首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crush or transection of a peripheral nerve is known to induce transganglionic degenerative atrophy (TDA) in the segmentally related, ipsilateral Rolando substance of the spinal cord. When the lost peripheral connectivity is reestablished, the consecutive regenerative synaptoneogenesis results in restoration of the circuitry in the formerly deteriorated upper dorsal horn. Enhanced expression of the growth-associated protein (GAP43) B-50 occurs during neuronal differentiation, axon outgrowth, and peripheral nerve regeneration. This study documents changes in immunocytochemical distribution of B-50 in the regions of the lumbar spinal cord which are segmentally related to the axotomized sciatic nerve. At the light microscopic level, a weak B-50 immunoreactivity (BIR) is present in the neuropil of the upper dorsal horn of control animals. After unilateral transection and ligation of the sciatic nerve, BIR increased in the ipsilateral upper dorsal horn at 17 days postinjury, but decreased again after 24 days with respect to the contralateral side. Differences between effects of crush and transection were prominent in combined crush-cut experiments as well (i.e., after unilateral crush and contralateral transection and ligation of the sciatic nerve). Electron microscopic studies show that in the uninjured and injured spinal cord, BIR is detected in axons and axon terminals, but not all are stained. After transection of the sciatic nerve, BIR is found in afflicted primary sensory axon terminals, including those contacting substantia gelatinosa neurons and in axon terminals undergoing glial phagocytosis. The localization of BIR seen after crushing the sciatic nerve is similar. However, at 24 days after crush, BIR is detected also in axonal growth cones. In the ventral horn of control animals, synaptic boutons impinging upon motor neurons exhibited weak BIR. At 17 days after unilateral transection of the sciatic nerve, the pericellular BIR surrounding motor neurons is decreased at the ipsilateral with respect to the contralateral side, whereas 24 days after crush injury it increased considerably. Our results show that peripheral nerve injury inducing TDA also affects BIR distribution in the spinal gray matter. Successful regeneration of the peripheral nerve after crush lesion is associated with enhanced expression of B-50 in growth cones of sprouting central axons. The neuroplastic response of B-50 is in line with a function of B-50 in axonal sprouting and reactive synaptogenesis.  相似文献   

2.
3.
Ma W  Eisenach JC 《Brain research》2003,970(1-2):110-118
Peripheral nerve injury in rodents results in hypersensitivity to mechanical and thermal stimuli accompanied by reduced antinociceptive efficacy of opioids and, in some models, sensitivity to sympathetic blockade. 2-Adrenergic receptor agonists increase in potency and efficacy after nerve injury in rodents and effectively relieve neuropathic pain in humans who do not get pain relief from opioids. However, the underlying mechanisms are unclear. It has been well known that the major noradrenergic innervation of the spinal dorsal horn originates from the locus coeruleus nucleus (LC) in the brainstem. Therefore, the aim of this study is to examine whether peripheral nerve injury that causes neuropathic pain modulates the noradrenergic innervation to the lumbar dorsal horn, in order to determine the possible anatomical substrates underlying increased potency and efficacy of noradrenergic receptor agonists in alleviating neuropathic pain. At 2 weeks after chronic constriction injury (CCI) of the sciatic nerve, a remarkable increase in tyrosine-hydroxylase (TH) and dopamine β-hydroxylase (DβH) immunoreactive (IR) axonal terminals was observed in the ipsilateral L4–L6 dorsal horn. Consistently, greater numbers of both TH- and DβH-IR neurons were detected in the ipsilateral LC. Interestingly, in the lower lumbar and upper sacral spinal dorsal horn, numerous TH-IR neurons were observed in the superficial dorsal horn (primarily lamina I). CCI of the sciatic nerve did not change the number of these TH-IR cells. These findings suggest that augmented descending inhibitory noradrenergic innervation to the dorsal horn could be one of the mechanisms underlying the increased effectiveness in the anti-allodynic effect elicited by 2-adrenergic receptor agonists.  相似文献   

4.
During development and following axonal injury in adults, neurons in the anterior horn of the spinal cord express nerve growth factor receptor (NGF-R) messenger ribonucleic acid (mRNA) and protein. To examine whether unlesioned anterior horn neurons show signs of responsiveness to NGF in adult animals, spinal cords from control rats and monkeys, as well as animals that had received NGF intraventricularly, were processed for NGF-R immunocytochemistry using monoclonal and polyclonal antibodies against NGF-R. In all animals, neurons located in central/ventral sectors of lamina IX in lumbar segments of the spinal cord expressed NGF-R-like immunoreactivity; this population of nerve cells appeared to increase in size after treatment with NGF. Our findings suggest that, in adults, a subset of spinal motor neurons may respond to NGF.  相似文献   

5.
Transgenic mice whose axons and Schwann cells express fluorescent chromophores enable new imaging techniques and augment concepts in developmental neurobiology. The utility of these tools in the study of traumatic nerve injury depends on employing nerve models that are amenable to microsurgical manipulation and gauging functional recovery. Motor recovery from sciatic nerve crush injury is studied here by evaluating motor endplates of the tibialis anterior muscle, which is innervated by the deep peroneal branch of the sciatic nerve. Following sciatic nerve crush, the deep surface of the tibialis anterior muscle is examined using whole mount confocal microscopy, and reinnervation is characterized by imaging fluorescent axons or Schwann cells (SCs). One week following sciatic crush injury, 100% of motor endplates are denervated with partial reinnervation at 2 weeks, hyperinnervation at 3 and 4 weeks, and restoration of a 1:1 axon to motor endplate relationship 6 weeks after injury. Walking track analysis reveals progressive recovery of sciatic nerve function by 6 weeks. SCs reveal reduced S100 expression within 2 weeks of denervation, correlating with regression to a more immature phenotype. Reinnervation of SCs restores S100 expression and a fully differentiated phenotype. Following denervation, there is altered morphology of circumscribed terminal Schwann cells demonstrating extensive process formation between adjacent motor endplates. The thin, uniformly innervated tibialis anterior muscle is well suited for studying motor reinnervation following sciatic nerve injury. Confocal microscopy may be performed coincident with other techniques of assessing nerve regeneration and functional recovery.  相似文献   

6.
Somatic motor neurons begin to express the transmitter synthesizing enzyme, choline acetyltransferase (ChAT) and the low-affinity nerve growth factor receptor (NGFR) during embryonic development. However, as motor neurons mature in postnatal life, they lose immunoreactivity for NGFR and acquire a motor neuron-specific epitope that is recognized by the monoclonal antibody, MO-1. The present study was undertaken to examine the effect of nerve injury in adult rats on these three developmentally regulated markers in two populations of somatic motor neurons. Unilateral transection, ligation, or crushing of the sciatic nerve resulted in a loss of MO-1 binding and a concomitant rise in immunoreactivity for NGFR within axotomized motor neurons in lumbar levels of the spinal cord. These changes, detectable within 5 days following nerve injury, are reversed with reinnervation, but persist if reinnervation is prevented by chronic axotomy. Thus, regulation of the expression of NGFR and the MO-1 epitope appears to be critically dependent upon interactions between motor neurons and target muscles. These observations are also consistent with the idea that during regeneration, neurons may revert to a developmentally immature state; in motor neurons, this state is characterized by the presence of NGFRs and the absence of the MO-1 epitope. Transection of the hypoglossal nerve, a purely motor nerve, resulted in a similar loss of MO-1 binding and a selective rise in NGFR immunoreactivity in neurons within the ipsilateral hypoglossal motor nucleus. In addition immunoreactivity for ChAT was also lost in axotomized hypoglossal motor neurons. In contrast, injury to the sciatic nerve, which bears both sensory and motor axons, did not result in any detectable change in ChAT immunoreactivity in spinal motor neurons. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Selective motor nerve injury by lumbar 5 ventral root transection (L5 VRT) induces neuropathic pain, but the underlying mechanisms remain unknown. Previously, increased expression and secretion of brain-derived neurotrophic factor (BDNF) had been implicated in injury-induced neuropathic pain in the sensory system. In this study, as a step to examine potential roles of BDNF in L5 VRT-induced neuropathic pain, we investigated BDNF gene and protein expression in adult rats with L5 VRT. L5 VRT induced a dramatic upregulation of BDNF mRNA in intact sensory neurons in the ipsilateral L5 dorsal root ganglia (DRG), in non-neuronal cells in the ipsilateral sciatic nerve, and in motoneurons in the ipsilateral spinal cord. L5 VRT also induced de novo synthesis of BDNF mRNA in spinal dorsal horn neurons and in glial cells in the white matter of the ipsilateral spinal cord. Consistent with the mRNA expression pattern, BDNF protein was also mainly upregulated in all populations of sensory neurons in the ipsilateral L5 DRG and in spinal neurons and glia. Quantitative analysis by ELISA showed that the BDNF content in the DRG and sciatic nerve peaked on day 1 and remained elevated 14 days after L5 VRT. These results suggest that increased BDNF expression in intact primary sensory neurons and spinal cord may be an important factor in the induction of neuropathic pain without axotomy of sensory neurons.  相似文献   

8.
This study examines the expression of pituitary adenylate cyclase activating polypeptide (PACAP) mRNA in the rat spinal cord during normal conditions and in response to sciatic nerve transection. Previously, PACAP immunoreactivity has been found in fibers in the spinal cord dorsal horn and around the central canal and in neurons in the intermediolateral column (IML). Furthermore, in the dorsal root ganglia, PACAP immunoreactivity and PACAP mRNA expression have been observed preferentially in nerve cell bodies of smaller diameter terminating in the superficial laminae of the dorsal horn. However, neuronal expression of PACAP mRNA in adult rat spinal cord appeared limited to neurons of the IML. By using a refined in situ hybridization protocol, we now detect PACAP mRNA expression in neurons primarily in laminae I and II, but also in deeper laminae of the spinal cord dorsal horn and around the central canal. In addition, PACAP mRNA expression is observed in a few neurons in the ventral horn. PACAP expression in the ventral horn is increased in a population of large neurons, most likely motor neurons, both after distal and proximal sciatic nerve transection. The proposed role of PACAP in nociception is strengthened by our findings of PACAP mRNA-expressing neurons in the superficial laminae of the dorsal horn. Furthermore, increased expression of PACAP in ventral horn neurons, in response to nerve transection, suggests a role for PACAP in repair/regeneration of motor neurons.  相似文献   

9.
Chronic or acute intoxication of rats with beta,beta'-iminodipropionitrile induces characteristic lesions of axons of anterior horn cells. Swellings of proximal axons are associated with disorganization of the cytoskeleton which includes a disorientation of neurofilaments which are segregated in the periphery of the axon, while microtubules and mitochondria are clustered centrally. Slow axonal transport, which is markedly reduced, results in accumulation of neurofilaments in the proximal part of the peripheral motoneuron and distal atrophy. In chronically intoxicated rats, proliferation of Schwann cells with onion bulb formation were observed in the anterior spinal roots after 10 months on diet. In distal sciatic nerve, axonal degeneration was associated with accumulation of neurofilaments, organelles and glycogen. Axonal regeneration occurred in spite of sustained intoxication. The intensity of the lesions induced by IDPN in the proximal part of the axon of the spinal motoneuron are reminiscent of those observed in degenerative motor neuron disease. However, the abnormalities of the myelin sheath and the proliferation of Schwann cells encountered in IDPN-intoxicated rats do not occur in degenerative motor neuron diseases in humans.  相似文献   

10.
Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 m A and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers.  相似文献   

11.
Inhibitor of DNA binding 2 (Id2) can promote axonal regeneration after injury of the central nervous system. However, whether Id2 can promote axonal regeneration and functional recovery after peripheral nerve injury is currently unknown. In this study, we established a mouse model of bilateral sciatic nerve crush injury. Two weeks before injury, AAV9-Id2-3×Flag-GFP was injected stereotaxically into the bilateral ventral horn of lumbar spinal cord. Our results showed that Id2 was successfully delivered into spinal cord motor neurons projecting to the sciatic nerve, and the number of regenerated motor axons in the sciatic nerve distal to the crush site was increased at 2 weeks after injury, arriving at the tibial nerve and reinnervating a few endplates in the gastrocnemius muscle. By 1 month after injury, extensive neuromuscular reinnervation occurred. In addition, the amplitude of compound muscle action potentials of the gastrocnemius muscle was markedly recovered, and their latency was shortened. These findings suggest that Id2 can accelerate axonal regeneration, promote neuromuscular reinnervation, and enhance functional improvement following sciatic nerve injury. Therefore, elevating the level of Id2 in adult neurons may present a promising strategy for peripheral nerve repair following injury. The study was approved by the Experimental Animal Ethics Committee of Jinan University (approval No. 20160302003) on March 2, 2016.

Chinese Library Classification No. R456; R745; R364.3+3  相似文献   

12.
Abstract

A new animal model of neuropathic pain utilizing loose ligation of a peripheral nerve has been previously reported. In addition to displaying abnormal pain symptoms such as allodynia and hyperalgesia, physiologic and morphologic changes are seen in spinal cord dorsal horn neurons. Two weeks after ligation of the right common sciatic nerve, rat dorsal horn spinal cord neurons with signs of transsynaptic changes (dark neurons) were found on the side ipsilateral to the nerve injury. A few dark neurons were also found in the contralateral dorsal horn. The distribution of dark neurons in lumbar dorsal horn was limited to the superficial laminae (l-lll). The following changes which suggest altered cellular activity were seen under the electron microscope. The nuclear envelope appeared ruffled while the mitochondria appeared normal. In additioni, the dense cytoplasm was filled with rosettes of ribosomes as well as extensively developed rough endoplasmic reticulum and distended Golgi apparatus cisternae. While dark neurons had normal appearing somatic synapses, a few appeared atypical. The altered activity of these neurons may lead to abnormal sensory experiences and may be a consequence of central changes in response to persistent peripheral nerve injury. The purpose of the present study was to assess morphologic, hence functional changes in spinal cord neurons in response to peripheral nerve constriction injury which evokes chronic pain-related behaviour. [Neurol Res 1994; 16: 297-304]  相似文献   

13.
背景:作者前期将无细胞神经移植物与骨髓间充质干细胞复合培养,成功构建了组织工程人工神经。 目的:应用辣根过氧化物酶(HRP)神经逆行示踪技术对无细胞神经移植物复合骨髓间充质干细胞构建的神经移植复合体桥接大鼠坐骨神经缺损后运动神经元的保护作用进行评价。 方法:成年清洁级健康雄性SD大鼠,随机分成3组:①实验组:采用复合骨髓间充质干细胞的无细胞神经移植物桥接大鼠坐骨神经缺损。②空白对照组:采用无细胞神经移植物桥接大鼠坐骨神经缺损。③自体神经对照组:采用自体神经移植桥接大鼠坐骨神经缺损。术后12周应用辣根过氧化物酶神经逆行示踪技术对脊髓前角运动神经元的再生进行评价。 结果与结论:术后12周脊髓前角运动神经元再生评价结果显示:实验组优于无细胞神经移植物组,而与自体神经移植物组相比差异无显著性意义。证实无细胞神经移植物复合骨髓间充质干细胞构建组织工程人工神经修复大鼠坐骨神经缺损,对大鼠脊髓运动神经元具有保护作用,可能达到与自体神经移植相似的效果。 关键词:无细胞神经移植物;骨髓间充质干细胞;辣根过氧化物酶;神经移植;大鼠  相似文献   

14.
Structural changes in lumbosacral ventral horn neurons and their synaptic input were studied at 3, 10, 21, 42, and 90 days following low thoracic cord hemisection in adult rats by light microscopic examination of synaptophysin immunoreactivity (SYN-IR) and by electron microscopy. There was an ipsilateral transient decrease in SYN-IR at the somal and proximal dendritic surfaces of anterior horn neurons which extended caudally from the site of injury over a postoperative (p.o.) period of 42 days. Concomitantly, at 21 days p.o., perineuronal SYN-IR started to recover in upper lumbar segments. By 90 days p.o., a normal staining pattern of SYN was noted in upper and mid lumbar segments, but the perineuronal SYN-IR was still slightly below normal levels in low lumbar and sacral segments. Electron microscopy revealed ultrastructural changes coincident with the alterations in SYN-IR. At 3 days p.o., phagocytosis of degenerating axon terminals by activated microglial cells was observed at the somal and proximal dendritic surfaces of ventral horn neurons. These changes were most prominent up to two segments caudal to the lesion. At 10 days p.o., advanced stages of bouton phagocytosis were still detectable in all lumbosacral motor nuclei. Additionally, abnormal axon terminals, with a few dispersed synaptic vesicles and accumulations of large mitochondria, appeared at the scalloped somal surfaces of anterior horn neurons. At 21 days p.o., several large lumbosacral motoneurons had developed chromatolysis-like ultrastructural alterations and motoneuronal cell bodies had become partially covered by astrocytic lamellae. At 42 days p.o., there was a transient appearance of polyribosomes in some M-type boutons. In addition, at 42 and 90 days p.o., a few degenerating motoneurons were detected in all lumbosacral segments, but most displayed normal neuronal cell bodies contacted by numerous intact synapses as well as by astrocytic processes. In contrast to these striking alterations of synaptic input at somal and proximal dendritic surfaces of motoneurons, relatively few degenerating boutons were detected in the neuropil of motor nuclei at all the p.o. times studied. We suggest that the preferential disturbance of the predominantly inhibitory axosomatic synapses on ventral horn neurons may be involved in the mechanisms which influence the well-established increase in motoneuronal excitability after spinal cord injury.  相似文献   

15.
目的观察不同年龄大鼠坐骨神经损伤后,轴突导向因子Slit-1及其Robo-2受体在脊髓中的表达,以探讨不同年龄大鼠外周神经损伤后再生神经具有靶向性差异的可能机制。方法老年、成年和幼年大鼠各20只,建立左侧坐骨神经横断、硅胶管桥接模型。通过免疫荧光染色观察Slit-1蛋白和Robo-2受体在腰段脊髓中表达的变化,计算其荧光强度值,并进行统计学分析。结果伤后2周和4周,3组大鼠脊髓前角Slit蛋白均有较高表达,但各组间无显著差异。伤后2周和4周各组Robo-2受体表达均升高,其中老年鼠脊髓前角Robo-2受体表达明显高于成年和幼年组,差异有统计学意义(P0.05)。结论大鼠坐骨神经损伤后能刺激脊髓前角Slit-1高表达,不同年龄大鼠脊髓组织中Robo-2受体表达的差异可能决定了Slit-1在再生神经中的靶向性调节作用。  相似文献   

16.
The effects of sciatic nerve resection on lumbar dorsal root ganglion cells and their central branches have been studied in the adult rat. A quantitative analysis of the lumbar dorsal root ganglia indicated a 15–30% cell loss on the operated side. Argyrophilia indicating transganglionic degeneration was observed in Fink-Heimer stained sections from the lumbar spinal cord and the brainstem. The areas of degeneration argyrophilia were mainly located in the medial part of the ipsilateral L2–L6 dorsal horn laminae I–IV, the tract of Lissauer, the dorsal funiculus and the gracile nucleus. A few degenerating fibers could also be observed in the ipsilateral dorsal horn laminae V and VI, and in the ipsilateral ventral horn as well as in the contralateral dorsal and the gracile nucleus. The results confirm and extend previous findings at other levels and in other species. This suggests that cell loss and transganglionic degeneration may be general phenomena affecting a substantial proportion of primary sensory neurons following peripheral nerve injury.  相似文献   

17.
Complete sciatic nerve injury reduces substance P (SP) expression in primary sensory neurons of the L4 and L5 dorsal root ganglia (DRG), due to loss of target-derived nerve growth factor (NGF). Partial nerve injury spares a proportion of DRG neurons, whose axons lie in the partially degenerating nerve, and are exposed to elevated NGF levels from Schwann and other endoneurial cells involved in Wallerian degeneration. To test the hypothesis that SP is elevated in spared DRG neurons following partial nerve injury, we compared the effects of complete sciatic nerve transection (CSNT) with those of two types of partial injury, partial sciatic nerve transection (PSNT) and chronic constriction injury (CCI). As expected, a CSNT profoundly decreased SP expression at 4 and 14 days postinjury, but after PSNT and CCI the levels of preprotachykinin (PPT) mRNA, assessed by in situ hybridization, and the SP immunoreactivity (SP-IR) of the L4 and L5 DRGs did not decrease, nor did dorsal horn SP-IR decrease. Using retrograde labelling with fluorogold to identify spared DRG neurons, we found that the proportion of these neurons expressing SP-IR 14 days after injury was much higher than in neurons of normal DRGs. Further, the highest levels of SP-IR in individual neurons were detected in ipsilateral L4 and L5 DRG neurons after PSNT and CCI. We conclude that partial sciatic nerve injury elevates SP levels in spared DRG neurons. This phenomenon might be involved in the development of neuropathic pain, which commonly follows partial nerve injury.  相似文献   

18.
The temporal and spatial expression pattern of Fos protein in spinal dorsal horn neurons was examined by immunohistochemistry in rats with chronic constriction injury (CCI) to the sciatic nerve. In normal animals, a few Fos-immunoreactive (-IR) neurons were detected in the dorsal horn of the lumbar spinal cord. Following induction of CCI, a very large number of Fos-IR neurons appeared in the spinal dorsal horn, but a significant number of Fos-IR neurons were also observed in the contralateral dorsal horn where primary afferents of the injured sciatic nerve rarely project. Sham-operated animals also had a significant number of Fos-IR neurons in the dorsal horn bilaterally. The number of Fos-IR neurons reached its maximal level 1 day following placement of the ligatures (PO 1d). The ratio of the number of Fos-IR neurons in the ipsilateral dorsal horn to the contralateral dorsal horn, however, had its peak level 3 days following CCI (3.1-fold increase compared to the contralateral dorsal horn). The number of Fos-IR neurons in the dorsal horn gradually decreased, but increased again around PO 15d. On PO 30d, the number of Fos-IR neurons decreased and became comparable to that in normal animals. The present results indicate that the induction of Fos-IR neurons in the dorsal horn caused by CCI is biphasic and reaches its maximal level on PO 3d, near the time of hyperalgesia onset.  相似文献   

19.
Changes in spinal cholecystokinin release after peripheral axotomy   总被引:1,自引:0,他引:1  
The gene expression of cholecystokinin (CCK), a neuropeptide with anti-opioid properties, has been reported to be upregulated in some primary sensory neurons after a peripheral nerve lesion. We have recently demonstrated that the upregulation of CCK mRNA is not accompanied by an increased potassium-evoked release CCK-like immunoreactivity (CCK-LI) 2-4 weeks after a complete transection of the sciatic nerve. The potassium-evoked release of CCK-LI at earlier and later time points has, however, not been studied. The aim of the present in vivo microdialysis study was to monitor how the basal and stimulated extracellular level of CCK in the dorsal horn of the spinal cord is affected at various time points after a complete transection of the sciatic nerve (axotomy). During the first week after transection of the sciatic nerve a tendency towards an elevation of the potassium-induced (100 mM in the perfusion fluid) release of spinal CCK-LI was observed. In contrast, no potassium-induced release of CCK-LI could be detected 2-3 weeks and 2 months after axotomy. No significant effect was observed on the basal extracellular levels of CCK-LI in the dorsal horn. The present study provides further support for the notion that the adaptive changes in the dorsal horn 2 weeks and later after a deafferentiation injury do not include an increased release of CCK.  相似文献   

20.
Most current studies quantify axon regeneration by immunostaining regeneration-associated proteins,representing indirect measurement of axon lengths from both sensory neurons in the dorsal root ganglia and motor neurons in the spinal cord.Our recently developed method of in vivo electroporation of plasmid DNA encoding for enhanced green fluorescent protein into adult sensory neurons in the dorsal root ganglia provides a way to directly and specifically measure regenerating sensory axon lengths in whole-mount nerves.A mouse model of sciatic nerve compression was established by squeezing the sciatic nerve with tweezers.Plasmid DNA carrying enhanced green fluorescent protein was transfected by ipsilateral dorsal root ganglion electroporation 2 or 3 days before injury.Fluorescence distribution of dorsal root or sciatic nerve was observed by confocal microscopy.At 12 and 18 hours,and 1,2,3,4,5,and 6 days of injury,lengths of regenerated axons after sciatic nerve compression were measured using green fluorescence images.Apoptosis-related protein caspase-3 expression in dorsal root ganglia was determined by western blot assay.We found that in vivo electroporation did not affect caspase-3 expression in dorsal root ganglia.Dorsal root ganglia and sciatic nerves were successfully removed and subjected to a rapid tissue clearing technique.Neuronal soma in dorsal root ganglia expressing enhanced green fluorescent protein or fluorescent dye-labeled microRNAs were imaged after tissue clearing.The results facilitate direct time course analysis of peripheral nerve axon regeneration.This study was approved by the Institutional Animal Care and Use Committee of Guilin Medical University,China(approval No.GLMC201503010)on March 7,2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号