首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Summary 1. Descending projections from Forel's field H (FFH) to the brain stem and upper cervical spinal cord were studied in cats. 2. Following implantation of HRP pellets into the spinal gray matter (C1-C3) or in the ponto-medullary reticular formation, the nucleus reticularis pontis caudalis (NRPC) or in the nucleus reticularis gigantocellularis (NRG), numerous neurones were retrogradely labelled in FFH on the ipsilateral side. In the former cases, the sizes of labelled neurones were medium-large (2040 m in diametre) while both small and medium-large neurones were labelled in the latter cases. 3. The lowest levels of spinal projection of single FFH neurones (n=70) were assessed by antidromic spikes elicited by stimulating electrodes placed in C1, C3 and C7. The majority (59%) projected to C1 (but not to C3), about 27% to C3 (but not to C7), and only 14% to C7. 4. Axonal trajectories of single FFH neurones in C1-C3 segments were investigated by antidromic threshold mapping methods. The stem axons of spinal-projecting FFH neurones descended in the ventral or in the ventrolateral funicli and the collaterals were projected to neck motor nuclei (lamina IX, Rexed 1954) and laminae V–VIII. The conduction velocities were estimated as 8–37 m/s from the antidromic latencies. 5. Axonal trajectories of 7 FFH neurones were investigated in the ponto-medullary reticular formation. All were antidromically activated from C1. In six neurones, the stem axons were located in the ventral part of the central tegmental tract and collaterals were projected to the NRPC and/or the NRG. Some of them projected to the inferior olive and the nucleus prepositus hypoglossi as well. The stem axon, in the remaining cell, was in the most dorso-medial part of the medial longitudinal fasciculus and collaterals were projected mainly to the dorsal part of the NRPC and the NRG, and also to the medial vestibular nucleus. 6. Anterograde transport of WGA-HRP injected into FFH revealed that in the upper cervical spinal cord, stem axons were found in the ventral funiculus and ventral part of the lateral funiculus. Collateral projections and presumed bouton-like deposits were observed in the laminae VI–IX, especially in their medial part. In the brain stem, dense bundles of the descending fibres were found in the central and the medial tegmental tracts and in the medial longitudinal fasciculus. FFH neurones projected densely to the caudal half of the NRPC and to the rostral half of the NRG. Extremely dense projections to the inferior olive were noted.Abbreviations AM anteromedian nucleus of the Edinger-Westphal - BCC m. biventer cervicis and complexus - CCN central cervical nucleus - CP cerebral peduncle - CTT central tegmental tract - DAB diaminobenzidine - DAO dorsal accessory nucleus of the inferior olive - DW nucleus Darkschewitsch - FFH Forel's field H - FMN fasciculus mammillothalamics - FR fasciculus retroflexus - G genu of the facial nerve - HB habenula - HRP horseradish peroxidase - INC interstitial nucleus of Cajal - IO inferior olive - LGN lateral geniculate nucleus - LHT lateral hypothalamic nucleus - MAO medial accessory nucleus of the inferior olive - MB mammillary body - MLF medial longitudinal fasciculus - MTT medial tegmental tract - MVN medial vestibular nucleus - NRG nucleus reticularis gigantocellularis - NRPC nucleus reticularis pontis caudalis - NRTP nucleus reticularis tegmenti pontis - OT optic tract - PAG periaqueductal gray matter - PC posterior commissure - PCN posterior commissure nucleus - PF parafascicular nucleus - PH nucleus prepositus hypoglossi - PHT posterior hypothalamic nucleus - PN pontine nucleus - PO principal nucleus of the inferior olive - Py pyramid - RN red nucleus - RSNs reticulospinal neurones - SN substantia nigra - SNr substantia nigra pars reticulata - sPF subparafascicular nucleus - STH subthalamic nucleus - TB trapezoid body - TMB tetramethylbenzidine - V3 third ventricle - ZI zona incerta - VI abducens nucleus/nerve - XII nucleus hypoglossi  相似文献   

2.
Summary 1. We analysed the synaptic actions produced by Forel's field H (FFH) neurones on dorsal neck motoneurones and the pathways mediating the effects. 2. Stimulation of ipsilateral FFH induced negative field potentials of several hundred microvolts with the latency of about 1.1 ms in the medial ponto-medullary reticular formation, being largest in the ventral part of the nucleus reticularis pontis caudalis (NRPC), and in the dorsal part of the nucleus reticularis gigantocellularis (NRG). 3. Stimulation of ipsilateral FFH induced excitatory postsynaptic potentials (EPSPs) in 90% (47/52) and inhibitory postsynaptic potentials (IPSPs) in 19% (10/52) of the reticulospinal neurones (RSNs) in the NRPC and the NRG. Latencies of the EPSPs and IPSPs were 0.7–3.0 ms, the majority of which were in the monosynaptic range. The monosynaptic connexions were confirmed by spike triggered averarging technique both in excitatory (n=4) and inhibitory (n=2) pathways. 4. Single stimulation of FFH induced EPSPs at the segmental latencies of 0.3–1.0 ms in neck motoneurones, which were clearly in the monosynaptic range. Repetitive stimulation of FFH produced marked temporal facilitation of EPSPs in neck motoneurones. The facilitated components of the EPSPs had a little longer latencies and their amplitude reached several times as large as that evoked by single stimulation in all the tested motoneurones. These facilitated excitations are assumed to be mediated by RSNs in the NRPC and NRG, since RSNs were mono- and polysynaptically fired by stimulation of FFH and they were previously shown to directly project to neck moteneurones. 5. EPSPs were induced in 91% (82/91) of motoneurones supplying m. biventer cervicis and complexus (BCC; head elevator), 10% (3/29) of motoneurones supplying m. splenius (SPL; lateral head flexor). Eikewise, stimulation of FFH produced EMG responses in BCC muscles, while not in SPL muscle. Thus FFH neurones produce excitations preferentially in BCC motoneurones. 6. Systematic tracking in and around FFH revealed that the effective sites for evoking above effects were in FFH and extended caudally along their efferent axonal course. 7. These results suggested that FFH neurones connect with neck motoneurones (chiefly BCC, head elevator) mono-, diand/or polysynaptically and are mainly concerned with the control of vertical head movements.  相似文献   

3.
Single unit activities were recorded in Forel's field H (FFH) at the mesodiencephalic junction during orienting head movements in two alert cats under headfree conditions. Recordings were made of 63 neurons of which 20 showed phasic firing that preceded the onset of head movements by 20–100 ms and was temporally related to the dynamic phase of the orienting head movement. Nineteen of these neurons showed a preference for upward movements, while the remaining neuron preferred downward movements. Activities during orienting movements in eight different directions (each separated by 45°) were systematically analyzed for 12 of the 19 upward-preferring neurons. The activities were broadly tuned; in most of the neurons, maximum activity was observed for direct upward movements (+90°), but significant activity was also observed for ipsilateral and contralateral oblique upward movements (+45° and +135°). In these cases, the increase in activity preceded the onset of the movement. Some increase in activity was also observed for ipsilateral and contralateral horizontal, oblique downward and downward movements. However, the increase in activity in the latter cases occurred simultaneously with or lagged behind the onset of the movement and was often preceded by a decrease in activity. The same pattern of directional tuning was observed in the EMG of the biventer cervicis muscle, a target of FFH neurons. The preferred directions of the 12 upward-preferring neurons were estimated by calculating the vector sum of the activity and were distributed between +68° and +108°. The same amount of activity was observed for ipsilateral and contralateral oblique upward movements, suggesting that FFH neurons on both sides of the brainstem are equally activated even during oblique orienting. Input from the ipsilateral superior colliculus was investigated in 18 neurons, all of which were orthodromically activated with a latency of 0.8–1.8 ms, suggestive of a mono- or disynaptic excitatory connection. Seven neurons were identified as descending projection neurons by antidromic activation from the ipsilateral medullary reticular formation. Repetitive microstimulation of unilateral FFH induced oblique upward head movements and an accompanying torsional component, while simultaneous bilateral stimulation at comparable stimulus strength induced purely upward head movements. These results strongly suggest that the vertical component of orienting head movements is encoded by equal bilateral activation of the FFH.  相似文献   

4.
Summary Injection of radioactive leucine in various regions of the brain stem reticular formation has revealed the presence of ample crossed reticulo-reticular connections in the cat. The terminal area for the crossed fibers are almost mirror images of the injected sites. The findings made is another example that hitherto unknown fiber connections can be demonstrated by axoplasmic protein tracing.  相似文献   

5.
Summary Amygdalotegmental projections were studied in 26 cats after injections of horseradish peroxidase (HRP) in the diencephalon, midbrain and lower brain stem and in 6 cats after injection of 3H-leucine in the amygdala. Following HRP injections in the posterior hypothalamus, periaqueductal gray (PAG) and tegmentum many retrogradely labeled neurons were present in the central nucleus (CE) of the amygdala, primarily ipsilaterally. Injections of HRP in the posterior hypothalamus and mesencephalon also resulted in the labeling of neurons in the basal nucleus, pars magnocellularis.Following 3H-leucine injections in CE and adjacent structures autoradiographically labeled fibers were present in the stria terminalis and ventral amygdalofugal pathways. In the mesencephalon heavily labeled fiber bundles were located lateral to the red nucleus. Labeled fibers and terminals were distributed to the mesencephalic reticular formation, substantia nigra, ventral tegmental area and PAG. In the pontine and medullary tegmentum the bulk of passing fibers was located laterally in the reticular formation. Many labeled fibers and terminals were distributed to the parabrachial nuclei, locus coeruleus, nucleus subcoeruleus and lateral tegmental fields. Many terminals were also present in the solitary nucleus and dorsal motor nucleus of the vagus nerve.The location of the cells of origin and the distribution of the terminals of the amygdalotegmental projection suggest that this pathway plays an important role in the integration of somatic and autonomic responses associated with affective defense.Abbreviations A nucleus ambiguus - AL lateral amygdaloid nucleus - AQ cerebral aqueduct - BC brachium conjunctivum - BL basal amygdaloid nucleus, pars magnocellularis - BM basal amygdaloid nucleus, pars parvocellularis - BP brachium pontis - CE central amygdaloid nucleus - CI internal capsule - CN cochlear nucleus - CO cortical amygdaloid nucleus - CP cerebral peduncle - DCN dorsal column nuclei - DMV dorsal motor nucleus of the vagus nerve - E entopeduncular nucleus - F fornix - FLA longitudinal association bundle - GP globus pallidus - H hippocampal formation - 1C inferior colliculus - INJ injection site - LC locus coeruleus - IO inferior olive - LG lateral geniculate nucleus - LRN lateral reticular nucleus - LT lateral tegmental field - M medial amygdaloid nucleus - MB mammilary body - MG medial geniculate nucleus - ML medial lemniscus - MT medial tegmental field - MV motor nucleus of the trigeminus - OC optic chiasm - OT optic tract - P putamen - PAG periaqueductal gray - PB parabrachial nuclei - PC posterior commissure - PH posterior hypothalamus - PT pyramidal tract - PV principal sensory nucleus of the trigeminus - PYR pyriform cortex - R red nucleus - RF reticular formation - S solitary nucleus - SC nucleus subcoeruleus - SN substantia nigra - SO superior olive - SOL solitary nucleus - SPV spinal trigeminal complex - ST stria terminalis - VC vestibular complex - VTA ventral tegmental area - VII facial nucleus - XII hypoglossal nucleus  相似文献   

6.
Summary Excitatory inputs to neurons in the Forel's field H (FFH) related to visually induced vertical saccades from the ipsilateral superior colliculus (SC) were investigated in chronically prepared alert cats. By stimulation of the deep or intermediate layer of the SC, upward augmenting neurons (ANs) and one long-lead downward burst neuron (BN) were found to be activated monosynaptically, while medium-lead BNs were activated disynaptically. The monosynaptically activated neurons were not antidromically activated from the oculomotor nucleus, whereas disynaptically activated neurons were also activated antidromically from the inferior rectus subdivision of the nucleus. These results suggest that an excitatory input to the FFH from the SC for inducing vertical saccades of visual origin first reaches upward ANs and/or long-lead downward BNs in the FFH, which in turn drive medium-lead BNs in the same area synapsing with motoneurons related to vertical eye movements.Research fellow from the Department of Pathophysiology, Hebei Medical College, China  相似文献   

7.
Summary Injections of HRP in the nucleus raphe magnus and adjoining medial reticular formation in the cat resulted in many labeled neurons in the lateral part of the bed nucleus of the stria terminalis (BNST) but not in the medial part of this nucleus. HRP injections in the nucleus raphe pallidus and in the C2 segment of the spinal cord did not result in labeled neurons in the BNST. Injections of 3H-leucine in the BNST resulted in many labeled fibers in the brain stem. Labeled fiber bundles descended by way of the medial forebrain bundle and the central tegmental field to the lateral tegmental field of pons and medulla. Dense BNST projections could be observed to the substantia nigra pars compacta, the ventral tegmental area, the nucleus of the posterior commissure, the PAG (except its dorsolateral part), the cuneiform nucleus, the nucleus raphe dorsalis, the locus coeruleus, the nucleus subcoeruleus, the medial and lateral parabrachial nuclei, the lateral tegmental field of caudal pons and medulla and the nucleus raphe magnus and adjoining medial reticular formation. Furthermore many labeled fibers were present in the solitary nucleus, and in especially the peripheral parts of the dorsal vagal nucleus. Finally some fibers could be traced in the marginal layer of the rostral part of the caudal spinal trigeminal nucleus. These projections appear to be virtually identical to the ones derived from the medial part of the central nucleus of the amygdala (Hopkins and Holstege 1978). The possibility that the BNST and the medial and central amygdaloid nuclei must be considered as one anatomical entity is discussed.Abbreviations AA anterior amygdaloid nucleus - AC anterior commissure - ACN nucleus of the anterior commissure - ACO cortical amygdaloid nucleus - AL lateral amygdaloid nucleus - AM medial amygdaloid nucleus - APN anterior paraventricular thalamic nucleus - AQ cerebral aqueduct - BC brachium conjunctivum - BIC brachium of the inferior colliculus - BL basolateral amygdaloid nucleus - BNSTL lateral part of the bed nucleus of the stria terminalis - BNSTM medial part of the bed nucleus of the stria terminalis - BP brachium pontis - CA central nucleus of the amygdala - Cd caudate nucleus - CI inferior colliculus - CL claustrum - CN cochlear nucleus - CP posterior commissure - CR corpus restiforme - CSN superior central nucleus - CTF central tegmental field - CU cuneate nucleus - D nucleus of Darkschewitsch - EC external cuneate nucleus - F fornix - G gracile nucleus - GP globus pallidus - HL lateral habenular nucleus - IC interstitial nucleus of Cajal - ICA internal capsule - IO inferior olive - IP interpeduncular nucleus - LC locus coeruleus - LGN lateral geniculate nucleus - LP lateral posterior complex - LRN lateral reticular nucleus - MGN medial geniculate nucleus - MLF medial longitudinal fascicle - NAdg dorsal group of nucleus ambiguus - NPC nucleus of the posterior commissure - nV trigeminal nerve - nVII facial nerve - OC optic chiasm - OR optic radiation - OT optic tract - P pyramidal tract - PAG periaqueductal grey - PC cerebral peduncle - PO posterior complex of the thalamus - POA preoptic area - prV principal trigeminal nucleus - PTA pretectal area - Pu putamen - PUL pulvinar nucleus - R red nucleus - RF reticular formation - RM nucleus raphe magnus - RP nucleus raphe pallidus - RST rubrospinal tract - S solitary nucleus - SC suprachiasmatic nucleus - SCN nucleus subcoeruleus - SI substantia innominata - SM stria medullaris - SN substantia nigra - SO superior olive - SOL solitary nucleus - SON supraoptic nucleus - spV spinal trigeminal nucleus - spVcd spinal trigeminal nucleus pars caudalis - ST stria terminalis - TRF retroflex tract - VC vestibular complex - VTA ventral tegmental area of Tsai - III oculomotor nucleus - Vm motor trigeminal nucleus - VI abducens nucleus - VII facial nucleus - Xd dorsal vagal nucleus - XII hypoglossal nucleus  相似文献   

8.
Summary This study examines the nature of the efferent projection of omnipause neurons (OPNs) in the midline pontine tegmentum to medium-lead burst neurons (BNs) in the Forel's field H (FFH), both of which exhibit activities related to vertical eye movements, using chronically prepared alert cats. Antidromic spikes of the BNs evoked by oculomotor nucleus stimulation were suppressed by shortly preceding (less than 5 ms) microstimulation within the OPN area including actual recording sites of OPNs. Many OPNs were antidromically activated by microstimulation at recording sites of the BNs. Furthermore, systematic tracking in and around the FFH with the stimulating microelectrode substantiated that the OPNs issued axonal branches within the BN area. These results suggest direct inhibitory projection of OPNs to the BNs.  相似文献   

9.
Summary Saccadic omnipause neurons (OPNs) were intracellularly labelled with horseradish peroxidase (HRP) in alert cats and squirrel monkeys. The somas of OPNs were located on or near the midline in the caudal pons and their axons projected to regions of the pontomedullary reticular formation that contain the excitatory and inhibitory burst neurons.  相似文献   

10.
Summary Effects of electrical stimulation of the frontal eye field (FEF) upon activities of the lateral geniculate body (LG) were studied in encéphale isolé cats. In some experiments the effects were examined by recording field responses of the dorsal nucleus of LG (LGd) and the visual cortex (VC) to electrical stimulation of the optic chiasm (OX). Conditioning repetitive stimulation of FEF exerted no significant effects on the r1 wave of LGd responses but had a facilitatory effect on the r2 wave. FEF-induced facilitation of VC responses was prominent in the late postsynaptic components. These effects had latencies of 50–100 msec and durations of 200–500 msec. Transection of the midbrain showed that most of the FEF-effect was not mediated via the brainstem reticular formation.Extracellular unitary recordings were made from 125 neurons, of which 91 were LGd neurons, 23 neurons of the caudal part of the thalamic reticular nucleus (TRc) and 11 neurons of the ventral nucleus of LG (LGv). In 30 of 87 LGd relay neurons FEF stimuli increased response probabilities to OX stimuli and their spontaneous discharges. These FEF-facilitated LGd neurons were distinguished from the non-affected ones in that the former had longer OX-latencies than the latter. The FEF-facilitated neurons probably correspond to X neurons of LGd.In 17 TRc neurons the effects were inhibitory. Their time courses were similar to those of the facilitation in the LGd relay neurons. Seven LGv neurons received facilitatory effects from FEF. Among them 5 neurons showed short-latency (6.7–17 msec) responses to FEF single shocks.The FEF sites inducing conjugate lateral eye movements exerted stronger facilitatory effects than those inducing upward or centering eye movements did.It is suggested that the effects may subserve to cancel the inhibitory convergence onto X-cells just after saccadic eye movements so as to improve visual information transmission through LGd during the eye fixation.  相似文献   

11.
Summary Extracellular and intracellular recordings were made from spinocerebellar tract neurones of the central cervical nucleus (CCN) in C1–C3 segments of the anaesthetized cat. These neurones were identified by antidromic activation from the cerebellar peduncle. Stimulation of the ipsilateral dorsal root elicited extracellular spikes or EPSPs with a monosynaptic latency in almost all CCN neurones in the same segment (segmental input). Late excitatory effects were also observed in about one third of CCN neurones. The monosynaptic EPSP was occasionally followed by an IPSP. The excitatory input from the dorsal root to CCN neurones was extended over several segments for some CCN neurons (extrasegmental input). Monosynaptic excitation was evoked in CCN neurones after stimulation of dorsal neck muscle nerves as well; i.e. splenius (SPL), biventer cervicis and complexus (BCC), rectus capitus dorsalis, and obliquus capitus caudalis. Thresholds for this excitation were near the threshold of the nerve, suggesting that it originated from group I fibres. The component of excitation added after strong stimulation of neck muscle nerves would be attributed to group II fibres. When a CCN neurone received excitatory input from the nerve of one muscle, it was generally not affected by stimulation of other nerves in the same segment. Such muscle specificity of segmental input was the principal pattern of connexion of neck muscle afferents with CCN neurones. In some cases, however, excitatory convergence from SPL and BCC nerves onto single CCN neurones or excitation from the SPL nerve and inhibition from the BCC nerve were also observed. Nearly half of the CCN neurones received input from one muscle nerve of the same segment and not from the afferent of the same muscle of different segments, indicating a segment specificity of input. In the remaining CCN neurones, weaker excitatory effects were induced from afferents of different segments as well. In such extrasegmental effects, inputs to CCN neurones from caudal segments predominated in frequency over those from rostral segments. The origin of extrasegmental input was generally confined to the same muscle. Low threshold muscle afferents from the SPL and BCC were intraaxonally stained with HRP. The collaterals of the stained fibre distributed branchlets and terminals to the CCN, laminae VII, VIII, and motor nuclei. Two fibres responding to local muscle prodding or stretch showed a similar morphology. The findings indicated that muscle spindle afferents from primary endings projected to the CCN.Supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan  相似文献   

12.
Summary Unit activities of 148 secondary vestibular neurons related to the posterior semicircular canal were recorded extracellularly in anesthetized cats. Axonal projections of these neurons were examined by their antidromic responses to stimulation of the excitatory target motoneurons of the contralateral (c-) inferior rectus muscle (IR) and bilateral (bi-) motoneuron pools of longus capitis muscles, neck flexors, in the C1 segment (C1LC). The neurons were classified into 4 groups according to their axonal projections. The first group of neurons, termed vestibulo-oculo-collic (VOC) neurons, sent axon collaterals both to the c-IR motoneuron pool and to the c-C1LC motoneuron pool. The majority of them (72%) were located in the descending nucleus. The second group of neurons were termed vestibuloocular (VO) neurons and sent their axons to the c-IR motoneuron pool but not to the cervical cord. Most of them (86%) were located in the medial nucleus. The third group of neurons, termed vestibulo-collic (contralateral) (VCc) neurons, sent axons to the cC 1LC motoneuron pool via the contralateral ventral funiculus but not to the oculomotor nuclei. They were mostly (75%) found in the descending nucleus. The last group of neurons were vestibulo-collic (ipsilateral) (VCi) neurons, which gave off axons to the ipsilateral (i-) C1LC motoneuron pool via the ipsilateral ventral funiculus but not to the oculomotor nuclei. One of them also sent an axon collateral to the c-C1LC motoneuron pool. The majority of them (74%) were located in the ventral part of the lateral nucleus. It was also observed in some of the VOC and VCi neurons that they produced unitary EPSPs in the c-C1LC and i-C1LC motoneurons, respectively. Their synaptic sites were estimated to be on the cell somata and/or proximal dendrites of the motoneurons.  相似文献   

13.
Reticular neurons of the respiratory center are divided into three groups. One group is located in the medial zone of the center and receives afferent spike activity from structures of the respiratory apparatus and chemoreceptors. Another is located in the inspiratory and expiratory areas of the respiratory center, and takes part in integrating signals and activating the effector mechanisms of the center. The third group is found in both zones of the center and organizes its effector activity. Electrical stimulation of medulla oblongata nuclei could transform reticular neurons of the lateral zone of the center into respiratory neurons. Evidence for this was obtained in the form of short-latency and long-latency evoked potentials in reticular neurons. Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 84, No. 4, pp. 293–299, April, 1998.  相似文献   

14.
The projection from the nucleus prepositus hypoglossi (PH) to the superior colliculus (SC) has been proposed to provide a feedback control of collicular saccadic activities. The present study aimed to identify the functional properties of PH neurones projecting to the SC relative to eye movement parameters. Preposito-collicular neurones were identified in alert cats by antidromic invasion and collision tests following electrical stimulations of the contralateral SC. Their discharges were then correlated with the horizontal component of eye movements. Particular attention was given to the timing of discharges relative to saccade onsets. Most prepositocollicular neurones (12/14) displayed transient activities associated to eye velocity, and onsets preceded the saccade onset by 9.4–19.9 ms. The mean eye velocity sensitivity of these early preposito-collicular neurones (1.46±0.53 spikes/s per degree per second) was quite similar to that calculated from a sample of putative motoneurones or interneurones that have been recorded within abducens nucleus and quantified in the same conditions. The remaining two preposito-collicular neurones exhibited transient activity related to saccades, but this followed the transient putative motoneuronal discharge. These delayed neurones also had lower eye velocity sensitivities (0.38 sp/s per degree per second and 0.58 sp/s per degree per second, respectively) compared with early neurones. Both classes of preposito-collicular neurones also displayed a subsequent tonic activity correlated with the eye position. Taken together, these results demonstrate that preposito-collicular neurones code both eye position and eye velocity just like ocular motoneurones, but in a predictive manner. The anticipatory discharge of early neurones makes them likely candidates for the control of peak activities of saccade-related collicular neurones, particularly in the caudal colliculus. Delayed preposito-collicular neurones may also participate in the control of collicular activities, but probably in more rostral SC, where peak activities occur later during eye movements together with smaller motor error coding.  相似文献   

15.
Summary Spinocerebellar tract (SCT) neurones in and around the central cervical nucleus (CCN) were physiologically identified by antidromic activation of these cells on stimulation of the cerebellum. Among the Spinocerebellar tract cells thus identified, those ascending the contralateral spinal funiculi were found in the CCN and ventralwards, whereas those ascending the ipsilateral funiculi existed mostly dorsal to the CCN partly overlapping with crossed cells in the nucleus. Mapping sites from which CCN cells were antidromically activated showed that axons of the CCN-SCT cross at the same segment, ascend the ventral funiculus initially, the lateral funiculus at rostral C1 and the lateral border of the medulla to reach the cerebellar peduncle, enter the cerebellum mainly via the restiform body but possibly also via the superior peduncle. Systematic mapping of stimulation within the cerebellum indicated that the CCNSCT projects to the medial part of the anterior lobe and the posterior lobe bilaterally. Projection to lobules I–II was found in almost all CCN-SCT cells examined. Three fourths of CCN-SCT cells projected to the posterior lobe, as revealed by less extensive mapping. Mapping of axonal regions of the same single CCN-SCT cells showed that they project multifocally in the cerebellum, where projection to lobules I–II was common and that to other areas varied with individual cells. Conduction velocites decreased within the cerebellum probably as the result of repeated branching. Mossy fibre responses evoked on stimulation of the C2 dorsal root in cats with the transected dorsal funiculi were shown to be mediated mostly via the CCN-SCT. Mapping the field potential showed that the response was by far the largest in lobules I–II. This suggested that the terminals provided by the CCN-SCT are the densest in these lobules.Supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan  相似文献   

16.
Summary Somatic location, axonal trajectories and synaptic effects of inhibitory vestibulocollic neurons which were activated by selective stimulation of the anterior semicircular canal nerve (ACN) were studied in the anesthetized cat. ACN stimulation evoked disynaptic inhibitory postsynaptic potentials (IPSPs) in neck flexor motoneurons. This was seen in all the (64/64) tested motoneurons innervating the ipsilateral (i-) longus capitis (LC) and the i-sternocleidomastoideus (SCM) muscles and in 86% (38/44) of the motoneurons innervating the contralateral (c-) LC muscle. The inhibitory relay neurons, identified by orthodromic and antidromic responses to stimulation of the ACN and the i- and c-LC motoneuron pools, were classified as VCi (vestibulocollic neurons sending an axon to the i-LC motoneuron pool) and VCc (vestibulocollic neurons sending an axon to the c-LC motoneuron pool) neurons. Neither VCi nor VCc neurons were activated antidromically by localized stimulation of the ascending medial longitudinal fasciculus (asc. MLF) or the 3rd nuclei. They were located in the medial, descending and ventral lateral vestibular nuclei. It was also observed that VCi neurons produced unitary IPSPs in i-LC and i-SCM motoneurons in the C1 segment. Inhibitory synapses were estimated to be on the cell somata and/or the proximal dendrites of the motoneurons.  相似文献   

17.
Summary Dorsal neck motoneurones receive disynaptic tectal and pyramidal EPSPs via common reticulospinal neurones (RSNs). This study was aimed at identification of the RSNs projecting directly to neck motoneurones and mediating these EPSPs. 1. Stimulation of the tectum and the cerebral peduncle evoked monosynaptic descending volleys in the spinal cord, which were chiefly mediated by reticulospinal neurones in the pons and the medulla. Systematic tracking of the C3 and C7 segments was made to locate descending volleys in the spinal funiculi. The tectal monosynaptic volley was largest in the medial part of the ventral funiculus and decreased gradually as the recording electrode was moved to the lateral part of the ventral funiculus and the lateral funiculus. In contrast, the peduncle-evoked monosynaptic volley was distributed rather evenly in the ventral funiculus and the ventral half of the lateral funiculus. 2. Differences in funicular distribution of the two descending volleys suggest the existence of subgroups of RSNs which differed in strength of inputs from the two descending fibre systems and in the funicular location of descending axons. 3. The RSNs were classified into the following four groups; (1) mRSNs which descended in the medial part of the ventral funiculus, (2) in RSNs which descended in the ventrolateral funiculus, (3) 1RSNs which descended in the dorsal 2/3 of the lateral funiculus and (4) coRSNs which descended in the contralateral funiculi. The mRSNs were located in a fairly localized region corresponding to the nucleus reticularis pontis caudalis (N.r.p.c.), while inRSNs, 1RSNs and coRSNs were mainly in the nucleus reticularis gigantocellularis (N.r.g.), in the nucleus reticularis magnocellularis (N.r.m.) and in the nucleus reticularis ventralis (N.r.v.). RSNs were further divided into three types depending on the levels of projection. L-RSNs projected to the lumbar spinal segments. C-RSNs descended to the C6–C7 spinal segment but not to the lumbar segments. N-RSNs projected to the C3 but not to the C6–C7 segments. 4. Stimulation of the tectum and the cerebral peduncle produced monosynaptic negative field potentials in the medial two thirds of the reticular formation in the pons and medulla. Tectal field potentials were largest in the N.r.p.c. and the rostral part of the N.r.g., while pyramidal field potentials were largest in the N.r.g. Correspondingly, RSNs in the N.r.p.c. (mRSNs) received larger monosynaptic EPSPs from tectal than from pyramidal volleys, while RSNs in the N.r.g. (in-, 1- and coRSNs) received stronger input from the peduncle than from the tectum. 5. Stimulation of the C7 ventral but not the lateral funiculus evoked monosynaptic EPSPs on all the dorsal neck motoneurones tested. Stimulation of the L1 segment only produced monosynaptic EPSPs in 35% of the motoneurones. The L1 evoked EPSPs were much smaller than C7 evoked EPSPs. 6. The C7 evoked EPSPs (C7 EPSP) showed complete occlusion (collision) with the tectal or pyramidal disynaptic EPSPs. Similar results were obtained with L1 EPSPs. These results indicate that tectal and pyramidal disynaptic EPSPs in dorsal neck motoneurones were mediated chiefly by C-mRSNs and C-inRSNs and partly by L-RSNs.  相似文献   

18.
Summary The receptive fields of LGN cells were investigated with stationary light and dark spot and annulus stimuli. Stimulus size and background intensity were varied while stimulus/background contrast was kept constant.The speed of dark adaptation varied considerably from cell to cell. Dark adaptation made responses more sustained in all neurones and eliminated the oscillatory on-responses evoked under some conditions in the light-adapted cells. Dark adaptation led also to a disappearance of early phasic inhibition in on-responses, and increased response rise time and latency.The power of surround responses to inhibit centre responses decreased slightly at low levels of light adaptation in LGN cells but much less than in retinal ganglion cells. Some other traces of changing retinal surround effects also appeared in the LGN on dark adaptation. For example, the functional size of receptive fields increased at low levels of illuminance as has been observed in retinal ganglion cells and the receptive fields as estimated from response peaks were larger than those estimated from sustained components.Trainee of the European Training Programme in Brain and Behaviour Research, 1975.  相似文献   

19.
 The central cervical nucleus (CCN) of the cat receives input from upper cervical muscle afferents, particularly primary spindle afferents. Its axons cross in the spinal cord, and while in the contralateral restiform body give off collaterals to the vestibular nuclei. In order to study the connections between CCN axons and vestibular neurons, we stimulated the area of the CCN in decerebrate cats while recording intra- or extracellularly from neurons in the contralateral vestibular nuclei. CCN stimulation evoked excitatory postsynaptic potentials (EPSPs) or extracellularly recorded firing in the lateral, medial and descending vestibular nuclei. The latency of EPSPs (mean 1.6 ms) was on average 0.4 ms longer than the latency of antidromic spikes evoked in the CCN by stimulation of the contralateral vestibular nuclei (mean 1.2 ms), demonstrating that the excitation was typically monosynaptic. The results provide further evidence that the CCN is an important excitatory relay between upper cervical muscle afferents and neurons in the contralateral vestibular nuclei. Received: 1 August 1996 / Accepted: 16 December 1996  相似文献   

20.
Summary Visually responsive neurones of the cat's suprageniculate nucleus were categorized according to their responses to a variety of different types of light stimuli. Their velocity preferences were assessed quantitatively and have been found to predominate in the high range. The positions and dimensions of their receptive fields were determined and these tended to be found within a zone between the vertical meridian and 30–35°. Receptive fields had mean diameters smaller than those reported by others for the pulvinar-LP complex. From these and other electrophysiological data, inferences have been made of the likely sources of afferents providing visual driving. A proposal is offered for SGn visuotopic organization based on correlations of receptive field location with cell position, as determined through electrode track reconstructions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号