首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: Myocyte death occurs by necrosis and caspase-mediated apoptosis in the setting of myocardial infarction. In vitro studies suggest that caspase activation within myocytes causes contractile protein degradation without inducing cell death. Thus, caspase activation may evoke left ventricular remodeling through 2 independent processes post-myocardial infarction. However, the effects of caspase activation on left ventricular geometry post-myocardial infarction remain unclear. This project applied broad-spectrum caspase inhibition to a chronic porcine model of myocardial infarction. METHODS: Coronary snares and sonomicrometry crystals in remote and area-at-risk regions were placed in pigs (n = 22, 34 kg). Geometric measurements at end diastole and end systole, including left ventricular area by echocardiography and interregional distance by sonomicrometry, were obtained at baseline. Coronary occlusion was instituted for 60 minutes, followed by reperfusion and repeated geometric measurements at 7 days, including left ventriculography. At reperfusion, pigs were randomized to saline (n = 12) or caspase inhibition (n = 10, IDN6734, 2 mg/kg intravenously, then 2 mg x kg x h for 24 hours) at a dose that achieved desired plasma concentrations (790 +/- 142 ng/mL) as predicted by prior pharmacokinetic studies. RESULTS: Infarct size and 24-hour troponin-I values were not significantly different between the saline and caspase inhibition groups (51% +/- 8% vs 42% +/- 6% and 189 +/- 20 ng/mL vs 152 +/- 26 ng/mL, respectively, P >.10). At 7 days, end-diastole volume was increased in both groups compared with reference control values (47 +/- 1 mL, P <.05), but it was decreased with caspase inhibition (72 +/- 4 mL) compared with saline (84 +/- 4 mL, P <.05). Similarly, end-diastole and end-systole areas increased by 32% +/- 3% and 81% +/- 16% in the saline group but were attenuated with caspase inhibition (19% +/- 3% and 31% +/- 10%, respectively, P <.05). End-diastole interregional distance increased by 30% +/- 7% in the saline group but was attenuated with caspase inhibition (12% +/- 5%, P <.05). CONCLUSION: Despite equivalent degrees of myocardial injury, caspase inhibition reduced post-myocardial infarction left ventricular remodeling as evidenced by multiple, independent assessments of left ventricular dilation. Thus, caspase activation alters left ventricular geometry in the absence of significant effects on myocardial injury.  相似文献   

2.
This experimental study was set up to investigate left ventricular function and remodelling after repeated ischaemic episodes using magnetic resonance imaging (MRI). A significant reduction in mortality due to coronary heart disease (CHD) has been explained by both a decline in the incidence of acute myocardial infarction (AMI) and an improved post-AMI survival rate, suggesting a change in the natural history of CHD. Experimental intracoronary microembolization can induce different ischaemic patterns and the functional impact of repeated ischaemic episodes different from occlusion of central epicardial arteries can be studied. In this study repeated intracoronary microembolizations were performed in 20 domestic pigs. After 129 d, MRI was performed for assessment of left ventricular volume, mass and wall stress. Six pigs underwent serial MRI at baseline, immediately after embolization and at the end of the observation period. Microembolizations induced acute myocardial infarct expansion and increased left ventricular wall stress preceding chronic remodelling. End systolic and end diastolic volumes increased from 15.1 +/- 2.7 cm3 to 41.3 +/- 11.5 cm 3 (p < 0.002), and from 52.0 +/- 6.7 cm3 to 81.1 +/- 9.2 cm3 (p < 0.0007), respectively. End systolic wall stress increased from and 17.5 +/- 2.7 to 29.7 +/- 6.2 N/m2 (p < 0.001). Left ventricular filling pressures and cardiac index were unchanged. Histological examination revealed a diffuse pattern of perivascular fibrosis covering 12 +/- 3% of the left ventricular wall. This study demonstrates that repeated ischaemic episodes different from confined regional myocardial infarctions induce acute infarct expansion and chronic left ventricular remodelling in pigs. Serial assessment of absolute left ventricular volumes and mass is important during acute/chronic remodelling.  相似文献   

3.
OBJECTIVE: The mechanism of higher incidence of ischemic mitral regurgitation in patients with inferior compared with anterior myocardial infarction despite less global left ventricular remodeling and dysfunction is controversial. We hypothesized that inferior myocardial infarction causes left ventricular remodeling, which displaces posterior papillary muscle away from its normal position, leading to ischemic mitral regurgitation. METHODS: In 103 patients with prior myocardial infarction (61 anterior and 42 inferior) and 20 normal control subjects, we evaluated the grade of ischemic mitral regurgitation on the basis of the percentage of Doppler jet area, left ventricular end-diastolic and end-systolic volumes, midsystolic mitral annular area, and midsystolic leaflet-tethering distance between papillary muscle tips and the contralateral anterior mitral annulus, which were determined by means of quantitative echocardiography. RESULTS: Global left ventricular dilatation and dysfunction were significantly less pronounced in patients with inferior myocardial infarction (left ventricular end-systolic volume: 52 +/- 18 vs 60 +/- 24 mL, inferior vs anterior infarction, P<.05; left ventricular ejection fraction: 51% +/- 9% vs 42% +/- 7%, P <.0001). However, the percentage of mitral regurgitation jet area and the incidence of significant regurgitation (percentage of jet area of 10% or greater) was greater in inferior infarction (percentage of jet area: 10.1% +/- 7.5% vs 4.4% +/- 7.0%, P =.0002; incidence: 16/42 (38%) vs 6/61 (10%), P <.0001). The mitral annulus (area = 8.2 +/- 1.2 cm2 in control subjects) was similarly dilated in both inferior and anterior myocardial infarction (9.7 +/- 1.7 vs. 9.5 +/- 2.3 cm2, no significant difference), and the anterior papillary muscle-tethering distance (33.8 +/- 2.6 mm in control subjects) was also similarly and mildly increased in both groups (35.2 +/- 2.4 vs 35.2 +/- 2.8 mm, no significant difference). However, the posterior papillary muscle-tethering distance (33.3 +/- 2.3 mm in control subjects) was significantly greater in inferior compared with anterior myocardial infarction (38.3 +/- 4.1 vs 34.7 +/- 2.9 mm, P =.0001). Multiple stepwise regression analysis identified the increase in posterior papillary muscle-tethering distance divided by body surface area as an independent contributing factor to the percentage of mitral regurgitation jet area (r2 = 0.70, P <.0001). CONCLUSIONS: It is suggested that the higher incidence and greater severity of ischemic mitral regurgitation in patients with inferior compared with anterior myocardial infarction can be related to more severe geometric changes in the mitral valve apparatus with greater displacement of posterior papillary muscle caused by localized inferior basal left ventricular remodeling, which results in therapeutic implications for potential benefit of procedures, such as infarct plication and leaflet or chordal elongation, to reduce leaflet tethering.  相似文献   

4.
OBJECTIVE: Myocardial infarction leads to cardiomyocyte loss. The cytokine leukemia inhibitory factor regulates the differentiation and growth of embryonic and adult heart tissue. This study examined the effects of gene transfer of leukemia inhibitory factor in infarcted rat hearts. METHODS: Lewis rats underwent ligation of the left anterior descending coronary artery and direct injection of adenovirus encoding leukemia inhibitory factor (n = 10) or null transgene as control (n = 10) into the myocardium bordering the ischemic area. A sham operation group (n = 10) underwent thoracotomy without ligation. After 6 weeks, the following parameters were evaluated: cardiac function with a pressure-volume conductance catheter, left ventricular geometry and architecture by histologic methods; myocardial fibrosis by Masson trichrome staining, apoptosis by terminal deoxynucleotidal transferase-mediated deoxyuridine triphosphate nick-end labeling assay, and cardiomyocyte size by immunofluorescence. RESULTS: Rats with overexpression of leukemia inhibitory factor had more preserved myocardium and less fibrosis in both the infarct and its border zone. The border zone in leukemia inhibitory factor-treated animals contained fewer apoptotic nuclei (1.6% +/- 0.1% vs 3.3% +/- 0.2%, P < .05) than that in control animals and demonstrated cardiomyocytes with larger cross-sectional areas (910 +/- 60 microm 2 vs 480 +/- 30 microm 2 , P < .05). Leukemia inhibitory factor-treated animals had increased left ventricular wall thickness (2.1 +/- 0.1 mm vs 1.8 +/- 0.1 mm, P < .05) and less dilation of the left ventricular cavity (237 +/- 22 microL vs 301 +/- 16 microL, P < .05). They also had improved cardiac function, as measured by maximum change in pressure over time (3950 +/- 360 mm Hg/s vs 2750 +/- 230 mm Hg/s, P < .05) and the slopes of the maximum change in pressure over time-end-diastolic volume relationship (68 +/- 5 mm Hg/[s . microL] vs 46 +/- 6 mm Hg/[s . microL], P < .05) and the preload recruitable stroke work relationship (89 +/- 10 mm Hg vs 44 +/- 4 mm Hg, P < .05). CONCLUSIONS: Myocardial gene transfer of leukemia inhibitory factor preserved cardiac tissue, geometry, and function after myocardial infarction in rats.  相似文献   

5.
OBJECTIVE: Myocardial infarct expansion and subsequent left ventricular remodeling are associated with increased incidence of congestive failure and mortality. Collagen is known to denature and contract when heated above 65 degrees C. We therefore tested the hypothesis that radio frequency heating of myocardial infarct tissue with application of a restraining patch causes a sustained reduction in myocardial infarct area and left ventricular volume. METHODS: Thirteen male Dorset sheep underwent surgical coronary artery ligation. At least 14 weeks later, animals were randomized to either radio frequency infarct heating (95 degrees C) with application of a restraining patch or a sham operation. Before treatment, after treatment, and 10 weeks later, left ventricular volume was measured with transdiaphragmatic echocardiography and myocardial infarct area was measured with an array of sonomicrometry crystals. RESULTS: Radio frequency infarct heating causes an acute decrease of 34% (-215 +/- 82 mm(2); P =.0002) in infarct area at end-diastole that is maintained at 10 weeks (-144 +/- 79 mm(2); P =.0002). Radio frequency infarct heating causes a downward trend in end-diastolic left ventricular volume measured by echocardiography of 20% (-15.7 +/- 6.3 mL; P = no significant difference) and end-systolic left ventricular volume of 32% (-17.1 +/- 9.8 mL; P =.09), which are significantly decreased at 10 weeks (-13.6 +/- 22.3 mL; P =.007 and -15.3 +/- 21.9 mL; P =.008, respectively). Radio frequency infarct heating causes an acute improvement in systolic function (P <.001), a sustained increase in left ventricular ejection fraction (+0.11%; P =.06), and preserved stroke volume. CONCLUSION: Radio frequency heating of chronic left ventricular myocardial infarct causes a sustained reduction in infarct area and left ventricular volume. This technique may beneficially reverse infarct expansion and left ventricular remodeling after myocardial infarction.  相似文献   

6.
BACKGROUND: Locally delivered angiogenic growth factors and cell implantation have been proposed for patients with myocardial infarcts without a possibility of percutaneous or surgical revascularization. The goal of this study was to compare the effects of these techniques in an experimental model of myocardial infarct. METHODS: Left ventricular myocardial infarction was created in 27 sheep by ligation of 2 coronary arteries. Three weeks after creation of the infarct, animals were randomized into 4 groups. In group 1, sheep received a culture medium injection to the infarct area (control group); group 2 underwent autologous myoblast implantation; group 3 received vascular endothelial growth factor; and group 4 received injection of both vascular endothelial growth factor and myoblasts. Evaluation included serum troponin IC levels, echocardiography (2-dimensional and color kinesis), and immunohistologic studies for quantitative analysis of capillaries (3 months after surgery). RESULTS: Four animals died of refractory ventricular fibrillation during myocardial infarction; 2 died after surgery because of stroke and 2 because of infections. Serum troponin increased to 45.6 +/- 4.7 ng/mL at postinfarction day 2. Echocardiography at 3 months showed a significant limitation of left ventricular dilation in the cell group (57 +/- 11.1 mL) and in the cell plus vascular endothelial growth factor group (58.6 +/- 6.6 mL: control group, 74.4 +/- 11.2 mL; vascular endothelial growth factor group, 68.1 +/- 3.4 mL). Color kinesis echography showed important improvements of regional fractional area change in the cell group (from 13.6% +/- 0.8% to 21.1% +/- 1.5%) and in the cell plus vascular endothelial growth factor group (from 12.8% +/- 0.9% to 18.7% +/- 2.3%). The number of capillaries increased in the peri-infarct region of the vascular endothelial growth factor group (1036 +/- 75: control group, 785 +/- 31; cell group, 830 +/- 75; cell plus vascular endothelial growth factor group, 831 +/- 83). CONCLUSIONS: In the cell therapy groups, regional ventricular contractility improved and heart dilatation was limited compared with either vascular endothelial growth factor or control; thus, postischemic remodeling was reduced. Angiogenesis was demonstrated in the vascular endothelial growth factor group, without improvement of ventricular function and remodeling. To improve local conditions for cell survival, further studies are warranted on prevascularization of myocardial scars with angiogenic therapy.  相似文献   

7.
BACKGROUND: Tumor necrosis factor (TNF) causes myocardial extracellular matrix remodeling and fibrosis in myocardial infarction and chronic heart failure models. Pre-clinical and clinical trials of TNF inhibition in chronic heart failure have shown conflicting results. This study examined the effects of the administration of a TNF inhibitor immediately after myocardial infarction on the development of heart failure. METHODS: Lewis rats underwent coronary artery ligation and then received either intravenous etanercept (n = 14), a soluble dimerized TNF receptor that inhibits TNF, or saline as control (n = 13). Leukocyte infiltration into the infarct borderzone was evaluated 4 days post-ligation in 7 animals (etanercept = 4, control = 3). After 6 weeks, the following parameters were evaluated in the remaining animals: cardiac function with a pressure-volume conductance catheter, left ventricular (LV) geometry, and borderzone collagenase activity. RESULTS: Etanercept rats had significantly less borderzone leukocyte infiltration 4 days post-infarction than controls (10.7 +/- 0.5 vs 18.0, +/-2.0 cells/high power field; p < 0.05). At 6 weeks, TNF inhibition resulted in significantly reduced borderzone collagenase activity (110 +/- 30 vs 470 +/- 140 activity units; p < 0.05) and increased LV wall thickness (2.1 +/- 0.1 vs 1.8 +/- 0.1 mm, p < 0.05). Etanercept rats had better systolic function as measured by maximum LV pressure (84 +/- 3 mm Hg vs 68 +/- 5 mm Hg, p < 0.05) and the maximum change in left ventricular pressure over time (maximum dP/dt) (3,110 +/- 230 vs 2,260 +/- 190 mm Hg/sec, p < 0.05), and better diastolic function as measured by minimum dP/dt (-3,060 +/- 240 vs -1,860 +/- 230 mm Hg/sec; p < 0.05) and the relaxation time constant (14.6 +/- 0.6 vs 17.9 +/- 1.2 msec; p < 0.05). CONCLUSIONS: TNF inhibition after infarction reduced leukocyte infiltration and extracellular matrix turnover and preserved cardiac function.  相似文献   

8.
BACKGROUND: Surgical coronary revascularization with cardiopulmonary bypass and cardioplegia has been associated with reperfusion injury. The serine protease inhibitor aprotinin has been suggested to reduce reperfusion injury, yet a clinically relevant study examining regional ischemia under conditions of cardiopulmonary bypass and cardioplegia has not been performed. METHODS: Pigs were subjected to 30 minutes of regional myocardial ischemia by distal left anterior descending coronary artery occlusion, followed by 60 minutes of cardiopulmonary bypass with 45 minutes of cardioplegic arrest and 90 minutes of post-cardiopulmonary bypass reperfusion. The treatment group (n = 6) was administered aprotinin systemically (40,000 kallikrein-inhibiting units [KIU]/kg intravenous loading dose, 40,000 KIU/kg pump prime, and 10,000 KIU x kg(-1) x h(-1) intravenous continuous infusion). Control animals (n = 6) received crystalloid solution. Global and regional myocardial functions were analyzed by the left ventricular+dP/dt and the percentage segment shortening, respectively. Left ventricular infarct size was measured by tetrazolium staining. Tissue myeloperoxidase activity was measured. Myocardial sections were immunohistochemically stained for nitrotyrosine. Coronary microvessel function was studied by videomicroscopy. RESULTS: Myocardial infarct size was decreased with aprotinin treatment (27.0% +/- 3.5% vs 45.3% +/- 3.0%, aprotinin vs control; P <.05). Myocardium from the ischemic territory showed diminished nitrotyrosine staining in aprotinin-treated animals versus controls, and this was significant by grade (1.3 +/- 0.2 vs 3.2 +/- 0.2, aprotinin vs control; P <.01). In the aprotinin group, coronary microvessel relaxation improved most in response to the endothelium-dependent agonist adenosine diphosphate (44.7% +/- 3.2% vs 19.7% +/- 1.7%, aprotinin vs control; P <.01). No significant improvements in myocardial function were observed with aprotinin treatment. CONCLUSIONS: Aprotinin reduces reperfusion injury after regional ischemia and cardioplegic arrest. Protease inhibition may represent a molecular strategy to prevent postoperative myocardial injury after surgical revascularization with cardiopulmonary bypass.  相似文献   

9.
An ovine model of postinfarction dilated cardiomyopathy   总被引:4,自引:0,他引:4  
BACKGROUND: Coronary arterial disease is the major cause of congestive heart failure, but suitable animal models of postinfarction, dilated cardiomyopathy do not exist. This article describes an ovine model that develops after an anterobasal infarction. METHODS: The distribution of ovine myocardium supplied by the first two diagonal branches of the left homonymous artery were determined in 20 slaughterhouse hearts and eight live sheep using methylene blue and tetrazolium injections, respectively. Seven additional animals had the infarction and underwent serial hemodynamic, microsphere and echocardiographic studies more than 8 weeks and histologic studies at the eighth week. Infarcts represented 24.6% +/- 4.7% and 23.9% +/- 2.2% of the left ventricular mass in slaughterhouse and live hearts, respectively. RESULTS: During remodeling, left ventricular end-systolic and end-diastolic volumes increased 115% and 73%, respectively, ejection fraction decreased from 41.2% +/- 6.7% to 29.1% +/- 5.7%, systolic wall thickening remote from the infarct decreased by 68%, sphericity index increased from 0.465 +/- 0.088 to 0.524 +/- 0.038, and left ventricular end-diastolic pressure increased from 1.7 +/- 1.0 to 8.2 +/- 3.5 mm Hg. Serial microsphere measurements documented normal blood flow (1.34 mL/g per minute) to all uninfarcted myocardium and 22% of normal to the infarct. Viable myocardium showed mild interstitial fibrosis. CONCLUSIONS: This ovine model meets all criteria for postinfarction, dilated cardiomyopathy and has the advantages of controlling for variations in coronary arterial anatomy, collateral vascularity, and differences in the numbers, location, and severity of atherosclerotic lesions that confound human studies of the pathogenesis of this disease. This simple model contains only infarcted and fully perfused, hypocontractile myocardium produced by a moderate-sized, regional infarction.  相似文献   

10.
Background. After acute myocardial infarction, regional myocardial wall strains and stresses change and a complex cellular and biochemical response is initiated to remodel the ventricle. This study tests the hypothesis that changes in regional ventricular wall strains affect regional collagen accumulation and collagenase activity.

Methods. Fourteen sheep had acute anteroapical infarction that progressively expands into left ventricular aneurysm within 8 weeks. In 7 sheep, infarct expansion was restrained by prior placement of mesh over the area at risk. Fourteen days after infarction, and after hemodynamic and echocardiographic measurements, animals were euthanized for histology, measurements of hydroxyproline, matrix metalloproteinase-1 (MMP-1 or collagenase) and MMP-2 (gelatinase) activity, as well as collagen type I and III in infarcted, borderzone, and remote myocardium.

Results. Restraining infarct expansion does not change collagen content or MMP-1 or MMP-2 activity in the infarct, but significantly increases the ratio of collagen I/III. In borderzone and remote myocardium infarct, restraint significantly increases collagen content and significantly reduces MMP-1 activity. MMP-2 activity is reduced (p = 0.059) in borderzone myocardium only. Between groups, the ratio of type I/III fibrillar collagen does not change in borderzone myocardium.

Conclusions. Fourteen days after acute myocardial infarction, restraining infarct expansion increases collagen accumulation in borderzone and remote myocardium, which may prevent expansion of hypocontractile, fully perfused “remodeling myocardium” adjacent to the infarct. This study demonstrates that changes in regional myocardial wall strain alter the cellular and biochemical processes involved in postinfarction ventricular remodeling.  相似文献   


11.
Background: Recent evidence indicates that volatile anesthetics exert protective effects during myocardial ischemia and reperfusion. The authors tested the hypothesis that sevoflurane decreases myocardial infarct size by activating adenosine triphosphate-sensitive potassium (KATP) channels and reduces the time threshold of ischemic preconditioning necessary to protect against infarction.

Methods: Barbiturate-anesthetized dogs (n = 75) were instrumented for measurement of aortic and left ventricular pressures and maximum rate of increase of left ventricular pressure and were subjected to a 60-min left anterior descending (LAD) coronary artery occlusion followed by 3-h reperfusion. In four separate groups, dogs received vehicle or the KATP channel antagonist glyburide (0.1 mg/kg intravenously), and 1 minimum alveolar concentration sevoflurane (administered until immediately before coronary artery occlusion) in the presence or absence of glyburide. In three additional experimental groups, sevoflurane was discontinued 30 min (memory) before the 60-min LAD occlusion or a 2-min LAD occlusion as an ischemic preconditioning stimulus was used with or without subsequent sevoflurane (with memory) pretreatment. Regional myocardial perfusion and infarct size were measured with radioactive microspheres and triphenyltetrazolium staining, respectively.

Results: Vehicle (23 +/- 1% of the area at risk; mean +/- SEM) and glyburide (23 +/- 2%) alone produced equivalent effects on myocardial infarct size. Sevoflurane significantly (P < 0.05) decreased infarct size (13 +/- 2%). This beneficial effect was abolished by glyburide (21 +/- 3%). Neither the 2-min LAD occlusion nor sevoflurane followed by 30 min of memory were protective alone, but together, sevoflurane enhanced the effects of the brief ischemic stimulus and profoundly reduced infarct size (9 +/- 2%).  相似文献   


12.
Yau TM  Tomita S  Weisel RD  Jia ZQ  Tumiati LC  Mickle DA  Li RK 《The Annals of thoracic surgery》2003,75(1):169-76; discussion 176-7
BACKGROUND: Cell transplantation may restore function after myocardial infarction, but the optimal cell type remains controversial. We compared autologous bone marrow stromal cells (BMCs) with autologous heart cells (HCs) in a porcine myocardial infarction model. METHODS: Yorkshire pigs underwent coil occlusion of the left anterior descending artery. Bone marrow stromal cells were obtained from sternal marrow and HCs were obtained by left ventricular biopsy, then cultured for 4 weeks. Four weeks after infarction, a 99mTc-sestamibi single-photon emission tomography (99mTc-MIBI SPECT) scan was performed and the pigs were then transplanted with BMCs (n = 7), HCs (n = 7), or culture medium (n = 14). Four weeks after transplantation, 99mTc-MIBI SPECT scanning was repeated to evaluate regional perfusion. Pressure-volume loops were constructed from micromanometer and conductance catheter data to evaluate left ventricular function. Hearts were evaluated histologically. RESULTS: Bone marrow stromal cells and HCs engrafted within the infarct and assumed a myocyte morphology. SPECT MIBI scans showed increased perfusion in the infarct in cell-transplanted pigs, while perfusion decreased in the control pigs. Heart cell transplantation improved preload-recruitable stroke work and HC and BMC transplantation both shifted the end-systolic pressure-volume relation to the left. Both BMCs and HCs prevented thinning and expansion of the infarct region, and some BMCs differentiated into endothelial cells in newly formed blood vessels perfusing the infarct. CONCLUSIONS: Both BMCs and HCs engrafted in the infarct region and improved let ventricular function by preventing infarct thinning. Bone marrow stromal cells demonstrated greater plasticity in vivo, and may offer a practical alternative to HC transplantation to restore function and perfusion after a myocardial infarction.  相似文献   

13.
BACKGROUND: Recent evidence indicates that volatile anesthetics exert protective effects during myocardial ischemia and reperfusion. The authors tested the hypothesis that sevoflurane decreases myocardial infarct size by activating adenosine triphosphate-sensitive potassium (K(ATP)) channels and reduces the time threshold of ischemic preconditioning necessary to protect against infarction. METHODS: Barbiturate-anesthetized dogs (n = 75) were instrumented for measurement of aortic and left ventricular pressures and maximum rate of increase of left ventricular pressure and were subjected to a 60-min left anterior descending (LAD) coronary artery occlusion followed by 3-h reperfusion. In four separate groups, dogs received vehicle or the K(ATP) channel antagonist glyburide (0.1 mg/kg intravenously), and 1 minimum alveolar concentration sevoflurane (administered until immediately before coronary artery occlusion) in the presence or absence of glyburide. In three additional experimental groups, sevoflurane was discontinued 30 min (memory) before the 60-min LAD occlusion or a 2-min LAD occlusion as an ischemic preconditioning stimulus was used with or without subsequent sevoflurane (with memory) pretreatment. Regional myocardial perfusion and infarct size were measured with radioactive microspheres and triphenyltetrazolium staining, respectively. RESULTS: Vehicle (23 +/- 1% of the area at risk; mean +/- SEM) and glyburide (23 +/- 2%) alone produced equivalent effects on myocardial infarct size. Sevoflurane significantly (P < 0.05) decreased infarct size (13 +/- 2%). This beneficial effect was abolished by glyburide (21 +/- 3%). Neither the 2-min LAD occlusion nor sevoflurane followed by 30 min of memory were protective alone, but together, sevoflurane enhanced the effects of the brief ischemic stimulus and profoundly reduced infarct size (9 +/- 2%). CONCLUSION: Sevoflurane reduces myocardial infarct size by activating K(ATP) channels and reduces the time threshold for ischemic preconditioning independent of hemodynamic effects in vivo.  相似文献   

14.
目的探讨自体骨髓间充质干细胞(m arrow m esenchym a l stem ce lls,M SC s)-小肠黏膜下层(sm a llin testina l subm ucosa,S IS)构建的组织工程心肌补片,移植于陈旧性心肌梗死区后对心功能及缺血区建立侧支循环的影响。方法将已建立急性心肌梗死模型后6周的黑山羊16只,随机分为实验组和对照组,实验组抽取自体骨髓,经体外分离M SC s,进行培养、传代,以第3代细胞行5-B rdU标记并与S IS支架材料复合培养5 d,制备M SC s-S IS组织工程心肌补片。将其缝合至陈旧性心肌梗死区;对照组仅行假手术处理。于植入后6周,采用超声心动图观察两组动物心功能变化,数字减影血管造影选择性左冠状动脉造影观察缺血心肌侧支循环的建立。结果术后6周实验组及对照组:心博出量、左心室射血分数分别为42.81±4.91、37.06±4.75 m l和59.20%±5.41%和44.56%±4.23%,组间差异均有统计学意义(P<0.05);左心室舒张末期容积、左室收缩末期容积分别为72.55±8.13、83.31±8.61 m l和29.75±5.98、46.25±6.68 m l,组间差异均有统计学意义(P<0.05);左心室舒张功能各项指标分别为:E峰最大速度分别为54.85±6.35 cm/s和43.14±4.81cm/s(P<0.01);A峰最大速度分别为52.33±6.65 cm/s和56.91±6.34 cm/s(P>0.05)。超声心动图显示对照组左室腔扩张明显,室壁运动明显减弱,梗死区呈瘤样扩张,局部室壁反常运动;实验组左室腔明显小于对照组,室壁运动较对照组强,心尖梗死区扩张不明显。选择性左冠状动脉造影见实验组左冠状动脉前降支远端与回旋支间明显侧支循环建立。结论M SC s-S IS构建的组织工程心肌补片移植于黑山羊陈旧性心肌梗死区后侧支循环建立,心功能有明显改善作用。  相似文献   

15.
BACKGROUND: Preconditioning and inhibition of sodium-proton exchange attenuate myocardial ischemia-reperfusion injury by means of independent mechanisms that might act additively when used together. The hypothesis of this study is that treatment with a sodium-proton exchange inhibitor and a mitochondrial adenosine triphosphate-sensitive potassium channel opener produces superior functional recovery and a greater decrease in left ventricular infarct size compared with treatment with either drug alone in a model of severe global ischemia. METHODS: Isolated crystalloid-perfused rat hearts (n = 8 hearts per group) were administered vehicle (control, 0.04% dimethyl sulfoxide), diazoxide (100 micromol/L in 0.04% dimethyl sulfoxide), cariporide (10 micromol /L in 0.04% dimethyl sulfoxide), or diazoxide and cariporide before 40 minutes of ischemia at 35.5 degrees C to 36.5 degrees C and 30 minutes of reperfusion. RESULTS: The combination group had superior postischemic systolic function compared with that seen in the cariporide, diazoxide, and control groups (recovery of developed pressure: 91% +/- 7% vs 26% +/- 5%, 35% +/- 6%, and 16% +/- 3%, respectively; P <.05). Postischemic diastolic function in the combination group was superior compared with that seen in the other groups (change(pre-post) diastolic pressure of 67 +/- 4 mm Hg with control, 49 +/- 11 mm Hg with diazoxide, 59 +/- 10 mm Hg with cariporide, and 3 +/- 3 mm Hg with diazoxide and cariporide combination; P <.05). The left ventricular infarct area was less in the combination group compared with that in the cariporide, diazoxide, and control groups (6% +/- 2% vs 35% +/- 7%, 25% +/- 3%, and 37% +/- 9%, respectively; P <.05). CONCLUSIONS: Combining a selective mitochondrial adenosine triphosphate-sensitive potassium channel opener with a selective reversible inhibitor of sarcolemmal sodium-proton exchange improves recovery of contractile function from severe global ischemia in the isolated buffer-perfused rat heart. The putative mechanism for this benefit is superior protection of mitochondrial function.  相似文献   

16.
BACKGROUND: Ventricular remodeling with chamber dilation and wall thinning is seen in postinfarction heart failure. Growth hormone induces myocardial hypertrophy when oversecreted. We hypothesized that localized myocardial hypertrophy induced by gene transfer of growth hormone could inhibit remodeling and preserve cardiac function after myocardial infarction. METHODS: Rats underwent direct intramyocardial injection of adenovirus encoding either human growth hormone (n = 9) or empty null vector as control (n = 9) 3 weeks after ligation of the left anterior descending coronary artery. Analysis of the following was performed 3 weeks after delivery: hemodynamics, ventricular geometry, cardiomyocyte fiber size, and serum growth hormone levels. RESULTS: The growth hormone group had significantly better systolic cardiac function as measured by maximum left ventricular pressure (73.6 +/- 6.9 mm Hg versus control 63.7 +/- 7.8 mm Hg, p < 0.05) and maximum dP/dt (2845 +/- 453 mm Hg/s versus 1949 +/- 605 mm Hg/s, p < 0.005), and diastolic function as measured by minimum dP/dt (-2520 +/- 402 mm Hg/s versus -1500 +/- 774 mm Hg/s, p < 0.01). Ventricular geometry was preserved in the growth hormone group (ventricular diameter 12.2 +/- 0.7 mm versus control 13.1 +/- 0.4 mm, p < 0.05; borderzone wall thickness 2.0 +/- 0.2 mm versus 1.5 +/- 0.1 mm, p < 0.001), and was associated with cardiomyocyte hypertrophy (6.09 +/- 0.63 microm versus 4.66 +/- 0.55 microm, p < 0.005). Local myocardial expression of growth hormone was confirmed, whereas serum levels were undetectable after 3 weeks. CONCLUSIONS: Local myocardial overexpression of growth hormone after myocardial infarction resulted in cardiomyocyte hypertrophy, attenuated ventricular remodeling, and improved systolic and diastolic cardiac function. The induction of localized myocardial hypertrophy presents a novel therapeutic approach for the treatment of ischemic heart failure.  相似文献   

17.
Inhibition of glycogen synthase kinase (GSK)-beta protects against ischemia-reperfusion injury. Brief exposure to isoflurane before and during early reperfusion after coronary artery occlusion also protects against infarction. Whether GSK-beta mediates this action is unknown. We tested the hypothesis that GSK inhibition enhances isoflurane-induced postconditioning. Rabbits (n = 88; 6 to 7 per group) subjected to a 30-min coronary occlusion followed by 3 h reperfusion received saline, isoflurane (0.5 or 1.0 minimum alveolar concentration [MAC]) administered for 3 min before and 2 min after reperfusion, the selective GSK inhibitor SB216763 (SB21; 0.2 or 0.6 mg/kg), or 0.5 MAC isoflurane plus 0.2 mg/kg SB21. Other groups of rabbits pretreated with phosphatidylinositol-3 kinase (PI3K) inhibitor wortmannin (0.6 mg/kg), 70-kDa ribosomal protein s6 kinase (p70s6K) inhibitor rapamycin (0.25 mg/kg), or mitochondrial permeability transition pore (mPTP) opener atractyloside (5 mg/kg) received 0.6 mg/kg SB21 or 0.5 MAC isoflurane plus 0.2 mg/kg SB21. Additional groups received the mPTP inhibitor, cyclosporin A (5 mg/kg), plus 0.2 mg/kg SB21 with or without atractyloside pretreatment. Isoflurane (1.0 but not 0.5 MAC) and SB21 (0.6 but not 0.2 mg/kg) reduced (P < 0.05) infarct size (21% +/- 5%, 44% +/- 7%, 23% +/- 4%, and 46% +/- 2%, respectively, of left ventricular area at risk, mean+/- sd; triphenyltetrazolium staining) as compared with control (42% +/- 6%). Isoflurane (0.5 MAC) plus 0.2 mg/kg SB21 and cyclosporin A plus 0.2 mg/kg SB21 produced similar degrees of protection (24% +/- 4% and 27% +/- 6%, respectively). Atractyloside but not wortmannin or rapamycin abolished protection produced by 0.6 mg/kg SB21 and 0.5 MAC isoflurane plus 0.2 mg/kg SB21. Thus, GSK inhibition enhances isoflurane-induced protection against infarction during early reperfusion via a mPTP-dependent mechanism.  相似文献   

18.
OBJECTIVES: To prove whether intramyocardial transplantation of combined skeletal myoblasts (SM) and mononuclear bone marrow stem cells is superior to the isolated transplantation of these cell types after myocardial infarction in rats. METHODS: In 67 male Fischer rats myocardial infarction was induced by direct ligature of the LAD. Seven days postinfarction baseline echocardiography and intramyocardial cell transplantation were performed. Via lateral thoracotomy 200 microl containing either 10(7) SMs or 10(7) bone marrow-derived mononuclear cells (BM-MNC) or a combination of 5x10(6) of both cell types (MB) were injected in 10-15 sites in and around the infarct zone. In controls (C) 200 microl of cell-free medium were injected in the same manner. Before injection both cell types were stained using a fluorescent cell linker kit (PKH, Sigma). In addition, SMs were transfected with green fluorescent protein. Nine weeks postinfarction follow-up echocardiography was performed and animals were sacrificed for further analysis. RESULTS: At baseline echocardiography there was no difference in left ventricular ejection fraction (LVEF; C, SM, BM-MNC, MB: 60.1+/-3.2, 53.3+/-10.2, 53.1+/-8.7, 49+/-9.0%) and left ventricular end diastolic diameter (LVEDD; C, SM, BM-MNC, MB: 6.5+/-0.8, 5.17+/-0.8, 5.77+/-1.4, 6.25+/-0.8 mm) between the different therapeutic groups. Eight weeks after cell transplantation LVEDD was significantly increased in all animals except those that received a combination of myoblasts and bone marrow stem cells (MB; C, SM, BM-MNC, MB: 7.7+/-0.6 mm, P=0.001; 7.7+/-1.5 mm, P<0.001; 7.7+/-1.1 mm, P=0.005; 6.6+/-1.7 mm, P=0.397. At the same time LVEF decreased significantly in the control group (C), stayed unchanged in animals that received bone marrow stem cells (BM-MNC) and increased in animals that received myoblasts (SM) and a combination of both cell types (MB; C, SM, BM-MNC, MB: 45.3+/-7.0%, P=0.05; 63.9+/-15.4%, P=0.044; 54.3+/-6.3%, P=0.607; 63.0+/-11.5%, P=0.039). CONCLUSIONS: The present data show that the concept of combining SMs with bone marrow-derived stem cells may be of clinical relevance by merging the beneficial effects of each cell line and potentially reducing the required cell quantity. Further studies are required to identify the exact mechanisms underlying this synergy and to allow full exploitation of its therapeutic potential.  相似文献   

19.
In some patients acute myocardial infarction and/or infarct expansion induces progressive left ventricular dilatation that eventually leads to heart failure and death. The five year mortality after onset of heart failure is 50%. Chronically stretched viable myocardium adjacent to or remote from an expanding infarction initiates a myopathic process that leads to progressive myocyte apoptosis and adverse postinfarction remodeling. Revascularization of stunned or hibernating myocardium restores contractility and benefits patients in heart failure; however, revascularization does not restore contractility to myopathic, remodeling myocardium. Contemporary operations for heart failure temporarily reduce ventricular wall stress, but fail to reverse stretch induced myocyte apoptosis, which may not be reversible. Logically, prevention of this myopathic process after acute infarction seems required to extend survival. It follows that surgeons should operate before adverse postinfarction left ventricular remodeling occurs, using new operations, rather than afterwards.  相似文献   

20.
OBJECTIVES: Transplantation of fetal cardiomyocytes improves function of infarcted myocardium but raises availability, immunologic, and ethical issues that justify the investigation of alternate cell types, among which skeletal myoblasts are attractive candidates. METHODS: Myocardial infarction was created in rats by means of coronary artery ligation. One week later, the animals were reoperated on and intramyocardially injected with culture growth medium alone (controls, n = 15), fetal cardiomyocytes (5 x 10(6) cells, n = 11), or neonatal skeletal myoblasts (5 x 10(6) cells, n = 16). The injections consisted of a 150-microL volume and were made in the core of the infarct, and the animals were immunosuppressed. Left ventricular function was assessed by echocardiography immediately before transplantation and 1 month thereafter. Myoblast-transplanted hearts were then immunohistologically processed for the expression of skeletal muscle-specific embryonic myosin heavy chain and cardiac-specific connexin 43. RESULTS: The left ventricular ejection fraction markedly increased in the fetal and myoblast groups from 39.3% +/- 3.9% to 45% +/- 3.4% (P =.086) and from 40.4% +/- 3.6% to 47.3% +/- 4.4% (P =.034), respectively, whereas it decreased in untreated animals from 40.6% +/- 4% to 36.7% +/- 2.7%. Transplanted myoblasts could be identified in all animals by the positive staining for skeletal muscle myosin. Conversely, clusters of connexin 43 were not observed on these skeletal muscle cells. CONCLUSIONS: These results support the hypothesis that skeletal myoblasts are as effective as fetal cardiomyocytes for improving postinfarction left ventricular function. The clinical relevance of these findings is based on the possibility for skeletal myoblasts to be harvested from the patient himself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号