首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To determine the effects of osteoarthritic (OA) subchondral osteoblasts on the metabolism of human OA chondrocytes in alginate beads. METHODS: Human chondrocytes were isolated from OA cartilage and cultured in alginate beads for 4 days in the absence or in the presence of osteoblasts isolated from non-sclerotic (N) or sclerotic (SC) zones of human OA subchondral bone in monolayer (co-culture system). Before co-culture, osteoblasts were incubated for 72 h with or without 1.7ng/ml interleukin (IL)-1beta, 100 ng/ml IL-6 with its soluble receptor (50 ng/ml) or 10 ng/ml oncostatin M (OSM). Aggrecan (AGG) and matrix metalloproteases (MMP)-3 and -13 mRNA levels in chondrocytes were quantified by real-time polymerase chain reaction. AGG production was assayed by a specific enzyme amplified sensitivity immunoassay. RESULTS: SC, but not N, osteoblasts induced a significant inhibition of AGG production and AGG gene expression by human OA chondrocytes in alginate beads, and significantly increased MMP-3 and MMP-13 gene expression by chondrocytes. When they were pre-incubated with IL-1beta, IL-6 or OSM, N osteoblasts inhibited AGG synthesis and increased MMP-3 and -13 gene expression by chondrocytes in alginate beads in a same order of magnitude as SC osteoblasts. CONCLUSIONS: These results demonstrate that SC OA subchondral osteoblasts could contribute to cartilage degradation by stimulating chondrocytes to produce more MMP and also by inhibiting AGG synthesis.  相似文献   

2.
陶凤华  蒋婷  向威 《骨科》2020,11(1):67-73
目的探究初级纤毛在成纤维细胞生长因子18(fibroblast growth factor 18, FGF 18)介导的软骨细胞增殖和表型调控中的作用及机制。方法通过CCK8法和免疫荧光染色检测不同浓度FGF18对大鼠软骨细胞增殖和初级纤毛表达的影响;设置对照组、FGF18组、水合氯醛组和FGF18+水合氯醛组,通过免疫荧光染色检测初级纤毛表达,甲苯胺蓝染色检测细胞外基质分泌,Live/dead实验检测细胞活性,qPCR检测成软骨相关基因COL Ⅱ和SOX9的表达变化,Western blot检测细胞周期蛋白D1(CyclinD1)、表型蛋白COL Ⅱ和细胞外调节蛋白激酶(extracellular regulated protein kinases, ERK)通路蛋白表达。结果不同浓度FGF18对软骨细胞增殖均有促进作用,20 ng/ml时效应最明显;FGF18能下调初级纤毛的发生率(0 ng/ml,77.91%±5.53%;5 ng/ml,52.91%±5.61%;10 ng/ml,42.12%±5.20%;20 ng/ml,36.53%±4.88%;40 ng/ml,33.44%±5.98%),但上调其平均长度[0 ng/ml,(1.63±0.67)μm;5 ng/ml,(2.67±0.90)μm;10 ng/ml,(2.71±0.97)μm;20 ng/ml,(2.76±1.37)μm;40 ng/ml,(2.79±1.13)μm];FGF18能维持细胞活性并促进细胞外基质分泌,上调COL Ⅱ和SOX9基因表达;但水合氯醛破坏初级纤毛结构后,纤毛发生率为(9.10±2.44)%,活细胞占比为72.86%±2.95%,水合氯醛+FGF18组纤毛发生率为(10.01±2.23)%,活细胞占比为(76.94±5.62)%,相比对照组[纤毛发生率为(77.91±5.53)%,活细胞占比为(96.81±1.38)%]和FGF18组[纤毛发生率为(36.53%±4.88)%,活细胞占比为(96.29±2.17)%]均明显降低,同时,FGF18的促增殖和促基质分泌作用受到抑制,COL Ⅱ和SOX9基因表达下调;FGF18能促进CyclinD1、COL Ⅱ蛋白表达,并上调P-ERK/T-ERK的比值,破坏纤毛结构则抑制FGF18对相关蛋白的促表达效应。结论 FGF18能促进软骨细胞增殖和维持软骨表型,并且初级纤毛参与FGF18介导的软骨细胞生长发育调控。  相似文献   

3.
OBJECTIVE: Articular cartilage is separated from subchondral bone by the tidemark and a calcified cartilage zone. Advancement of the calcified region and tidemark duplication are both hallmarks of osteoarthritis (OA). Currently the mechanisms controlling post-natal articular cartilage mineralization are poorly understood. The objective of this study is to test the hypothesis that cellular communication between different cartilage layers regulates articular chondrocyte mineralization. DESIGN: Co-culture models were established to evaluate the interaction of chondrocytes derived from the surface, middle and deep zones of articular cartilage. The cultures were stimulated with triiodothyronine (T3) to promote chondrocyte hypertrophy. The effects of zonal chondrocyte interactions on chondrocyte mineralization were examined over time. RESULTS: Co-culture of deep zone chondrocytes (DZCs) with surface zone chondrocytes (SZCs) suppressed the T3-induced increase in alkaline phosphatase (ALP) activity and related mineralization. Moreover, SZC-DZC co-culture was associated with a significantly higher parathyroid hormone-related peptide (PTHrP) expression when compared to controls. When PTHrP(1-40) was added to the DZC-only culture, it suppressed DZC ALP activity similar to the inhibition observed in co-culture with SZC. In addition, treatment with PTHrP reversed the effect of T3 stimulation on the expression of hypertrophic markers (Indian hedgehog, ALP, matrix metalloproteinases-13, Type X collagen) in the DZC cultures. Moreover, blocking the action of PTHrP significantly increased ALP activity in SZC+DZC co-culture. CONCLUSION: Our findings demonstrate the role of zonal chondrocyte interactions in regulating cell mineralization and provide a plausible mechanism for the post-natal regulation of articular cartilage matrix organization. These findings also have significant implications in understanding the pathology of articular cartilage as well as devising strategies for functional cartilage repair.  相似文献   

4.
5.
6.
Parathyroid hormone-related peptide (PTHrP) and insulin-like growth factor I (IGF-I) are both involved in the regulation of bone and cartilage metabolisms and their interaction has been reported in osteoblasts. To investigate the interaction of PTHrP and IGF-I during fracture healing, the expression of mRNA for PTHrP and IGF-I, and receptors for PTH/PTHrP and IGF were examined during rat femoral fracture healing using an in situ hybridization method and an immunohistochemistry method, respectively. During intramembranous ossification, PTHrP mRNA, IGF-I mRNA and IGF receptors were detected in preosteoblasts, differentiated osteoblasts and osteocytes in the newly formed trabecular bone. PTH/PTHrP receptors were markedly detected in osteoblasts and osteocytes, but only barely so in preosteoblasts. During cartilaginous callus formation, PTHrP mRNA was expressed by mesenchymal cells and proliferating chondrocytes. PTH/PTHrP receptors were detected in proliferating chondrocytes and early hypertrophic chondrocytes. IGF-I mRNA and IGF receptor were co-expressed by mesenchymal cells, proliferating chondrocytes, and early hypertrophic chondrocytes. At the endochondral ossification front, osteoblasts were positive for PTHrP and IGF-I mRNA as well as their receptors. These results suggest that IGF-I is involved in cell proliferation or differentiation in mesenchymal cells, periosteal cells, osteoblasts and chondrocytes in an autocrine and/or paracrine fashion. Furthermore, PTHrP may be involved in primary callus formation presumably co-operating with IGF-I in osteoblasts and osteocytes, and by regulating chondrocyte differentiation in endochondral ossification.  相似文献   

7.
目的综述在正常和骨性关节炎(osteoarthritis,OA)的关节软骨及软骨下骨中,甲状旁腺激素(parathyroid hormone,PTH)和甲状旁腺激素相关蛋白(parathyroid hormone-related protein,PTHrP)的作用机制研究进展。方法广泛查阅近年来有关PTH和PTHrP对正常和OA关节软骨作用机制的文献,并进行总结与分析。结果 PTH和PTHrP可抑制OA软骨细胞的肥大分化及凋亡,促进其增殖,从而对OA软骨细胞起到保护作用;OA软骨下骨成骨细胞对PTH的反应下降。结论 PTH、PTHrP可能通过多种信号通路参与软骨降解和软骨下骨重塑,并对OA进展起到延缓和保护作用。  相似文献   

8.
OBJECTIVE: To determine whether overexpression of glutamine: fructose-6-phosphate amidotransferase (GFAT) in synoviocytes will antagonize the response to interleukin-1beta (IL-1beta) of chondrocytes and synovial fibroblasts in co-culture. METHODS: Synovial fibroblasts from the rat were transduced by an adenovirus carrying the cDNA for GFAT and then co-cultured with rat chondrocytes encapsulated in alginate beads. Following challenge with 1, 5, or 10 ng/ml of IL-1beta for 24 h, proteoglycan synthesis by the chondrocytes was determined by incorporation of Na2(35)SO4. Production of nitric oxide (NO) and prostaglandin E2 (PGE2) were monitored by assay of conditioned medium from the co-culture. RESULTS: IL-1beta treatment of untransduced-synoviocyte/chondrocyte co-cultures resulted in markedly decreased proteoglycan synthesis by the chondrocytes, and increased NO and PGE2 levels in the culture medium. In contrast, adenovirus-mediated transfer of GFAT in synoviocytes prevented both the decrease in chondrocyte proteoglycan synthesis and increases in NO and PGE2 provoked by IL-1beta. CONCLUSIONS: Our study suggests that in a synoviocyte/chondrocyte co-culture system, overexpression of GFAT by synoviocytes significantly inhibits subsequent stimulation by IL-1beta in vitro. Since GFAT is the rate limiting enzyme in the synthesis of intracellular glucosamine and its derivatives, these results may open new possibilities for osteoarthritis treatment.  相似文献   

9.
The skeletal system is an important target for lead toxicity. One of the impacts of lead in the skeleton, the inhibition of axial bone development, is likely due to its effect on the normal progression of chondrocyte maturation that is central to the process of endochondral ossification. Since little is known about the effect of lead on chondrocyte function/maturation, its impact on (1) growth factor-induced proliferation, (2) expression of maturation-specific markers type X collagen and BMP-6, and (3) the activity of AP-1 and NF-kappaB was examined in chick growth plate and sternal chondrocyte models. Exposure to lead alone (1-30 microM) resulted in a dose-dependent inhibition of thymidine incorporation in growth plate chondrocytes. Lead also blunted the stimulation of thymidine incorporation by parathyroid hormone-related peptide (PTHrP) and transforming growth factor-beta1 (TGF-beta1), two critical regulators of chondrocyte maturation. Lead (1 and 10 microM), TGF-beta1 (3 ng/ml) and PTHrP (10(-7) M) all significantly inhibited the expression of type X collagen, a marker of chondrocyte terminal differentiation. However, when in combination, lead completely reversed the inhibition of type X collagen by PTHrP and TGF-beta1. The effect of lead on BMP-6. an inducer of terminal differentiation. was also examined. Independently, lead and TGF-beta1 were without effect on BMP-6 expression, but PTHrP significantly suppressed it. Comparatively, lead did not alter PTHrP-mediated suppression of BMP-6, but in combination with TGF-beta1. BMP-6 expression was increased 3-fold. To determine if lead effects on signaling might play a role in facilitating these events, the impact of lead on NF-kappaB and AP-1 signaling was assessed using luciferase reporter constructs in sternal chondrocytes. Lead had no effect on the AP-1 reporter, but it dose-dependently inhibited the NF-kappaB reporter. PTHrP, which signals through AP-1, did not activate the NF-kappaB reporter and did not affect inhibition of this reporter by lead. In contrast, PTHrP activation of the AP-1 reporter was dose-dependently enhanced by lead. These findings, which establish that chondrocytes are important targets for lead toxicity, suggest that the effects of lead on bone growth are derived from its impact on the modulation of chondrocyte maturation by growth factors and second messenger signaling responses.  相似文献   

10.
11.
12.
BMP-6 is an autocrine stimulator of chondrocyte differentiation.   总被引:5,自引:0,他引:5  
While parathyroid hormone-related protein (PTHrP) has been characterized as an important negative regulator of chondrocyte maturation in the growth plate, the autocrine or paracrine factors that stimulate chondrocyte maturation are not well characterized. Cephalic sternal chondrocytes were isolated from 13-day embryos, and the role of bone morphogenetic protein-6 (BMP-6) as a positive regulator of chondrocyte maturation was examined in monolayer cultures. Progressive maturation, which was accelerated in the presence of ascorbate, occurred in the cultures. During maturation, the cultures expressed high levels of BMP-6 mRNA which preceded the induction of type X collagen mRNA. Treatment of the cultures with PTHrP (10(-7) M) at the time of plating completely abolished BMP-6 and type X collagen mRNA expression. Removal of PTHrP after 6 days was followed by the rapid (within 24 h) expression of BMP-6 and type X collagen mRNA, with BMP-6 again preceding type X collagen expression. The addition of exogenous BMP-6 (100 ng/ml) to the cultures accelerated the maturation process both in the presence and absence of ascorbate and resulted in the highest levels of type X collagen. When exogenous BMP-6 was added to PTHrP containing cultures, maturation occurred with the expression of high levels of type X collagen, despite the presence of PTHrP in the cultures. Furthermore, BMP-6 did not stimulate expression of its own mRNA in the PTHrP treated cultures, but it did stimulate the expression of Indian hedgehog (Ihh) mRNA. These latter findings suggest that while PTHrP directly inhibits BMP-6, it indirectly regulates Ihh expression through BMP-6. Other phenotypic changes associated with chondrocyte differentiation were also stimulated by BMP-6, including increased alkaline phosphatase activity and decreased proliferation. The results suggest that BMP-6 is an autocrine factor that initiates chondrocyte maturation and that PTHrP may prevent maturation by inhibiting the expression of BMP-6.  相似文献   

13.
Growth plate chondrocytes integrate multiple signals during normal development. The type I BMP receptor ALK2 is expressed in cartilage and expression of constitutively active (CA) ALK2 and other activated type I BMP receptors results in maturation-independent expression of Ihh in chondrocytes in vitro and in vivo. The findings suggest that BMP signaling modulates the Ihh/PTHrP signaling pathway that regulates the rate of chondrocyte differentiation. INTRODUCTION: Bone morphogenetic proteins (BMPs) have an important role in vertebrate limb development. The expression of the BMP type I receptors BMPR-IA (ALK3) and BMPR-IB (ALK6) have been more completely characterized in skeletal development than ALK2. METHODS: ALK2 expression was examined in vitro in isolated chick chondrocytes and osteoblasts and in vivo in the developing chick limb bud. The effect of overexpression of CA ALK2 and the other type I BMP receptors on the expression of genes involved in chondrocyte maturation was determined. RESULTS: ALK2 was expressed in isolated chick osteoblasts and chondrocytes and specifically mediated BMP signaling. In the developing chick limb bud, ALK2 was highly expressed in mesenchymal soft tissues. In skeletal elements, expression was higher in less mature chondrocytes than in chondrocytes undergoing terminal differentiation. CA ALK2 misexpression in vitro enhanced chondrocyte maturation and induced Ihh. Surprisingly, although parathyroid hormone-related peptide (PTHrP) strongly inhibited CA ALK2 mediated chondrocyte differentiation, Ihh expression was minimally decreased. CA ALK2 viral infection in stage 19-23 limbs resulted in cartilage expansion with joint fusion. Enhanced periarticular expression of PTHrP and delayed maturation of the cartilage elements were observed. In the cartilage element, CA ALK2 misexpression precisely colocalized with the expression with Ihh. These findings were most evident in partially infected limbs where normal morphology was maintained. In contrast, BMP-6 had a normal pattern of differentiation-related expression. CA BMPR-IA and CA BMPR-IB overexpression similarly induced Ihh and PTHrP. CONCLUSIONS: The findings show that BMP signaling induces Ihh. Although the colocalization of the activated type I receptors and Ihh suggests a direct BMP-mediated signaling event, other indirect mechanisms may also be involved. Thus, while BMPs act directly on chondrocytes to induce maturation, this effect is counterbalanced in vivo by induction of the Ihh/PTHrP signaling loop. The findings suggest that BMPs are integrated into the Ihh/PTHrP signaling loop and that a fine balance of BMP signaling is essential for normal chondrocyte maturation and skeletal development.  相似文献   

14.
OBJECTIVE: To determine the best protocol for the preparation of a tissue-engineered cartilage to investigate the potential anti-arthritic and/or anti-osteoarthritic effects of drugs. METHODS: Calf articular chondrocytes, seeded in collagen sponges were grown in culture for up to 1 month. At day 14 cultures received interleukin (IL)-1beta (ranging from 0.1 to 20 ng/ml) for 1 to 3 days. Analyses of gene expression for extracellular matrix proteins, collagen-binding integrins, matrix metalloproteinases (MMPs), aggrecanases, TIMPs, IL-1Ra and Ikappa-Balpha were carried out using real-time polymerase chain reaction (PCR). Metalloproteinase activities were analysed in the culture medium using both zymography and fluorogenic peptide substrates. RESULTS: We selected a culture for 15 or 17 days with collagen sponges seeded with 10(7) chondrocytes showing a minimal cell proliferation, a maximal sulphated glycosaminoglycan (sGAG) deposition and a high expression of COL2A1, aggrecan and the alpha10 integrin sub-unit and low expression of COL1A2 and the alpha11 integrin sub-unit. In the presence of 1 ng/ml IL-1beta, we observed at day 15 up-regulations of 450-fold for MMP-1, 60-fold for MMP-13, 54-fold for ADAMTS-4 and MMP-3 and 10-fold for ADAMTS-5 and IL-1Ra. Down-regulations of 2.5-fold for COL2A1 and aggrecan were observed only at day 17. At the protein level a dose-dependent increase of total MMP-1 and MMP-13 was noted with less than 15% in the active form. CONCLUSIONS: This in vitro model of chondrocyte culture in three dimensional (3D) seems well adapted to investigate the responses of these cells to inflammatory cytokines and to evaluate the potential anti-inflammatory effects of drugs.  相似文献   

15.
The PTHrP gene generates low-abundance mRNA and protein products that are not easily localized by in situ hybridization histochemistry or immunohistochemistry. We report here a PTHrP-lacZ knockin mouse in which beta-gal activity seems to provide a simple and sensitive read-out of PTHrP gene expression. INTRODUCTION: PTH-related protein (PTHrP) is widely expressed in fetal and adult tissues, typically as low-abundance mRNA and protein products that maybe difficult to localize by conventional methods. We created a PTHrP-lacZ knockin mouse as a means of surveying PTHrP gene expression in general and of identifying previously unrecognized sites of PTHrP expression. MATERIALS AND METHODS: We created a lacZ reporter construct under the control of endogenous PTHrP gene regulatory sequences. The AU-rich instability sequences in the PTHrP 3' untranslated region (UTR) were replaced with SV40 sequences, generating products with lacZ/beta gal kinetics rather than those of PTHrP. A nuclear localization sequence was not present in the construct. RESULTS: We characterized beta-galactosidase (beta-gal) activity in embryonic whole mounts and in the skeleton in young and adult animals. In embryos, we confirmed widespread PTHrP expression in many known sites and in several novel epidermal appendages (nail beds and footpads). In costal cartilage, beta-gal activity localized to the perichondrium but not the underlying chondrocytes. In the cartilaginous molds of forming long bones, beta-gal activity was first evident at the proximal and distal ends. Shortly after birth, the developing secondary ossification center formed in the center of this PTHrP-rich chondrocyte population. As the secondary ossification center developed, it segregated this population into two distinct PTHrP beta-gal+ subpopulations: a subarticular subpopulation immediately subjacent to articular chondrocytes and a proliferative chondrocyte subpopulation proximal to the chondrocyte columns in the growth plate. These discrete populations remained into adulthood. beta-gal activity was not identified in osteoblasts but was present in many periosteal sites. These included simple periosteum as well as fibrous tendon insertion sites of the so-called bony and periosteal types; the beta-gal-expressing cells in these sites were in the outer fibrous layer of the periosteum or its apparent equivalents at tendon insertion sites. Homozygous PTHrP-lacZ knockin mice had the expected chondrodysplastic phenotype and a much expanded region of proximal beta-gal activity in long bones, which appeared to reflect in large part the effects of feedback signaling by Indian hedgehog on proximal cell proliferation and PTHrP gene expression. CONCLUSIONS: The PTHrP-lacZ mouse seems to provide a sensitive reporter system that may prove useful as a means of studying PTHrP gene expression.  相似文献   

16.
The hypoxia‐inducible factors HIF‐1α and HIF‐2α are important regulators of the chondrocyte phenotype but little is known about HIF‐3α in cartilage. The objective of this study was to characterize HIF‐3α (HIF3A) expression during chondrocyte differentiation in vitro and in native cartilage tissues. HIF3A, COL10A1, and MMP13 were quantified in mesenchymal stem cells (MSCs) and articular chondrocytes from healthy and osteoarthritic (OA) tissue in three‐dimensional cultures and in human embryonic epiphyses and adult articular cartilage. HIF3A was found to have an inverse association with hypertrophic markers COL10A1 and MMP13 in chondrogenic cells and tissues. In healthy chondrocytes, HIF3A was induced by dexamethasone and increased during redifferentiation. By comparison, HIF3A expression was extremely low in chondrogenically differentiated MSCs expressing high levels of COL10A1 and MMP13. HIF3A was also lower in redifferentiated OA chondrocytes than in healthy chondrocytes. In human embryonic epiphyseal tissue, HIF3A expression was lowest in the hypertrophic zone. Distinct splice patterns were also found in embryonic cartilage when compared with adult articular cartilage and redifferentiated chondrocytes. These in vitro and in vivo findings suggest that HIF3A levels are indicative of the hypertrophic state of chondrogenic cells and one or more splice variants may be important regulators of the chondrocyte phenotype. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:1561–1570, 2015.  相似文献   

17.
18.
The addition of insulin-like growth factor-I to cartilage cultures is known to stimulate the synthesis of proteoglycan and type-II collagen in explant and monolayer studies. The purpose of this study was to determine the effects of long-term supplementation with insulin-like growth factor-I in chondrocytes cultured in fibrin discs as a preliminary investigation to in vivo application of chondrocyte/insulin-like growth factor-I/fibrin grafts to articular-cartilage repair procedures. Chondrocyte-fibrin cultures were maintained for 14 days, with insulin-like growth factor-I added at varying concentrations of 0, 10, 50, or 100 ng/ml medium. Cultures supplemented with 50 or 100 ng of growth factor/ml had increased levels of aggrecan and type-IIB procollagen mRNA, and translation to aggrecan and type-IIB collagen was confirmed by dye-binding assay of total proteoglycan, type-II collagen immunohistochemistry, and determination of collagen content by high-performance liquid chromatography. Maintenance of the chondrocyte phenotype during the 14 days of culture was confirmed by round cell morphology on routine staining, expression of type-II procollagen mRNA on in situ hybridization, evidence of production of pericellular type-II collagen on immunocytochemistry, synthesis of large-molecular-size aggrecan monomer on CL-2B column chromatography, and lack of appreciable message expression for type I or IIA collagen on Northern blot hybridization. Dose-response effects of insulin-like growth factor-I on the expression of chondrocyte matrix constituents were most pronounced at 50 and 100 ng of growth factor per milliliter of medium. These data confirm that (a) culture of chondrocytes for extended periods in three-dimensional cultures of fibrin maintains the chondrocyte phenotype and (b) supplementation with increasing concentrations of insulin-like growth factor-I enhances chondrocyte matrix synthesis and may provide a means to enhance chondrocyte phenotypic stability and function during transplantation grafting procedures.  相似文献   

19.
Natural cartilage tissue has a limited self-regenerative capacity; thus, strategies to replenish the lost cartilage are desired in reconstructive and plastic surgery. Tissue-engineered cartilage using biodegradable polymeric scaffolds is one such approach gaining wide attention. We have earlier demonstrated the biocompatible nature and ability of chitosan-gelatin hydrogel to maintain differentiated populations of respiratory epithelial cells. The aim of the present study was to evaluate its suitability as a substratum for inducing chondrocyte growth and differentiation. Electron microscopic (SEM) analysis of freeze-dried hydrogels showed a highly porous morphology with interconnections as seen in cross section. Chondrocytes were observed to attach and exhibited a differentiated phenotype with proper cell-cell contact on three-dimensional freeze-dried hydrogels. When cultured on two-dimensional hydrogel films they showed higher growth rates (4-6%) compared with a polystyrene (TCPS) control until 6 days (p > 0.05), which slowed down after 10 days. Immunofluorescent microscopic studies revealed that chondrocytes on hydrogel films exhibited comparable expression of beta1 integrin (CD29) to TCPS controls, indicating the ability of the hydrogel substrate to maintain normal expression of beta1 integrin. RT-PCR analysis of chondrocytes grown on hydrogel films showed that chondrocytes express the mRNA for extracellular matrix proteins such as collagen type IIalpha1 (COL IIalpha1), COL III, COL IXalpha3. Expression of COL I was less prominent than COL II as indication of differentiation. Expression of COL X could not be detected, suggesting an absence of chondrocyte hypertrophy. Chondrocytes also showed weak mRNA expression of aggrecan, a cartilage-specific proteoglycan. All of these results point out the ability of the chitosan-gelatin hydrogel to induce the expression of mRNAs for cartilage-specific extracellular matrix proteins by nasal septal chondrocytes. This hydrogel needs to be further evaluated for its ability to support chondrocyte-specific marker expression to explore the possibility of forming a tissue resembling natural cartilage in vitro.  相似文献   

20.
Regulation of phenotype in chick tibial growth plate chondrocytes (GPCs) by parathyroid hormone-related peptide (PTHrP) is facilitated via signaling through three pathways: protein kinase A (PKA), protein kinase C (PKC) and inositol-1,4,5-trisphosphate-induced Ca2+ transients. To establish the underlying signaling specificity for PTHrP-regulation of chondrocyte maturation, we examined the separate involvement of each of these three pathways in the PTHrP regulation of key hallmarks of GPC phenotype: stimulation of proliferation and proteoglycan synthesis and reduction of alkaline phosphatase activity and type X collagen expression. Mimicking the PTHrP stimulation either of PKC with 1-oleoyl 2-acetyl glycerol or of a Ca2+ pulse with 65 mM KCl did not lead to PTHrP-like effects on any of the four markers examined. Also, inhibition of PKC with myr-psiPKC or blockade of Ca2+ signals with an intracellular chelator did not inhibit PTHrP action. However, PKA activation with dibutyryl cAMP mimicked PTHrP and blockade of PTHrP stimulation of PKA with H-89 inhibited the regulatory action of the factor. These data demonstrate that although activation of PKC or Ca2+ signals is not required, the cylic AMP-dependent A kinase is required for PTHrP to regulate key hallmarks of GPC phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号