnatal day 10 (P10). Epidural cortical electroencephalography (EEG) and hippocampal depth electrodes were used to detect the presence of seizures in later adulthood (>P60). In addition, subdermal wire electrode recordings were used to monitor age at onset and progression of seizures in the juvenile period, at intervals between P10 and P60. Timm staining was performed to evaluate mossy fiber sprouting in the hippocampi of P100 adult rats that had experienced neonatal seizures. Key Findings: In recordings made from adult rats (P60–180), the prevalence of epilepsy in cortical and hippocampal EEG recordings was 94.4% following early life hypoxic seizures. These spontaneous seizures were identified by characteristic spike and wave activity on EEG accompanied by behavioral arrest and facial automatisms (electroclinical seizures). Phenobarbital injection transiently abolished spontaneous seizures. EEG in the juvenile period (P10–60) showed that spontaneous seizures first occurred approximately 2 weeks after the initial episode of hypoxic seizures. Following this period, spontaneous seizure frequency and duration increased progressively with time. Furthermore, significantly increased sprouting of mossy fibers was observed in the CA3 pyramidal cell layer of the hippocampus in adult animals following hypoxia‐induced neonatal seizures. Notably, Fluoro‐Jade B staining confirmed that hypoxic seizures at P10 did not induce acute neuronal death. Significance: The rodent model of hypoxia‐induced neonatal seizures leads to the development of epilepsy in later life, accompanied by increased mossy fiber sprouting. In addition, this model appears to exhibit a seizure‐free latent period, following which there is a progressive increase in the frequency of electroclinical seizures.  相似文献   

18.
Selective neuronal damage and mossy fiber sprouting may underlie epileptogenesis and spontaneous seizure generation in the epileptic hippocampus. It may be beneficial to prevent their development after cerebral insults that are known to be associated with a high risk of epilepsy later in life in humans. In the present study, we investigated whether chronic treatment with an anticonvulsant, vigabatrin (gamma-vinyl GABA), would prevent the damage to hilar neurons and the development of mossy fiber sprouting. Vigabatrin treatment was started either 1 h, or 2 or 7 days after the beginning of kainic acid-induced (9 mg/kg, i.p.) status epilepticus and continued via subcutaneous osmotic minipumps for 2 months (75 mg/kg per day). Thereafter, rats were perfused for histological analyses. One series of horizontal sections was stained with thionine to estimate the total number of hilar neurons by unbiased stereology. One series was prepared for somatostatin immunohistochemistry and another for Timm histochemistry to detect mossy fiber sprouting. Our data show that vigabatrin treatment did not prevent the decrease in the total number of hilar cells, nor the decrease in hilar somatostatin-immunoreactive (SOM-ir) neurons when SOM-ir neuronal numbers were averaged from all septotemporal levels. However, when vigabatrin was administered 2 days after the onset of status epilepticus, we found a mild neuroprotective effect on SOM-ir neurons in the septal end of the hippocampus (92% SOM-ir neurons remaining; P < 0.05 compared to the vehicle group). Vigabatrin did not prevent mossy fiber sprouting regardless of when treatment was started. Rather, sprouting actually increased in the septal end of the hippocampus when vigabatrin treatment began 1 h after the onset of status epilepticus (P < 0.05 compared to the vehicle group). Our data show that chronic elevation of brain GABA levels after status epilepticus does not have any substantial effects on neuronal loss or mossy fiber sprouting in the rat hippocampus.  相似文献   

19.
The development of spontaneous limbic seizures was investigated in a rat model in which electrical tetanic stimulation of the angular bundle was applied for up to 90 min. This stimulation produced behavioural and electrographic seizures that led to a status epilepticus (SE) in most rats (71%). Long-term EEG monitoring showed that the majority of the rats (67%) that underwent SE, displayed a progressive increase of seizure activity once the first seizure was recorded after a latent period of about 1 week. The other SE rats (33%) did not show this progression of seizure activity. We investigated whether these different patterns of evolution of spontaneous seizures could be related to differences in cellular or structural changes in the hippocampus. This was the case regarding the following changes. (i) Cell loss in the hilar region: in progressive SE rats this was extensive and bilateral whereas in nonprogressive SE rats it was mainly unilateral. (ii) Parvalbumin and somatostatin-immunoreactive neurons: in the hilar region these were almost completely eliminated in progressive SE rats but were still largely present unilaterally in nonprogressive SE rats. (iii) Mossy fibre sprouting: in progressive SE rats, extensive mossy fibre sprouting was prominent in the inner molecular layer. In nonprogressive SE rats, mossy fibre sprouting was also present but less prominent than in progressive SE rats. Although mossy fibre sprouting has been proposed to be a prerequisite for chronic seizure activity in experimental temporal lobe epilepsy, the extent of hilar cell death also appears to be an important factor that differentiates between whether or not seizure progression will occur.  相似文献   

20.
Prevention of epileptogenesis in patients with acute brain damaging insults like status epilepticus (SE) is a major challenge. We investigated whether lamotrigine (LTG) treatment started during SE is antiepileptogenic or disease-modifying. To mimic a clinical study design, LTG treatment (20 mg/kg) was started 2 h after the beginning of electrically induced SE in 14 rats and continued for 11 weeks (20 mg/kg per day for 2 weeks followed by 10 mg/kg per day for 9 weeks). One group of rats (n = 14) was treated with vehicle. Nine non-stimulated rats with vehicle treatment served as controls. Outcome measures were occurrence of epilepsy, severity of epilepsy, and histology (neuronal loss, mossy fiber sprouting). Clinical occurrence of seizures was assessed with 1-week continuous video-electroencephalography monitoring during the 11th (i.e. during treatment) and 14th week (i.e. after drug wash-out) after SE. LTG reduced the number of electrographic seizures during SE to 43% of that in the vehicle group (P < 0.05). In the vehicle group, 93% (13/14), and in the LTG group, 100% (14/14) of the animals, developed epilepsy. In both groups, 64% of the rats had severe epilepsy (seizure frequency >1 per day). The mean frequency of spontaneous seizures, seizure duration, or behavioral severity of seizures did not differ between groups. The severity of hippocampal neuronal damage and density of mossy fiber sprouting were similar. In LTG-treated rats with severe epilepsy, however, the duration of seizures was shorter (34 versus 54s, P < 0.05) and the behavioral seizure score was milder (1.4 versus 3.4, P < 0.05) during LTG treatment than after drug wash-out. LTG treatment started during SE and continued for 11 weeks was not antiepileptogenic but did not worsen the outcome. These data, together with earlier studies of other antiepileptic drugs, suggest that strategies other than Na(+)-channel blockade should be explored to modulate the molecular cascades leading to epileptogenesis after SE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号