首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The possibility of use-dependent, long-lasting modifications of pharmacologically isolated N-methyl-D-aspartate (NMDA) receptor-mediated synaptic transmission was examined by intracellular recordings from granule cells of the hippocampal dentate gyrus in vitro. In the presence of the non-NMDA receptor antagonist 6-cyano-7-nitroquinaxaline-2,3-dione (CNQX, 10 microM) robust, long-term potentiation (LTP) of NMDA receptor-mediated synaptic potentials was induced by brief, high (50 Hz) and lower (10 Hz) frequency tetanic stimuli of glutamatergic afferents (60 +/- 6%, n = 8, P less than 0.001 and 43 +/- 12%, n = 3, P less than 0.05, respectively). 2. Hyperpolarization of granule cell membrane potential to -100 mV during 50-Hz tetanic stimuli reversibly blocked the induction of LTP (-6 +/- 2%, n = 6, P greater than 0.05) indicating that simultaneous activation of pre- and postsynaptic elements is a prerequisite for potentiation of NMDA receptor-mediated synaptic transmission. In contrast, hyperpolarization of the granule cell membrane potential to -100 mV during 10-Hz tetanic stimuli resulted in long-term depression (LTD) of NMDA receptor-mediated synaptic potentials (-34 +/- 8%, n = 8, P less than 0.01). 3. We also studied the role of [Ca2+]i in the induction of LTP and LTD of NMDA receptor-mediated synaptic responses. Before tetanization, [Ca2+]i was buffered by iontophoretic injections of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA). BAPTA completely blocked the induction of LTP (3 +/- 5%, n = 13) and partially blocked LTD (-14.8 +/- 6%, n = 10).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
This study examined glutamate-activated current responses of mouse and human Cajal-Retzius (C-R) cells. Thin cortical slices were prepared from the brains of mice 4-6 days after birth and from those of midgestational human fetuses. Both human and mouse C-R cells displayed glutamate-induced whole-cell current responses that were voltage-dependent and included an N-methyl-D-aspartate (NMDA) receptor-mediated component that was differentially sensitive to blockade by the NMDA receptor antagonists 2-amino-5-phosphonovaleric acid and ifenprodil. alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), a non-NMDA glutamate receptor agonist, induced current responses in human but not in mouse C-R cells. These results, taken together, lead us to conclude that human C-R cells express both NMDA and AMPA types of glutamate receptors very early during development of the cortex. In contrast, mouse C-R cells express only the NMDA type of glutamate receptor. Thus we demonstrate a species-dependent sensitivity of C-R cells to glutamate and postulate that this differential sensitivity may account in part for a species-dependent difference in the persistence of C-R cells during cortical development.  相似文献   

3.
At many excitatory and inhibitory synapses throughout the nervous system, postsynaptic currents become faster as the synapse matures, primarily owing to changes in receptor subunit composition. The origin of the developmental acceleration of AMPA receptor (AMPAR)-mediated excitatory postsynaptic currents (EPSCs) remains elusive. We used patch-clamp recordings, electron microscopic immunogold localization of AMPARs, partial three-dimensional reconstruction of the neuropil and numerical simulations of glutamate diffusion and AMPAR activation to examine the factors underlying the developmental speeding of miniature EPSCs in mouse cerebellar granule cells. We found that the main developmental change that permits submillisecond transmission at mature synapses is an alteration in the glutamate concentration waveform as experienced by AMPARs. This can be accounted for by changes in the synaptic structure and surrounding neuropil, rather than by a change in AMPAR properties. Our findings raise the possibility that structural alterations could be a general mechanism underlying the change in the time course of AMPAR-mediated synaptic transmission.  相似文献   

4.
5.
Internalization of postsynaptic AMPA receptors depresses excitatory transmission, but the underlying dynamics and mechanisms of this process are unclear. Using immunofluorescence and surface biotinylation, we characterized and quantified basal and regulated AMPA receptor endocytosis in cultured hippocampal neurons, in response to synaptic activity, AMPA and insulin. AMPA-induced AMPA receptor internalization is mediated in part by secondary activation of voltage-dependent calcium channels, and in part by ligand binding independent of receptor activation. Although both require dynamin, insulin- and AMPA-induced AMPA receptor internalization are differentially dependent on protein phosphatases and sequence determinants within the cytoplasmic tails of GluR1 and GluR2 subunits. AMPA receptors internalized in response to AMPA stimulation enter a recycling endosome system, whereas those internalized in response to insulin diverge into a distinct compartment. Thus, the molecular mechanisms and intracellular sorting of AMPA receptors are diverse, and depend on the internalizing stimulus.  相似文献   

6.
7.
The contribution of N-methyl-D-aspartate (NMDA) and AMPA receptors to auditory responses in the rat's inferior colliculus was examined by recording single-unit activity before, during, and after local iontophoretic application of receptor-specific antagonists. Tone bursts and sinusoidal amplitude modulated sounds were presented to one ear, and recordings were made from the contralateral central nucleus of inferior colliculus (ICC). The receptor specific antagonists, (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) for NMDA receptors and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX) for AMPA receptors, were released at the recording site through a multi-barreled pipette. For most neurons, either CPP or NBQX alone resulted in a reversible reduction in the number of action potentials evoked by tonal stimulation. For neurons with an onset response pattern, NBQX either completely eliminated or greatly reduced the number of action potentials. CPP also reduced the number of action potentials but had a less pronounced effect than NBQX. For neurons with a sustained firing pattern, NBQX reduced the total number of action potentials, but had a preferential effect on the early part (first 10-20 ms) of the response. CPP also resulted in a reduction in the total number of action potentials, but had a more pronounced effect on the later part (>20 ms) of the response. These results indicate that both AMPA and NMDA receptors contribute to sound evoked excitatory responses in the ICC. They have a selective influence on early and late components of tone-evoked responses. Both receptor types are involved in generating excitatory responses across a wide range of sound pressure levels as indicated by rate level functions obtained before and during drug application. In addition, both CPP and NBQX reduced responses to sinusoidal amplitude modulated sounds. The synchrony of firing to the modulation envelope as measured by vector strength at different rates of modulation was not greatly affected by either CPP or NBQX in spite of the decrease in firing rate.  相似文献   

8.
9.
Postembedding immunogold labeling was used to determine the relationship between AMPA and NMDA receptor density and size of Schaffer collateral-commissural (SCC) synapses of the adult rat. All SCC synapses expressed NMDA receptors. AMPA and NMDA receptors were colocalized in at least 75% of SCC synapses; the ratio of AMPA to NMDA receptors was a linear function of postsynaptic density (PSD) diameter, with AMPA receptor number dropping to zero at a PSD diameter of approximately 180 nm. These findings indicate that 'silent' SCC synapses are smaller than the majority of SCC synapses at which AMPA and NMDA receptors are colocalized. Thus synapse size may determine important properties of SCC synapses.  相似文献   

10.
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) mediate the majority of fast excitation in the CNS. Receptors lacking GluR2 exhibit inward rectification and paired-pulse facilitation (PPF) due to polyamine (PA)-dependent block and unblock, respectively. In this study, we tested whether rectification and PPF in immature, but not mature, pyramidal neurons depend not only on the absence of functional GluR2 but also on the level of endogenous PAs. Whole cell recordings were obtained from layer V pyramidal neurons of P12-P14 or P16-P20 rats in the presence or absence of spermine in the pipette (50 microM). Isolated minimal excitatory synaptic responses were obtained, and paired (20 Hz) stimuli were used to investigate the rectification index (RI) and paired-pulse ratio (PPR). Spermine and its synthetic enzyme, ornithine decarboxylase (ODC), expression was examined using immunostaining and Western blot, respectively. At the immature stage (相似文献   

11.
Several studies have demonstrated anatomical and functional segregation along the dorsoventral axis of the hippocampus. This study examined the possible differences in the AMPA and NMDA receptor subunit composition and receptor binding parameters between dorsal and ventral hippocampus, since several evidence suggest diversification of NMDA receptor-dependent processes between the two hippocampal poles. Three sets of rat dorsal and ventral hippocampus slices were prepared: 1) transverse slices for examining a) the expression of the AMPA (GluRA, GluRB, GluRC) and NMDA (NR1, NR2A, NR2B) subunits mRNA using in situ hybridization, b) the protein expression of NR2A and NR2B subunits using Western blotting, and c) by using quantitative autoradiography, c(1)) the specific binding of the AMPA receptor agonist [(3)H]AMPA and c(2)) the specific binding of the NMDA receptor antagonist [(3)H]MK-801, 2) longitudinal slices containing only the cornus ammonis 1 (CA1) region for performing [(3)H]MK-801 saturation experiments and 3) transverse slices for electrophysiological measures of NMDA receptor-mediated excitatory postsynaptic potentials. Ventral compared with dorsal hippocampus showed for NMDA receptors: 1) lower levels of mRNA and protein expression for NR2A and NR2B subunits in CA1 with the ratio of NR2A /NR2B differing between the two poles and 2) lower levels of [(3)H]MK-801 binding in the ventral hippocampus, with the lowest value observed in CA1, apparently resulting from a decreased receptor density since the B(max) value was lower in ventral hippocampus. For the AMPA receptors CA1 our results showed in ventral hippocampus compared with dorsal hippocampus: 1) lower levels of mRNA expression for GluRA, GluRB and GluRC subunits, which were more pronounced in CA1 and in dentate gyrus region and 2) lower levels of [(3)H]AMPA binding. Intracellular recordings obtained from pyramidal neurons in CA1 showed longer NMDA receptor-mediated excitatory postsynaptic potentials in ventral hippocampus compared with dorsal hippocampus. In conclusion, the differences in the subunit mRNA and protein expression of NMDA and AMPA receptors as well as the lower density of their binding sites observed in ventral hippocampus compared with dorsal hippocampus suggest that the glutamatergic function differs between the two hippocampal poles. Consistently, the lower value of the ratio NR2A/NR2B seen in the ventral part would imply that the ventral hippocampus NMDA receptor subtype is functionally different than the dorsal hippocampus subtype, as supported by our intracellular recordings. This could be related to the lower ability of ventral hippocampus for long-term synaptic plasticity and to the higher involvement of the NMDA receptors in the epileptiform discharges, observed in ventral hippocampus compared with dorsal hippocampus.  相似文献   

12.
Excitatory synaptic transmission in the vertebrate central nervous system (CNS) is mediated predominantly by glutamate receptors. AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate)-sensitive glutamate receptors are endowed with kinetic properties which allow them to transmit fast repetitive signals. At some synapses in the CNS, the rapid onset of desensitization of AMPA receptors limits the duration or amplitude of synaptic events. Combining different AMPA receptor subunits may generate receptors specialized for encoding signals in specific neural pathways. Additionally, synaptic strength may be controlled by protein kinases acting directly on AMPA receptors.  相似文献   

13.
Deletion of N-methyl-D-aspartate receptors (NMDARs) early in development results in an increase in the number of synaptic AMPA receptors (AMPARs), suggesting a role for NMDARs in negatively regulating AMPAR trafficking at developing synapses. Substantial evidence has shown that AMPAR subunits function differentially in AMPAR trafficking. However, the role of AMPAR subunits in the enhancement of AMPARs following NMDAR ablation remains unknown. We have now performed single-cell genetic deletions in double-floxed mice in which the deletion of GluN1 is combined with the deletion of GluA1 or GluA2. We find that the AMPAR enhancement following NMDAR deletion requires the GluA2 subunit, but not the GluA1 subunit, indicating a key role for GluA2 in the regulation of AMPAR trafficking in developing synapses.  相似文献   

14.
Neuronal activity controls the strength of excitatory synapses by mechanisms that include changes in the postsynaptic responses mediated by AMPA receptors. These receptors account for most fast responses at excitatory synapses of the CNS, and their activity is regulated by various signaling pathways which control the electrophysiological properties of AMPA receptors and their interaction with numerous intracellular regulatory proteins. AMPA receptor phosphorylation/dephosphorylation and interaction with other proteins control their recycling and localization to defined postsynaptic sites, thereby regulating the strength of the synapse. This review focuses on recent advances in the understanding of the molecular mechanisms of regulation of AMPA receptors, and the implications in synaptic plasticity.  相似文献   

15.
16.
Metabotropic glutamate receptor subtype 1 (mGluR1) contributes importantly to the activity of the spinal locomotor network. For example, it potentiates NMDA current and inhibits leak conductance in lamprey spinal cord neurons. In this study we examined the signalling pathways underlying the mGluR1 modulation of NMDA receptors and leak channels, respectively. Our results show that mGluR1-induced potentiation of NMDA current required activation of phospholipase C (PLC) and was independent of the increase in the intracellular Ca2+ concentration because it was unaffected by the Ca2+ chelator BAPTA and by depletion of the internal Ca2+ stores with thapsigargin. We also show that the mGluR1-mediated inhibition of leak channels is mediated by activation of G-proteins. Finally, we show that blockade of protein kinase C (PKC) abolished the mGluR1-induced inhibition of leak current without affecting the potentiation of NMDA receptors. The contribution of mGluR1-mediated modulation of leak channels to the potentiation of the locomotor cycle frequency was assessed during fictive locomotion. Blockade of PKC significantly decreased the short-term potentiation of locomotor cycle frequency by mGluR1. These results show that the effects of mGluR1 activation on the two cellular targets, the NMDA receptor and leak channels, are mediated through separate signalling pathways.  相似文献   

17.
1. Membrane properties of deep pyramidal and multipolar cells in layer III of the rat piriform cortex and multipolar cells in the underlying endopiriform nucleus (layer IV) were studied in a slice preparation with the primary goal of elucidating the origin of the unusual synaptic responses described in the companion paper. 2. Micropipettes containing either Lucifer yellow (LY) for combined morphological-physiological analysis or potassium acetate (KAc) were used for the analysis. Comparison of membrane properties of pyramidal cells measured with these two electrolytes revealed significant differences. With LY and other Li+ salts, resting membrane potentials were more depolarized, input resistances higher, spike amplitudes lower, and spike durations longer. 3. As measured with KAc-containing electrodes, membrane properties of deep pyramidal and multipolar cells were similar to each other, but differed from those of superficial pyramidal cells. Resting membrane potentials were more depolarized, thresholds lower, input resistances higher, membrane time constants slower, and spikes smaller and slower. 4. In response to depolarizing current pulses, both deep pyramidal and multipolar cells exhibited an initial depolarizing peak of graded amplitude that fell to a steady state within 150 ms. Current-voltage (I-V) relationships displayed a large increase in slope resistance during the depolarizing peak, but were relatively linear in the depolarizing direction at steady state. In cells with relatively hyperpolarized resting membrane potentials, threshold for the depolarizing peak could be -65 mV or below. Based on a reduction by steady depolarization, reduction by Co2+ and potentiation by Ba2+, it is postulated that the peak is generated in part by a low threshold inactivating Ca2+ current. A partial blockage of this peak by tetrodotoxin (TTX) suggests that a Na+ current also contributes. 5. In response to hyperpolarizing current pulses, especially at depolarized membrane potentials, there was usually a sag from an initial maximum and a depolarizing rebound after current offset in both deep pyramidal and multipolar cells. Based on the dependence on membrane potential (Vm), insensitivity to TTX and blockage by carbamylcholine chloride (carbachol), it is postulated that an M-current contributes to the sag and rebound. 6. The depolarizing rebound that followed offset of hyperpolarizing current pulses could trigger a Ba2+-potentiated local response that resembled the depolarizing peak triggered by depolarizing current, suggesting that the postulated low-threshold inactivating Ca2+ current contributes to its generation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Presynaptic release of L-glutamate mediates neurotransmission at most excitatory synapses in the vertebrate central nervous system. At the postsynaptic membrane, glutamate binds to two classes of ligand-gated ion channels, AMPA receptors and NMDA receptors. These channels are the basis of the two kinetically distinct components of the excitatory postsynaptic current (epsc). The slower synaptic conductance is mediated by NMDA receptor channels which, after binding glutamate, activate slowly and can remain activated for several hundred milliseconds. The average latency between glutamate binding and channel opening is at least several milliseconds and may be much longer. If the time to first opening is short many fewer channels would be required at each synaptic site to account for the amplitude of the NMDA receptor component of spontaneous miniature epscs, than if the time to first opening is very long.  相似文献   

19.
The induction of long-term depression (LTD) can be divided into two main forms, one dependent upon activation of postsynaptic NMDAR, and another independent of postsynaptic NMDAR. Non-postsynaptic NMDAR-LTD (non-NMDAR-LTD) occurs in many regions of the brain, and encompasses a wide variety of induction and expression mechanisms. In this article, the induction and expression mechanisms of such LTD in over 10 brain regions are described, with a number of common mechanisms compared across a large range of types of LTD. The article describes the involvement of different presynaptic or postsynaptic receptors in the induction of non-NMDAR-LTD, especially metabotropic glutamate receptors, cannabinoid receptors and dopamine receptors. An increase in presynaptic or postsynaptic intracellular Ca concentration is a key event in induction, commonly followed by activation of certain kinases, especially PKC, p38 MAPK and ERK. Expression mechanisms are either presynaptic via a reduction in release probability, or postsynaptic involving a decrease in AMPAR via phosphorylation of a glutamate receptor subunit, especially GluR2, followed by clathrin-mediated endocytosis. Retrograde signalling from postsynaptic to presynaptic occurs when induction is postsynaptic and expression is presynaptic.  相似文献   

20.
Whether nascent glutamatergic synapses acquire their AMPA receptors constitutively or via a regulated pathway triggered by pre-existing NMDA receptor activation is still an open issue. Here, we provide evidence that some glutamatergic synapses develop without expressing NMDA receptors. Using immunocytochemistry, we showed that synapses between developing rat climbing fibres and Purkinje cells expressed GluR2-containing AMPA receptors as soon as they were formed (i.e. on embryonic day 19) but never carried detectable NMDA receptors. This was confirmed by electrophysiological recordings. Excitatory synaptic currents were recorded in Purkinje cells as early as P0. However, no NMDA receptor-mediated component was found in either spontaneous or evoked synaptic responses. In addition, we ruled out a possible role of extrasynaptic NMDA receptors by showing that AMPA receptor clustering at nascent climbing fibre synapses was not modified by chronic in utero NMDA receptor blockade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号