首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intestinal absorption characteristics and the efflux mechanisms of zolmitriptan, a new generation and highly selective 5-HT(1B/1D) receptor agonist used in the acute oral treatment of migraine, were investigated. A human intestinal cell line, Caco-2, was used as an in-vitro model of the intestinal mucosa to assess transepithelial transport of zolmitriptan. In the Caco-2 cells, the absorptive transport of zolmitriptan was pH dependent and the transport was enhanced at weakly alkali pH on the apical side. No concentration dependence and saturation were observed for the apical-to-basolateral and basolateral-to-apical transport of zolmitriptan at a concentration of 0.1-10 mM. The permeability ratio value was about 1.5-2.6 at a concentration of 0.1-2.0 mM. Inhibition experiments using verapamil, nifedipine and nimodipine as inhibitors were studied and indicated that P-glycoprotein participated in the transport of zolmitriptan. Inhibition of the Na+-H+ exchanger with amiloride resulted in a significant increase in absorption and a slight inhibition in secretion. This suggests that the Na+-H+ exchanger may be involved in the transport of zolmitriptan. The results indicated that the transport of zolmitriptan was mediated by both passive diffusion and active transport. A series of drug-drug interaction experiments were carried out between zolmitriptan and some drugs that may be co-administrated with zolmitriptan in the clinic. The results indicated that flunarizine, cetirizine, propranolol and atenolol potently decreased both the apical-to-basolateral and basolateral-to-apical transport rate of zolmitriptan. Cimetidine and aspirin slightly inhibited the apical-to-basolateral transport of zolmitriptan, but significantly decreased the basolateral-to-apical transport of zolmitriptan. Thus, the absorption drug-drug interactions should be considered when these drugs are co-administrated with zolmitriptan in the clinic.  相似文献   

2.
Inhibitors of glucose absorption play an important role in the treatment of diabetes. In this research, we report that silkworm powder has inhibitory effects on glucose absorption in human intestinal epithelial cells. Silkworm powder inhibited α-glucosidase activation and glucose transporter (SGLT1) expression. These results suggest that silkworm powder can be used as a natural functional food for the prevention and alleviation of type-2 diabetes.  相似文献   

3.
Okadaic acid (OA) is a shellfish toxin produced by dinoflagellates, in mussels. It is a potent tumour promoter and represents a potential threat to human health even at low concentrations. OA targets mainly the gastrointestinal tract in acute poisoning, causing diarrhoea. Therefore the present investigations were designed to study the ability of okadaic acid to induce cytotoxicity and DNA lesions in a human colonic cell line (Caco-2). Incubation of Caco-2 cells with OA (3.75-60 ng/ml, i.e. 4.6 x 10(-3)-7.5 x 10(-2) microM) causes a significant reduction in cell viability. Moreover, okadaic acid inhibits protein and DNA synthesis with, respectively, IC50 of 16 and 6.5 ng/ml after 24 h incubation. It also provokes cell cycle arrest, characterised by an increase in the number of S phase cells, correlated with a significant decrease in G0/G1 phase cells at high concentration. One of the main results obtained in these investigations is the apoptosis induced by OA in Caco-2 cells of intestinal origin, shown by DNA laddering in agarose gel electrophoresis (250-1000 base pairs). OA also induces clastogenic effects evaluated by DNA fragmentation analysis using the method of Higuchi and Aggarwal (52% for 60 ng/ml) and comet assay (increase of the frequency of comets and their tails length). Therefore, the cell death induced by OA seems clearly to be concentration-dependent after 24 h of incubation. The cytotoxic properties of okadaic acid and its ability to damage DNA result in cell death, mainly by apoptosis. Since consumption of shellfish contaminated with acceptable okadaic acid concentrations exposes colonic cells to harmful concentrations of this toxin, the possibility that OA would display its toxic effects on intestinal cells in vivo should be evaluated in human primary intestinal cells and human intestinal slices for cytotoxic effects, DNA fragmentation and apoptosis.  相似文献   

4.
Different absorption enhancing principles for a potent cyclopeptidic alpha(nu)beta(3)-antagonist (EMD 121974) were investigated in monolayers of a human intestinal cell line (Caco-2). Transepithelial transport was quantitated by reversed-phase high-performance liquid chromatography. Cytotoxic effects were characterized by determination of transepithelial electrical resistances (TEERs), propidium iodide (PI)-influx, FITC-phalloidin staining and the release of cytosolic lactate dehydrogenase (LDH). Medium chain fatty acids (MCFAs, NaC10, NaC12) and taurocholate (NaTC) were the most efficient enhancers of cyclopeptide and FITC-dextran 4400 permeability coefficients, displaying different time profiles of activity. Whereas NaTC (15 mM) showed almost a constant permeation enhancing effect from 20 min up to 120 min (ca. 12-fold), MCFA absorption enhancement was markedly dependent on incubation time (NaC10, 20 min: 1.2-fold, 120 min: 17-fold; NaC12, 20 min: 4.3-fold, 120 min: 13-fold). All cytotoxicity assays demonstrated that MCFAs were significantly more cytotoxic than NaTC. Ion pairing with hydrophobic amino acids and heptane sulfonate distinctly increased octanol-buffer partition coefficients of the cationic cyclopeptide but did not enhance its transepithelial permeability. Nanoparticles as well as beta-cyclodextrin neither affected integrity of the cells nor transport properties of the cyclopeptide. In summary, significant absorption enhancement was only observed with NaTC or MCFAs. Increase in permeability coefficients using NaTC occurred rapidly with acceptable cytotoxicities and merits further investigations.  相似文献   

5.
Fusarium species infestations of cereals crops occur worldwide. Fusarium toxins such as, deoxynivalenol (DON), zearalenone (ZEN) and fumonisin B1 (FB1) have been shown to cause diverse toxic effects in animals and also suspected of disease causation in humans. From the literature and mechanistic point of view, DON binds to the ribosomal peptidyl-transferase and inhibits protein synthesis specifically and DNA synthesis consequently. ZEN known to be genotoxic, binds to 17-beta-estradiol receptors, induces lipid peroxidation, cell death and inhibits protein and DNA synthesis. FB1 disrupts sphingolipid metabolism, induces lipid peroxidation altering the cell membrane and causing cell death. We intended to compare DON, ZEN and FB1 (1-150 microM) cytotoxic effect and the pathways leading to cell death and related to oxidative stress and macromolecules syntheses in a human intestinal cell line in order to tentatively classify them according to their respective potential toxicity. The comparison reveals that all three mycotoxins bear, at variable degree, the capability of inducing lipid peroxidation (MDA production) and could be classified above 10 microM in decreasing potency order FB1>DON>ZEN. This effect seems to be related to their common target that is the mitochondria as revealed by MTT test and seemingly not related to sphingoids accumulation concerning FB1. DON and ZEN also adversely affect lysosomes in contrast to FB1. The three mycotoxins inhibit protein synthesis with respective IC50 of 5, 8.8 and 19 microM for DON, FB1 and ZEN confirming that protein synthesis is a specific target of DON. DNA synthesis is inhibited by DON, ZEN and FB1 with respective IC50 of 1.7, 10 and 20 microM. However at higher concentrations DNA synthesis seems to be restored for FB1 and DON suggesting a promoter activity. Altogether the potency of the three mycotoxins in macromolecules inhibition is DON>ZEN>FB1 in Caco-2 cells. It appears then that FB1 acts rather through lipid peroxidation while DON affects rather DNA and protein synthesis.  相似文献   

6.
The transport of 10 amino acid ester prodrugs of levovirin (LVV) was investigated in the human intestinal Caco-2 cell line in order to overcome the poor oral bioavailability of LVV, an investigational drug for the treatment of hepatitis C infection. The prodrugs were designed to improve the permeability of LVV across the intestinal epithelium by targeting the di/tri-peptide carrier, PepT1. Caco-2 cell monolayers were employed to study the transport and hydrolysis properties of the prodrugs. Among all mono amino acid ester prodrugs studied, the LVV-5'-(L)-valine prodrug (R1518) exhibited the maximum increase (48-fold) in permeability with nearly complete conversion to LVV within 1 h. Di-amino acid esters did not offer significant enhancement in permeability comparing with mono amino acid esters and exhibited slower conversion to LVV in Caco2 cell monolayers. Pharmacokinetic screening studies of the prodrugs in rats yielded the highest fold increase (6.9-fold) of AUC with R1518 and in general displayed a similar trend to that observed in increases of permeability in Caco-2 cells. Mechanisms involved in the Caco-2 cell transport of R1518 were also investigated. Results of bi-directional transport studies support the involvement of carrier-mediated transport mechanisms for R1518, but not for the LVV-5'-(D)-valine prodrug or LVV. Moreover, the permeability of R1518 was found to be proton dependent. PepT1-mediated transport of R1518 was supported by results of competitive transport studies of R1518 with the PepT1 substrates enalapril, Gly-Sar, valganciclovir, and cephalexin. R1518 was also found to inhibit the permeability of valganciclovir and cephalexin. These results suggest that R1518 is a PepT1 substrate as well as an inhibitor.  相似文献   

7.
AIM: The characteristics of transepithelial transport and uptake of CPU-86017 {[7-(4-chlorbenzyl)-7,8,13,13α-tetrahydroberberine chloride, CTHB]}, a new antiarrhythmia agent and a new derivative of berberine, were investigated on epithelial cell line (Caco-2) to further understand the absorption mechanism of berberine and its derivatives. METHODS: Caco-2 cell was used. RESULTS: 1) The permeability coefficient from the apical (AP) to basolateral (BL) of CPU-86017 was approximately 5 times higher than that from BL-to-AP transport. The effects of a P-glycoprotein (P-gp) inhibitor-cyclosporin A, some surfactants, and lower pH on the transepithelial transport of CPU-86017 were also observed. Cyclosporine A at 7.5 mg/L had no effect on the transepithelial electrical resistance (TEER); an about 4-fold enhancement on the transepithlial transport of CPU-86017 was observed. Some surfactants (sodium citrate, sodium deoxycholate, and sodium dodecyl sulfate) at 100 μmol/L and low pH (pH=6.0) induced a reversible d  相似文献   

8.
AIM: The characteristics of transepithelial transport and uptake of CPU-86017 [[7-(4-chlorbenzyl)-7,8,13,13alpha-tetrahydroberberine chloride, CTHB]], a new antiarrhythmia agent and a new derivative of berberine, were investigated on epithelial cell line (Caco-2) to further understand the absorption mechanism of berberine and its derivatives. METHODS: Caco-2 cell was used. RESULTS: 1) The permeability coefficient from the apical (AP) to basolateral (BL) of CPU-86017 was approximately 5 times higher than that from BL-to-AP transport. The effects of a P-glycoprotein (P-gp) inhibitor-cyclosporin A, some surfactants, and lower pH on the transepithelial transport of CPU-86017 were also observed. Cyclosporine A at 7.5 mg/L had no effect on the transepithelial electrical resistance (TEER); an about 4-fold enhancement on the transepithlial transport of CPU-86017 was observed. Some surfactants (sodium citrate, sodium deoxycholate, and sodium dodecyl sulfate) at 100 micromol/L and low pH (pH=6.0) induced a reversible decrease of TEER; enhancements of the transepithelial transport of CPU-86017 were also observed with some surfactants; 2) In the process of uptake of CPU-86017, the initial uptake rates of CPU-86017 were saturable with a Vmax of (250+/-39) microg/min/g (protein) and Km of (0.90+/-0.12) mmol/L. This process was enhanced by cyclosporine A (7.5 mg/L) with a Vmax of (588+/-49) microg/min/g (protein) and Km (0.42+/-0.08) mmol/L. CONCLUSION: Some surfactants and P-gp inhibitors can be considered as enhancers of its transepithelial transport and uptake.  相似文献   

9.
1. Transintestinal absorption of gamma-aminobutyric acid (GABA) via a pH-dependent mechanism is demonstrated in the model human intestinal epithelial cell line Caco-2. 2. Experiments with BCECF [2',7',-bis(2-carboxyethyl)-5(6)- carboxyfluorescein]-loaded Caco-2 cells demonstrate that GABA transport across the apical membrane is coupled to proton flow into the cell. 3. Short-circuit current (ISC) measurements using Caco-2 cell monolayers under voltage-clamped conditions demonstrate that pH-dependent GABA transport is a rheogenic process even in the absence of extracellular Na+, consistent with H+/GABA symport. 4. A range of GABA analogues were tested for their abilities to: (a) inhibit pH-dependent [3H]GABA uptake across the apical membrane; (b) stimulate H+ flow across the apical surface of BCECF-loaded Caco-2 cell monolayers; (c) increase inward ISC across voltage-clamped Caco-2 cell monolayers. 5. Nipecotic acid, isonipecotic acid, D,L-beta-aminobutyric acid, and 3-amino-1-propanesulphonic acid each caused a marked acidification of intracellular pH and an increase in ISC when superfused at the apical surface of Caco-2 cell monolayers. In contrast L-alpha-amino-n-butyric acid failed to induce proton flow or ISC. The ability of these compounds to induce proton or current flow across the apical surface of this intestinal epithelium was closely related to the relative inhibitory effects on [3H]GABA uptake. 6. These observations demonstrate H+/GABA symport and suggest that this transport mechanism may be accessible as a route for oral absorption of therapeutically-useful GABA analogues.  相似文献   

10.
The transepithelial transport of TRH and its prodrug (N-octyloxycarbonyl) derivative was studied using the human colorectal carcinoma cell line Caco-2. No intact TRH prodrug was transported across the cells. Instead, TRH released from the prodrug was absorbed at rates comparable to those of labelled and unlabelled TRH. No metabolites of TRH could be detected. It can be concluded that the increased lipophilicity of the TRH prodrug is without effect on its transport characteristics.  相似文献   

11.
利用Caco-2细胞模型研究白鲜碱和茵芋碱在人小肠的吸收   总被引:3,自引:1,他引:3  
目的:研究中药化学成分白鲜碱和茵芋碱的人小肠吸收情况。方法:利用人源结肠腺癌细胞系Caco-2细胞单层模型观察白鲜碱和茵芋碱由绒毛面(AP端)到基底面(BL端)、BL端到AP端2个方向的转运过程。应用偶联紫外检测器的高效液相色谱法对上述2种生物碱进行定量分析,计算转运参数和表观渗透系数,并与阳性对照药普萘洛尔和阿替洛尔进行比较。结果:由AP端到BL端,白鲜碱和茵芋碱的表观渗透系数(Papp)分别为(1.59±0.14)×10-5cm.s-1和(3.19±0.09)×10-5cm.s-1;由BL端到AP端,白鲜碱和茵芋碱的Papp分别为(2.57±0.33)×10-5cm.s-1和(5.86±0.49)×10-5cm.s-1,与在Caco-2单层细胞模型上呈良好吸收的阳性对照药普萘洛尔的基本一致。结论:白鲜碱和茵芋碱可以通过小肠上皮细胞被动吸收进入体内,属于吸收良好的化合物。  相似文献   

12.
Silver nanoparticles are used in a wide range of consumer products such as clothing, cosmetics, household goods, articles of daily use and pesticides. Moreover, the use of a nanoscaled silver hydrosol has been requested in the European Union for even nutritional purposes. However, despite the wide applications of silver nanoparticles, there is a lack of information concerning their impact on human health. In order to investigate the effects of silver nanoparticles on human intestinal cells, we used the Caco-2 cell line and peptide-coated silver nanoparticles with defined colloidal, structural and interfacial properties. The particles display core diameter of 20 and 40 nm and were coated with the small peptide L-cysteine L-lysine L-lysine. Cell viability and proliferation were measured using Promegas CellTiter-Blue(?) Cell Viability assay, DAPI staining and impedance measurements. Apoptosis was determined by Annexin-V/7AAD staining and FACS analysis, membrane damage with Promegas LDH assay and reactive oxygen species by dichlorofluorescein assay. Exposure of proliferating Caco-2 cells to silver nanoparticle induced decreasing adherence capacity and cytotoxicity, whereby the formation of reactive oxygen species could be the mode of action. The effects were dependent on particle size (20, 40 nm), doses (5-100 μg/mL) and time of incubation (4-48 h). Apoptosis or membrane damage was not detected.  相似文献   

13.
Sulfonylurea hypoglycemic agents have interindividual variability in the gastrointestinal absorption rate. However, the absorption mechanism at the intestinal epithelium has not yet been clarified. To elucidate contribution of the specific mechanism for transepithelial transport of sulfonylureas, the apical-to-basolateral and basolateral-to-apical transport studies of tolbutamide were carried out using Caco-2 cell monolayers cultured on the polycarbonate membrane. The transported amounts of the substrate were measured by HPLC to estimate the apparent permeability coefficients (P(app)). In the apical-to-basolateral flux, the transport activity of tolbutamide was facilitated when the pH of the apical medium was more acidic than the basolateral one. ATP-depletion decreased the P(app) of tolbutamide. The kinetic analysis of the permeation rate indicated that the saturable process largely contributed to the tolbutamide flux. The P(app) of tolbutamide was lowered by an ionophore and monocarboxylic acids, while dicarboxylic acids and the inhibitor for the anion exchanger had no effect. In addition, mutual inhibition with benzoic acid was observed in transepithelial transport of tolbutamide. On the other hand, the permeation rate of tolbutamide from the basolateral to apical side was concentration-independent and neither affected by metabolic inhibitors, probenecid nor inhibitors for P-glycoprotein. In conclusion, these results suggest that apical-to-basolateral transport of tolbutamide across the Caco-2 cell monolayers is mediated by the pH-dependent specific system, presumably shared with other organic anions such as benzoic acid.  相似文献   

14.
15.
Transport characteristics of grepafloxacin and levofloxacin across the apical membrane of Caco-2 cells were examined. Both grepafloxacin and levofloxacin uptakes increased rapidly, and were temperature-dependent. Grepafloxacin and levofloxacin uptakes showed concentration-dependent saturation with Michaelis constants of 3.9 and 9.3 mM, respectively. Uptake of grepafloxacin and levofloxacin increased in Cl(-)-free and ATP depleted conditions, suggesting the involvement of an efflux transport system different from the uptake mechanism. However, cyclosporin A, a typical inhibitor of P-glycoprotein, did not affect the uptake of these drugs. Unlabeled grepafloxacin, unlabeled levofloxacin and quinidine inhibited the uptake of grepafloxacin and levofloxacin under Cl(-)-free conditions. Tetraethylammonium, cimetidine, p-aminohippurate, probenecid, amino acids, beta-lactam antibiotic or monocarboxylates did not inhibit the uptake of grepafloxacin and levofloxacin under the same conditions. In conclusion, our results suggested that grepafloxacin and levofloxacin uptakes were mediated by a specific transport system distinct from those for organic cations and anions, amino acids, dipeptides and monocarboxylates.  相似文献   

16.
《中南药学》2018,(1):64-67
目的探讨黄连小檗碱对人肠癌细胞株Caco-2细胞周期和细胞凋亡的影响及其作用机制。方法采用MTT法,检测不同时间点不同浓度黄连小檗碱对Caco-2细胞的增殖抑制作用;应用流式细胞术(Annexin V-FITC/PI双染法),检测不同浓度黄连小檗碱对Caco-2细胞周期和凋亡的影响。结果不同浓度的黄连小檗碱干预肠癌细胞Caco-2不同时间后,均具有一定的增殖抑制作用,在一定浓度范围内,可以剂量和时间依赖性的抑制Caco-2细胞增殖。黄连小檗碱干预细胞24 h后,可使Caco-2细胞停滞在G2/M期,诱导细胞凋亡(P<0.05)。结论黄连小檗碱可以显著抑制Caco-2细胞增殖,其作用机制可能与阻滞细胞周期从而诱导细胞凋亡有关。  相似文献   

17.
The transport characteristics of a selective peripheral H1 receptor antagonist, ebastine, a substrate for cytochrome P450 3A4, and its three major metabolites, i.e., the hydroxy metabolite of ebastine (M-OH), the pharmacologically active metabolite carebastine (Car), and the desbutyrophenone metabolite (des-BP), were studied in cultured human intestinal Caco-2 cells expressing a drug efflux pump, P-glycoprotein (P-gp), on the apical membrane. The polarized transport of [3H]cyclosporin A (CyA), mediated by P-gp in the basolateral to apical direction across the Caco-2 cell monolayers, was affected by the presence of ebastine in a concentration-dependent manner and significant inhibition was observed at high concentrations (>50 microM). M-OH (300 microM) also significantly inhibited whereas Car and des-BP did not. Although no marked polarized transport of [14C]ebastine in a secretory direction was observed in the Caco-2 systems, the flux in the basolateral to apical direction was slightly higher than that in the opposite direction at concentrations less than 30 microm. [14C]Ebastine (2 microM) uptake from the apical side was significantly increased in the presence of an excess of cold CyA, suggesting that the efflux process mediated by P-gp may be involved in the ebastine uptake by Caco-2 cells. Collectively, these results indicate that ebastine (and presumably M-OH) is transported via P-gp in Caco-2 cells, however, the affinity for P-gp is very low. It is unlikely that the secretory transport of ebastine mediated by P-gp will dramatically affect overall intestinal absorption in vivo because efficient passive diffusion of this drug should occur due to its high lipophilicity. However, it may be advantageous for its efficient first-pass metabolism.  相似文献   

18.
PURPOSE: Cosalane is a potent inhibitor of HIV replication with activity against a broad range of viral targets. However, oral bioavailability of this highly lipophilic compound is extremely poor (<1%). The purpose of this study is to screen a variety of permeation enhancers (cyclodextrin derivatives, cremophor EL, bile salts and mixed micelles) for their ability to enhance the transport of cosalane and its analogs/prodrugs across Caco-2 cell monolayers. METHODS: Cosalane and its different analogs/prodrugs were synthesized and their physicochemical properties were determined. Caco-2 cells were cultured at a density of 66,000 cells/cm(2) either on collagen coated clear polyester membranes or Transwell inserts. Side-bi-side diffusion cells and Transwell inserts were employed to study for the transport of cosalane and its analogs/prodrugs with various permeation enhancers across Caco-2 cell monolayers. RESULTS: Permeabilities of EH-3-39, EH-3-55 and EH-3-57 significantly improved compared to that of cosalane in the presence of bile salt, sodium desoxycholate. Among the various cyclodextrins studied, hydroxypropyl beta cyclodextrin (HP-beta-CD) and dimethyl beta cyclodextrin (DM-beta-CD) exhibited 22.3-fold and 19-fold permeability enhancement of cosalane respectively across Caco-2 cell monolayers. Sodium desoxycholate (10 mM) also showed a remarkable (105-fold) enhancement on the permeability of cosalane (P(app) 11.72+/-3.31 x 10(-6) cm/s) without causing any measurable cellular damage. Cremophor EL resulted in higher transport of 14C mannitol. The mechanism of enhancement effect can be mainly attributed to the alteration of membrane fluidity by cyclodextrin and opening of tight junctions by cremophor EL. CONCLUSIONS: Among the enhancers tested, 10 mM sodium desoxycholate and HP-beta-CD appear to be viable candidates for further development of an oral formulation of cosalane and its congeners.  相似文献   

19.
Carbon nanotubes (CNT) are among the more promising nanomaterials due to their potential applications. In this sense, the adverse effects that CNT can induce are of concern. In particular, carboxylic acid functionalized single wall carbon nanotubes (COOH-SWCNT) have shown to reduce cell viability and induce morphological effects on the human intestinal cell line Caco-2, but little is known about the toxic mechanisms involved. The aim of the present study was to investigate the oxidative stress responses of this cell line after 24 h exposure to COOH-SWCNT. Biomarkers assayed included lipid peroxidation (LPO), reactive oxygen species (ROS) generation, and enzymatic and non-enzymatic antioxidant defences. Results showed an increase in ROS from 100 μg/mL reaching 5.2-fold the basal value at the highest concentration assayed. An induction of catalase, superoxide dismutase and glutathione peroxidase activities was also observed, meanwhile glutathione reductase showed a reduced activity at 1000 μg/mL. Glutathione (GSH) levels also decreased (2.5-fold) at the highest level of exposure. Therefore, the antioxidant defences could not overwhelm the oxidative insult caused by COOH-SWCNT and LPO products increased in a concentration-dependent manner. We can conclude that oxidative stress plays a role in the pathogenicity induced by COOH-SWCNT on Caco-2 cells at the concentrations assayed.  相似文献   

20.
The aim of this study was to elucidate the characteristics of the transport of lactone and carboxylate forms of SN-38 (SN-38L and SN-38C, respectively), a metabolite of irinotecan hydrochloride (CPT-11), with the human intestinal epithelial cell line, Caco-2. We examined SN-38L and SN-38C uptake from the apical side into Caco-2, and the effects of various compounds on the uptake of SN-38L. SN-38L and SN-38C in the cells were determined by HPLC with a fluorescence detector. When either SN-38L (0.5?μM) or SN-38C (0.5?μM) was added extracellularly at 37°C, the accumulation of SN-38L into the cells was about 10-fold higher than that of SN-38C, suggesting a dominant role of the lactone form in the uptake of SN-38 into Caco-2. The accumulation of SN-38L in Caco-2 increased time-dependently up to 10?min at 37°C, whereas the accumulation markedly decreased at 4°C. The initial uptake rate of SN-38L approached saturation at high concentrations with Michaelis-Menten constant and 'Hill coefficient,' 2.84±1.00?μM and 2.13±1.14, respectively (mean±S.E.). The accumulation of SN-38L was markedly inhibited by baicalin, an active ingredient of a Chinese herbal medicine, Hange-Shashin-To, as well as CPT-11. The type of inhibition by baicalin was competitive. In contrast, concomitant sulfobromophthalein, taurocholate and estrone 3-sulfate significantly increased SN-38L uptake. These results suggest that apical uptake of SN-38 by Caco-2 is dominantly performed as a lactone form through a specific transporter, which is competitively inhibited by baicalin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号