首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Monosynaptic excitatory postsynaptic potentials (EPSPs) evoked by stimulating ipsilateral ventrolateral column (VLC) in the thoracic section were recorded in lumbar motoneurons within the isolated spinal cord of the frog Rana ridibunda. Bath application of the selective GABAB receptor agonist (-)-baclofen (0.05 mM) caused a reduction in the peak amplitude of VLC EPSP. Baclofen did not cause any consistent change in the membrane potential or in the EPSP waveform within frog motoneurones. The selective GABA(B) receptor antagonist saclofen (0.1 mM) completely blocked the effect of (-)-baclofen on VLC EPSP. A decrease in VLC EPSP peak amplitude was also observed during GABA (0.5 mM) application. Unlike (-)-baclofen, inhibition of VLC EPSP induced by GABA was accompanied by a shortening of the EPSP time course and a reduction in membrane input resistance within lumbar motoneurons. The decrease in VLC EPSP peak amplitude induced by (-)-baclofen and GABA was accompanied by an increase in the paired-pulse facilitation. These data provide evidence for a dual pre- and postsynaptic GABAergic inhibition of the VLC monosynaptic EPSP in lumbar motoneurons within the frog spinal cord.  相似文献   

2.
Vasoactive intestinal polypeptide (VIP) in the concentration of 1 microM or less markedly and selectively increased the amplitude and duration of the muscarinic slow excitatory postsynaptic potential (EPSP) without appreciably affecting the nicotinic fast EPSP or the non-cholinergic EPSP of guinea pig inferior mesenteric ganglion cells. The membrane depolarization evoked by the muscarinic agonist, acetyl-beta-methylcholine in these neurons was similarly enhanced by VIP. Our results suggest that the peptide may be a neuromodulator effective in enhancing the sensitivity of postsynaptic muscarinic receptors to acetylcholine in the vertebrate sympathetic ganglia.  相似文献   

3.
Dopaminergic regulation of primate dorsolateral prefrontal cortex (PFC) activity is essential for cognitive functions such as working memory. However, the cellular mechanisms of dopamine neuromodulation in PFC are not well understood. We have studied the effects of dopamine receptor activation during persistent stimulation of excitatory inputs onto fast-spiking GABAergic interneurons in monkey PFC. Stimulation at 20 Hz induced short-term excitatory postsynaptic potential (EPSP) depression. The D1 receptor agonist SKF81297 (5 microM) significantly reduced the amplitude of the first EPSP but not of subsequent responses in EPSP trains, which still displayed significant depression. Dopamine (DA; 10 microM) effects were similar to those of SKF81297 and were abolished by the D1 antagonist SCH23390 (5 microM), indicating a D1 receptor-mediated effect. DA did not alter miniature excitatory postsynaptic currents, suggesting that its effects were activity dependent and presynaptic action potential dependent. In contrast to previous findings in pyramidal neurons, in fast-spiking cells, contribution of N-methyl-D-aspartate receptors to EPSPs at subthreshold potentials was not significant and fast-spiking cell depolarization decreased EPSP duration. In addition, DA had no significant effects on temporal summation. The selective decrease in the amplitude of the first EPSP in trains delivered every 10 s suggests that in fast-spiking neurons, DA reduces the amplitude of EPSPs evoked at low frequency but not of EPSPs evoked by repetitive stimulation. DA may therefore improve detection of EPSP bursts above background synaptic activity. EPSP bursts displaying short-term depression may transmit spike-timing-dependent temporal codes contained in presynaptic spike trains. Thus DA neuromodulation may increase the signal-to-noise ratio at fast-spiking cell inputs.  相似文献   

4.
1. Intracellular recording was made from layer II-III cells in slice preparations of kitten (30-40 days old) visual cortex. Low-frequency (0.1 Hz) stimulation of white matter (WM) usually evoked an excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP). The postsynaptic potentials (PSPs) showed strong dependence on stimulus frequency. Early component of EPSP and IPSP evoked by weak stimulation both decreased monotonically at frequencies greater than 0.5-1 Hz. Strong stimulation similarly depressed the early EPSP at higher frequencies (greater than 2 Hz) and replaced the IPSP with a late EPSP, which had a maximum amplitude in the stimulus frequency range of 2-5 Hz. 2. Very weak WM stimulation sometimes evoked EPSPs in isolation from IPSPs. The falling phase of the EPSP revealed voltage dependence characteristic to the responses mediated by N-methyl-D-aspartate (NMDA) receptors and was depressed by application of an NMDA antagonist DL-2-amino-5-phosphonovalerate (APV), whereas the rising phase of the EPSP was insensitive to APV. 3. The early EPSPs followed by IPSPs were insensitive to APV but were replaced with a slow depolarizing potential by application of a non-NMDA antagonist 6,7-dinitro-quinoxaline-2,3-dione (DNQX), indicating that the early EPSP is mediated by non-NMDA receptors. The slow depolarization was mediated by NMDA receptors because it was depressed by membrane hyperpolarization or addition of APV. 4. The late EPSP evoked by higher-frequency stimulation was abolished by APV, indicating that it is mediated by NMDA receptors, which are located either on the recorded cell or on presynaptic cells to the recorded cells. 5. Long-term potentiation (LTP) of EPSPs was examined in cells perfused with solutions containing 1 microM bicuculline methiodide (BIM), a gamma-aminobutyric acid (GABA) antagonist. WM was stimulated at 2 Hz for 15 min as a conditioning stimulus to induce LTP, and the resultant changes were tested by low-frequency (0.1 Hz) stimulation of WM. 6. LTP of early EPSPs occurred in more than one-half of the cells (8/13) after strong conditioning stimulation. The rising slope of the EPSP was increased 1.6 times on average. 7. To test involvement of NMDA receptors in the induction of LTP in the early EPSP, the effect of conditioning stimulation was studied in a solution containing 100 microM APV, which was sufficient to block completely synaptic transmission mediated by NMDA receptors. LTP occurred in the same frequency and magnitude as in control solution.  相似文献   

5.
Sensory cortical neurons display substantial receptive field dynamics during and after persistent sensory drive. Because a cell's response properties are determined by the inputs it receives, receptive field dynamics are likely to involve changes in the relative efficacy of different inputs to the cell. To test this hypothesis, we have investigated if brief repetitive stimulus drive in vitro alters the efficacy of two types of corticocortical inputs to layer V pyramidal cells. Specifically, we have used whole cell recordings to measure the effect of repetitive electrical stimulation at the layer VI/white matter (WM) border on the synaptic response of layer V pyramidal cells to corticocortical input evoked by electrical stimulation of layer I or layer II/III and emulated by local application of glutamate. Repetitive stimulation (10 Hz for 3 s) at the layer VI/WM border transiently potentiated excitatory postsynaptic potentials (EPSPs) evoked by electrical stimulation of layer II/III by 97 +/- 12% (mean +/- SE). The recovery of EPSP amplitude to its preconditioning value was well-described by a single-term decaying exponential with a time constant of 7.2 s. The same layer VI/WM conditioning train that evoked layer II/III EPSP potentiation frequently caused an attenuation of layer I EPSPs. Similarly, subthreshold postsynaptic responses to local glutamate application in layers II/III and I were potentiated and attenuated, respectively, by the conditioning stimulus. Potentiation and attenuation could be evoked in the same cell by repositioning the glutamate puffer pipette in the appropriate layer. The conditioning stimulus that led to the transient modification of upper layer EPSP efficacy also evoked a slow depolarization in glial cells. The membrane potential of glial cells recovered with a time course similar to the dissipation of the potentiation effect, suggesting that stimulus-evoked changes in extracellular potassium (ECK) play a role in layer II/III EPSP potentiation. Consistent with this proposal, increasing the bath concentration of ECK caused a substantial increase of layer II/III EPSP amplitude. EPSP potentiation was sensitive to postsynaptic membrane potential and, more importantly, was significantly weaker for synaptic currents than for synaptic potentials, suggesting that it involves the recruitment of a postsynaptic voltage-dependent mechanism. Two observations suggest that layer II/III EPSP potentiation may involve the recruitment of postsynaptic sodium channels: EPSP potentiation was strongly reduced by intracellular application of N-(2,6-dimethyl-phenylcarbamoylmethyl) triethylammonium bromide (QX-314) and responses to local glutamate application were potentiated by high ECK in the presence of cadmium but not in the presence of tetrodotoxin. The results demonstrate a novel way in which brief periods of repetitive stimulus drive are accompanied by rapid, transient, and specific alterations in the functional connectivity and information processing characteristics of sensorimotor cortex.  相似文献   

6.
Primary afferent fibers from the electroreceptors of mormyrid electric fish use a latency code to signal the intensity of electrical current evoked by the fish's own electric organ discharge (EOD). The afferent fibers terminate centrally in the deep and superficial granular layers of the electrosensory lobe with morphologically mixed chemical-electrical synapses. The granular cells in these layers seem to decode afferent latency through an interaction between primary afferent input and a corollary discharge input associated with the EOD motor command. We studied the physiology of deep and superficial granular cells in a slice preparation with whole cell patch recording and electrical stimulation of afferent fibers. Afferent stimulation evoked large all-or-none electrical excitatory postsynaptic potentials (EPSPs) and large all or none GABAergic inhibitory postsynaptic potentials (IPSPs) in both superficial and deep granular cells. The amplitudes of the electrical EPSPs depended on postsynaptic membrane potential, with maximum amplitudes at membrane potentials between -65 and -110 mV. Hyperpolarization beyond this level resulted in either the abrupt disappearance of EPSPs, a step-like reduction to a smaller EPSP, or a graded reduction in EPSP amplitude. Depolarization to membrane potentials lower than that yielding a maximum caused a linear decrease in EPSP amplitude, with EPSP amplitude reaching 0 mV at potentials between -55 and -40 mV. We suggest that the dependence of EPSP size on postsynaptic membrane potential is caused by close linkage of pre- and postsynaptic membrane potentials through a high-conductance gap junction. We also suggest that this dependence may result in functionally important nonlinear interactions between synaptic inputs.  相似文献   

7.
1. Using isolated slices of rat cingulate and sensorimotor cortex, intracellular recordings were obtained from pyramidal neurons in layer III. Simultaneous extracellular recordings were obtained from neurons in ventral layer III and layer IV. Spike-triggered averaging was employed to investigate synaptic connections from neurons in layers III/IV to pyramidal cells in layer III. 2. Of 701 simultaneously recorded pairs of neurons, comprising 699 extracellularly and 128 intracellularly recorded neurons, synaptic connections were demonstrated in 30 pairs. Of these, 29 were excitatory postsynaptic potentials (EPSPs) and 1, an inhibitory postsynaptic potential (IPSP). Single-axon EPSPs with a wide variety of amplitudes were recorded: the range recorded at membrane potentials between -68 and -72 mV was 0.079-2.3 mV. Comparing recordings obtained from different cells, EPSP amplitude was found to be independent of both the membrane resistance of the postsynaptic neuron and the EPSP time course; i.e., the largest EPSPs were not necessarily those recorded from neurons with the highest input resistance, nor those with the briefest time course. 3. Shape indices: width at half amplitude and rise-time, indicative of both proximal and distal synaptic locations were obtained. Normalized rise-times were between 0.1 and 2 times the membrane time constant and half-widths between 0.8 and 20 times. 4. The majority of postsynaptic neurons displayed nonlinear voltage relations typical of pyramidal neurons, and the contribution to EPSP shape of voltage-dependent currents was investigated. EPSP amplitude and duration were found to be dependent on membrane potential. The majority of single-axon EPSPs (26 of 29), increased in amplitude and duration with membrane depolarization over the range -95 - -50 mV, despite the significant decrease in driving force for the EPSP that would be expected to accompany such large depolarizations. This increase coincided with an increase in the amplitude of voltage responses to small injected current pulses. 5. It is concluded that the amplitude and time course of single-axon EPSPs recorded in cortical pyramidal somata are affected not only by the amplitude of the postsynaptic current and the location(s) of the synapse(s) relative to the soma, but also by voltage-dependent currents. The possibility that the increase in amplitude and duration of these EPSPs with membrane depolarization is due to N-methyl-D-aspartate receptor involvement is discussed.  相似文献   

8.
1. The relative strengths of four mechanisms of depolarizing synaptic inhibition described in the previous paper were evaluated with an electrical model of the giant motor synapse (GMS) and postsynaptic region of the motor giant motoneuron (MoG). 2. The model consists of one compartment that represents the presynaptic region of the medial giant (MG) interneuron and three compartments that represent the postsynaptic region and proximal axon of the MoG. The presynaptic MG compartment is linked to a postsynaptic MoG compartment by a rectifying conductance that represents the GMS. Each compartment consists of parallel paths to ground for active and/or passive membrane currents. 3. Parameter values of the model were set so the MG compartment would replicate an MG impulse and the MoG compartments would replicate the current-clamp, voltage-clamp, and synaptic responses of a single MoG neuron described in the previous paper. The Hodgkin-Huxley equations described voltage-sensitive sodium and potassium currents. 4. Comparison of the MoG compartment currents that mediate an inhibited excitatory postsynaptic potential (EPSP) [triggered during a depolarizing inhibitory postsynaptic potential (d-IPSP)] with those of an uninhibited EPSP indicate that all four mechanisms have significant inhibitory effects. Reverse bias of the GMS by the d-IPSP reduced the GMS current by 65 nA (12%). The remaining inward current was further reduced by a 243-nA outward current through the inhibitory postsynaptic conductance. The d-IPSP inactivated sodium conductance so the inward sodium current evoked by the EPSP was reduced by 319 nA (-68%). The d-IPSP reduced the latency for potassium activation by the EPSP so that the outward potassium current coincided with the inward sodium current and reduced the net inward current by 100 nA. Together, these mechanisms reduced the EPSP amplitude by 69%. 5. The resting potential of MoG is normally 15 mV more positive than MG rest potential, but in some preparations this difference may be as much as 25 mV or as little as 0 mV. Corresponding differences in the rest potentials of the MoG and MG models have little effect on the amplitude of the model MoG EPSP because changes in the inward synaptic and sodium currents are balanced by corresponding changes in the outward potassium current.  相似文献   

9.
Subthalamic (STH) neurons with slow EPSPs mediated by an N-methyl-D-aspartate (NMDA) receptor were studied in rat brain slice preparation. When STH neurons were intracellularly recorded with KCl-filled electrodes, stimulation of the internal capsule (IC) evoked a short duration depolarization followed by a slow excitatory postsynaptic potential (EPSP) lasting 100-200 ms. The amplitude of the slow EPSP was increased when the neuron was hyperpolarized by a low intensity current injection but was blocked when it was hyperpolarized with strong current. The slow EPSP was reversibly suppressed by application of 30-50 microM DL-2-amino-5-phosphonovareric acid (APV). STH neurons also were recorded, with potassium methylsulfate filled electrodes, in the slice preparation obtained from rats that received chronic knife cuts of the IC at the level of the entopeduncular nucleus. Stimulation of the IC immediately rostral to the STH evoked a fast EPSP followed by a slow EPSP, and IPSPs were largely eliminated in this preparation. The slow EPSP was augmented in MG-free medium and suppressed by 50 microM APV. These results suggest that NMDA receptor mediating slow EPSPs may regulate activities of STH neurons.  相似文献   

10.
1. The properties of excitatory postsynaptic potentials (EPSPs) of rat neocortical neurons were investigated with a fast single-electrode current-voltage clamp in vitro. Typically, apparently pure EPSPs were obtained by selection of electric stimuli of low intensity. 2. The amplitude and time integral of the EPSP increased when the neuron was depolarized. At threshold for generation of action potentials, the amplitude of EPSPs was increased by approximately 30% [from 5.0 +/- 2.1 to 6.3 +/- 1.0 (SD) mV, n = 12]. The integral of EPSPs was maximally about fourfold (3.7 +/- 1.5, n = 16) larger than at resting membrane potential (Em). The mechanisms involved in this augmentation of EPSPs were further investigated. 3. The amplitude and the time integral of excitatory postsynaptic currents (EPSCs) decreased linearly with shifts in command potential from -100 to -60 mV. The decrease of the EPSC integral with depolarization indicates that the enhancement of the EPSP may be brought about by recruitment of a voltage-dependent inward current. 4. Evoking EPSPs at various delays after the onset of small depolarizing current pulses (0.3-0.6 nA, 600 ms) revealed that augmentation decays with time. The integral of EPSPs evoked approximately 80 ms after the onset of the current pulse was 3.7 (+/- 1.5, n = 16) times larger than at Em. The integral of EPSPs evoked at 480 ms. however, were only twofold (+/- 0.7, n = 16) larger. Hence EPSPs evoked after a delay of 80 ms were 1.7-fold (+/- 0.4, n = 24) larger than EPSPs evoked after 480 ms. EPSCs were independent of the delay of stimulation at all potentials. 5. Intracellular application of the lidocaine derivative N-(2,6-dimethyl-phenylcarbamoylmethyl) triethylammonium bromide (QX 314) at 100 mM from pipettes rapidly abolished fast action potentials and inward rectification. During comparable depolarizations the increase in EPSP integrals was much smaller in QX 314-treated neurons than in controls. On average, the integral of EPSPs evoked at 70-90 ms was 1.7 times (+/- 1.0) larger than at Em, and the integral of EPSPs evoked with larger delays was close to the value obtained at resting Em (0.9 +/- 0.3, n = 8). The ratio of EPSP integrals early versus late (1.8 +/- 0.5) is comparable to controls, suggesting that QX 314-sensitive currents are unlikely to be involved in the time-dependent enhancement. 6. Mimicking EPSPs by brief depolarizations atop long depolarizations revealed a time- and voltage-dependent enhancement comparable to that of EPSPs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
1. The effects of intrinsic membrane properties on the spontaneous and synaptically evoked activity of neostriatal neurons were studied in an in vitro slice preparation with the use of intracellular recordings. The recorded neurons did not show spontaneous action potentials at rest; depolarizing current pulses triggered a tonic firing pattern. 2. Subthreshold spontaneous depolarizing potentials (SDPs) were observed in 52% of the recorded neurons. The amplitude of these potentials at rest ranged between 2 and 15 mV, and their duration between 4 and 100 ms. The frequency and the amplitude of the SDPs were functions of the membrane potential: membrane depolarization by constant positive current increased the frequency of the SDPs and reduced their amplitude; hyperpolarization of the membrane decreased their frequency and increased their amplitude. Often, at membrane potentials more negative than -90 mV, SDPs were completely suppressed. 3. SDPs were blocked by low calcium-cobalt containing solutions. In the presence of tetrodotoxin (TTX, 1-3 microM), SDPs were completely abolished in 50% of the tested neurons; in the remaining neurons, small (1-4 mV) TTX-resistant SDPs were observed. In most of the neurons, bicuculline (BIC, 10-100 microM) and low concentrations of tetanus toxin (5-10 micrograms/ml) did not clearly affect the SDPs. Higher concentrations of tetanus toxin (100 micrograms/ml) blocked the SDPs as well as the synaptic potentials evoked by intrastriatal stimulation. 4. At resting membrane potential, intrastriatal stimulation produced a fast depolarizing postsynaptic potential (EPSP) that was reduced by BIC (10-100 microM). The relationship between EPSP amplitude and membrane potential was studied either by utilizing K(+)-chloride electrodes or by the use of cesium-chloride electrodes. In both these cases, the reversal potential for the EPSPs was between 0 and -14 mV. In cesium-loaded neurons, the decrease of the EPSP, usually observed at negative membrane potentials (below -85 mV), was clearly reduced. Internal cesium prolonged the duration of the SDPs and the EPSPs evoked by intrastriatal stimulation. 5. The relationship between spontaneous and evoked synaptic activity and membrane potential was studied in the presence of different external potassium blockers. 4-Aminopyridine (4AP, 0.1-1 mM) increased the EPSP amplitude and the frequency of the SDPs, but did not decrease membrane rectification and the shunt of the EPSPs present at negative membrane potentials. On the contrary, rectification of the membrane and the shunt of the EPSPs below -85 mV were clearly reduced by tetraethylammonium (TEA, 10-20 mM).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Postsynaptic potentials (PSPs) evoked in motoneurons innervating the back and abdominal muscles in the lumbar part of the body by stimulating hindlimb cutaneous afferents were investigated in unanesthetized decerebate and spinal cats. Various types of PSP: pure excitatory postsynaptic potential (EPSP), pure inhibitory postsynaptic potential (IPSP), and mixed PSP (i.e., EPSP followed by IPSP, EPSP/IPSP; and IPSP followed by EPSP, IPSP/EPSP) were observed. The weak stimulation at 2 times threshold (2T) produced predominantly the EPSP, while at 5T the incidence of IPSP or EPSP followed by IPSP was increased. In about 20-50% of the various groups of motoneurons, PSPs evoked by ipsi- and contralateral nerves were qualitatively and quantitatively similar. For the other motoneurons, PSPs evoked by ipsi- and contralateral nerves were markedly different with respect to magnitude and/or polarity. These findings suggest that, within each motoneuron pool, some neurons act to increase stiffness of the trunk or to move vertically in response to an increased activity of cutaneous afferents, while the other motoneurons act to produce lateral bending of the trunk.  相似文献   

13.
Synaptic transmission was studied during the development of kindling in the pathway from entorhinal cortex (EC) to dentate gyrus (DG) of unrestrained unanesthetized rats using chronic neurophysiological techniques. Extracellular field potentials were recorded from the DG in response to activation of the perforant pathway with 0.1-ms constant current square-wave pulses. The evoked field potentials consisted of a population EPSP (a reflection of excitatory synaptic activation) and a population spike (a measure of synchronous postsynaptic discharge of granule cells). Synaptic efficacy was quantitated in this pathway by measurement of the population EPSP slope and population spike amplitude across a range of stimulus intensities from threshold to maximal evoked response. Input-output relationships for population EPSP and population spike were determined at regular intervals during the course of kindling, corresponding to the stages of evoked behavioral seizures. Increases in the population EPSP and population spike were observed after a single kindling stimulus that evoked afterdischarge (AD) when behavioral seizures were minimal. Evaluation of the input-output relationships for the group of kindled animals at the various stages of evoked behavioral seizure activity revealed that increases in the population EPSP continued to slowly evolve with repeated stimulations but that increases in the population spike were maximal after one or at most a few stimulations that evoked AD. The increases in both population EPSP and population spike persisted for the duration of the recording, i.e., through induction of generalized motor convulsions. To evaluate the translation of synaptic activation into cell discharge during kindling, we made use of the population spike/population EPSP ratio across a range of stimulus intensities. The spike/EPSP ratios revealed a dissociation of the population spike and population EPSP early in the course of kindling during class 1 seizures. Specifically, after induction of an AD, an extracellular population EPSP of a given size evoked a larger population spike than an EPSP of comparable size before the induction of an AD by kindling stimulation. The development of generalized motor convulsions (class 5 seizures) was associated with a reduction in the spike/EPSP ratio. The mechanism of this reduction in spike/EPSP ratio is uncertain, but since synaptic activation (as reflected by population EPSP) did not decline during class 5 seizures, the reduction in the spike/EPSP ratio could be consistent with increased inhibition after generalized motor convulsions, or could reflect a decrease in granule cell excitability.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
K Morita  R A North 《Neuroscience》1985,14(2):661-672
Intracellular recordings were made from neurones in myenteric ganglia of the guinea-pig ileum in vitro. Synaptic potentials were evoked by electrically stimulating presynaptic fibres as they entered the ganglion, using a small focal electrode. Slow synaptic depolarizations (excitatory postsynaptic potentials) were evoked in most myenteric neurones of both types. A single stimulus was more likely to evoke a slow excitatory postsynaptic potential in cells with nicotinic synaptic input (S cells; 50%) than in cells with long-lasting after-hyperpolarizations following the soma action potential (AH cells; 20%). Two pulses often evoked a slow excitatory postsynaptic potential in AH cells when one pulse was ineffective. The optimally effective time between the pulses was about 100 ms. Ten pulses resulted in slow excitatory postsynaptic potentials even when delivered at frequencies as low as 0.5 Hz. For the same frequency of presynaptic stimulation, the duration of the slow excitatory postsynaptic potential was greater in AH cells than in S cells and the amplitude of the slow excitatory postsynaptic potential was slightly greater in S than AH cells. Spontaneous depolarizations were observed which had time-courses and amplitudes similar to the evoked slow excitatory postsynaptic potential. They were not blocked by tetrodotoxin or atropine. The calcium-dependent after-hyperpolarization which follows one or more action potentials in AH cells was reduced or even abolished during the slow excitatory postsynaptic potential. Presynaptic nerve stimulation at intensities lower than those required to cause a slow excitatory postsynaptic potential caused a reduction in the calcium dependent after-hyperpolarization. It is concluded that the slow excitatory postsynaptic potential is generated by an intracellular intermediate process which is sensitive to the intracellular calcium concentration. The results suggest that the postsynaptic action of the synaptic transmitter is to interfere with the intracellular process which couples the entry of calcium to the increase in potassium conductance.  相似文献   

15.
Epileptiform bursts of population spikes were evoked in the CA1 region of slices of the hippocampus in which the CA3 region had been previously lesioned with kainic acid. D-2-amino-5-phosphonovalerate (D-APV), a specific N-methyl-D-aspartate (NMDA) antagonist, would markedly reduce the number of spikes in the burst but had no effects on the primary population spike or the amplitude of the field excitatory postsynaptic potential (EPSP). In unlesioned control slices only a single population spike was evoked and D-APV had no effect on this response or the field EPSP. Multiple population spike bursts evoked following application of bicuculline to control slices were much less attenuated by D-APV. The results suggest that activation of NMDA receptors contributes to the production of epileptiform activity in the kainic acid-lesioned hippocampus.  相似文献   

16.
Intracellular and voltage-clamp recordings were made from sympathetic B neurons to investigate an interaction between peptidergic and cholinergic responses in bullfrog sympathetic ganglia. Stimulations of both 3rd-5th (0.2 Hz) and 8th (30 Hz) spinal nerves evoked the fast excitatory postsynaptic potential (EPSP) superimposed with the late slow EPSP at the same sympathetic neuron. The amplitude of fast EPSPs was decreased during the course of the late slow EPSP in a majority of sympathetic neurons. The mean depression of the fast EPSP amplitude was 51 +/- 4% (n = 24). The quantal content of the fast EPSP was also depressed by 54 +/- 3% (n = 10) during the late slow EPSP. Acetylcholine-induced depolarization (ACh potential) and current (ACh current) produced by an ionophoretic application of ACh were not reduced during the late slow EPSP. Bath-application of LH-RH (40 nM-4 microM) depressed the fast EPSP in a concentration-dependent manner; at a concentration of 1 microM, it produced a 63 +/- 8% (n = 8) depression of the quantal content of the fast EPSP. LH-RH (1-4 microM) depressed the frequency of the miniature (M) EPSPs by 25 +/- 4% (n = 5) of control. Antagonists for luteinizing hormone-releasing hormone (LH-RH) receptor, [D-Phe2,6, Pro3]-LH-RH and [D-pGlu1, D-Phe2, D-Trp3,6]-LH-RH, prevented the presynaptic inhibition of the fast EPSP induced by LH-RH. These results suggest that the fast EPSP is depressed during the late slow EPSP by decreasing the evoked release of ACh from presynaptic nerve terminals in bullfrog sympathetic ganglia.  相似文献   

17.
Intracellular recordings were made from sympathetic B neurons to investigate an interaction between peptidergic and cholinergic responses in bullfrog sympathetic ganglia. Simultaneous stimulations of 3rd-5th and 8th spinal nerves evoked the fast excitatory postsynaptic potential (EPSP) superimposed with the late slow EPSP at the same sympathetic neuron. The amplitude of fast EPSPs was reduced during the course of the late slow EPSP in a majority of sympathetic neurons. A nicotinic depolarization produced by an ionophoretic application of ACh (ACH potential) was not significantly affected during the late slow EPSP. The quantal content of the fast EPSP calculated by the variance method was depressed during the late slow EPSP. Luteinizing hormone-releasing hormone (LH-RH), a putative transmitter for the late slow EPSP decreased the amplitude and the quantal content of the fast EPSP. [D-Phe2,6, Pro3]-LH-RH, and [D-DGlu1, D-Phe2, D-Trp3,6]-LH-RH, antagonists for LH-RH receptors prevented the inhibition of the fast EPSP induced by the late slow EPSP and LH-RH. These results suggest that cholinergic nicotinic transmission is inhibited during the late slow EPSP by a decreased ACh-release from nerve terminals in bullfrog sympathetic ganglia.  相似文献   

18.
Excitatory transmission in the basolateral amygdala.   总被引:4,自引:0,他引:4  
1. Intracellular current-clamp recordings obtained from neurons of the basolateral nucleus of the amygdala (BLA) were used to characterize postsynaptic potentials elicited through stimulation of the stria terminalis (ST) or the lateral amygdala (LA). The contribution of glutamatergic receptor subtypes to excitatory postsynaptic potentials (EPSPs) were analyzed by the use of the non N-methyl-D-aspartate (non-NMDA) antagonist, 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), and the NMDA antagonist, (DL)-2-amino-5-phosphonovaleric acid (APV). 2. Basic membrane properties of BLA neurons determined from membrane responses to transient current injection showed that at the mean resting membrane potential (RMP; -67.2 mV) the input resistance (RN) and time constant for membrane charging (tau) were near maximal, and that both values were reduced with membrane hyperpolarization, suggesting an intrinsic regulation of synaptic efficacy. 3. Responses to stimulation of the ST or LA consisted of an EPSP followed by either a fast inhibitory postsynaptic potential (f-IPSP) only, or by a fast- and subsequent slow-IPSP (s-IPSP). The EPSP was graded in nature, increasing in amplitude with increased stimulus intensity, and with membrane hyperpolarization after DC current injection. Spontaneous EPSPs were also observed either as discrete events or as EPSP/IPSP waveforms. 4. In physiological Mg2+ concentrations (1.2 mM), at the mean RMP, the EPSP consisted of dual, fast and slow, glutamatergic components. The fast-EPSP (f-EPSP) possessed characteristics of kainate/quisqualate receptor activation, namely, the EPSP increased in amplitude with membrane hyperpolarization, was insensitive to the NMDA receptor antagonist, APV (50 microM), and was blocked by the non-NMDA receptor antagonist, CNQX (10 microM). In contrast, the slow-EPSP (s-EPSP) decreased in amplitude with membrane hyperpolarization, was insensitive to CNQX (10 microM), and was blocked by APV (50 microM), indicating mediation by NMDA receptor activation. 5. In the presence of CNQX (10 microM), ST stimulation evoked an APV-sensitive s-EPSP. In contrast, LA stimulation evoked a f-IPSP, which when blocked by subsequent addition of bicuculline methiodide (BMI; 30 microM) revealed a temporally overlapping APV-sensitive s-EPSP. These data suggest that EPSP amplitude and duration are determined, in part, by the shunting of membrane conductance caused by a concomitant IPSP. 6. Superfusion of either CNQX or APV in BLA neurons caused membrane hyperpolarization and blockade of spontaneous EPSPs and IPSPs, suggesting that these compounds may act to block tonic excitatory amino acid (EAA) release within the nucleus, and that a degree of feed-forward inhibition occurs within the nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
1. Long-term potentiation (LTP) is an enduring, activity-induced increase in the efficacy of synaptic transmission, which has been considered as a possible neural substrate for learning. Recent experiments have shown that LTP can be induced in hippocampal CA1 neurons when a presynaptic volley is paired repetitively with depolarization of the postsynaptic cell, brought about with intracellularly applied depolarizing current pulses (20, 33). We have repeated these experiments in neocortical neurons, in transverse slices of rat sensorimotor cortex in vitro. 2. Stable intracellular recordings were obtained from 28 neurons (mean resting potential -78 mV, mean spike amplitude 95 mV, mean input resistance 41 M omega) mostly in layers V and VI. Two different afferent pathways were stimulated alternately at 0.2 Hz to evoke subthreshold composite excitatory postsynaptic potentials (EPSPs). One micromolar bicuculline methiodide was added to the bathing medium in most experiments. 3. Repetitive pairing of one afferent volley with a coincident intracellular depolarizing current pulse (100-200 ms long) of a magnitude sufficient to make the neuron fire 6 to 13 action potentials/pulse, gave rise after 30-50 pairings in 4 neurons to a significant enduring increase in the amplitude of the paired EPSP. The increase persisted without decrement for as long as the recording continued (range 15-50 min after the pairing ended) but the amplitude of the unpaired EPSP was unchanged. During the LTP, the membrane potential and the apparent input resistance of the postsynaptic neurons were also unchanged. 4. In two cells a significant prolonged depression of the paired EPSP was induced while the unpaired EPSP was unaffected. Membrane potential and input resistance were not changed. In the remaining 22 cells neither the paired nor the unpaired EPSP was altered. 5. Brief, tetanic stimulation was applied to one afferent pathway in 11 of the neurons in which postsynaptic stimulation had been ineffective. A variety of effects was produced (LTP, depression, or posttetanic potentiation). All the effects of tetanic stimulation were confined to the stimulated pathway. 6. We conclude that LTP can be produced in some neocortical neurons by pairing a presynaptic volley with postsynaptic depolarization, in an experimental paradigm that conforms to Hebb's (17) model of associative conditioning. Depression of the paired EPSP was produced in other cells with the same experimental design.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
1. We recorded intracellularly from X and Y cells of the cat's lateral geniculate nucleus and measured the postsynaptic potentials (PSPs) evoked from electrical stimulation of the optic chiasm. We used an in vivo preparation and computer averaged the PSPs to enhance their signal-to-noise ratio. 2. The vast majority (46 of 50) of our sample of X and Y cells responded to stimulation of the optic chiasm with an excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP); these were tentatively identified as relay cells. We quantified several parameters of these PSPs, including amplitude, latency, time to peak (i.e., rise time), and duration. 3. Among the relay cells, the latencies of both the EPSP and action potential evoked by optic chiasm stimulation were shorter in Y cells than in X cells. Furthermore, the difference between the latencies of the EPSP and action potential was shorter for Y cells than for X cells. This means that the EPSPs generated in Y cells reached threshold for generation of action potentials faster than did those in X cells. The EPSPs of Y cells also displayed larger amplitudes and faster rise times than did those in X cells, but neither of these distinctions was sufficient to explain the shorter latency difference between the EPSP and action potential for Y cells. 4. The EPSPs recorded in relay Y cells had longer durations than did those in relay X cells. Our data suggest that the subsequent IPSP actively terminates the EPSP, which, in turn, suggests that the time interval between EPSP and IPSP onsets is longer in Y cells than in X cells. Furthermore, we found that, for individual Y cells, the latency and duration of the evoked EPSP were inversely related. These observations lead to the conclusion that the latency of IPSPs activated from the optic chiasm is relatively constant among Y cells and thus independent of the EPSP latencies. Thus the excitation and inhibition produced in individual geniculate Y cells may originate from different populations of retinogeniculate axons. 5. The IPSPs recorded in geniculate relay cells following optic chiasm stimulation could be divided into three groups based on their durations. The majority of both X and Y cells showed short-duration IPSPs, whereas the remainder of Y cells displayed medium-duration IPSPs, and the remaining X cells displayed long-duration IPSPs. A positive correlation was seen between the time to peak and duration of these IPSPs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号