首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
1. To determine the possible role of the primate pretectal nucleus of the optic tract (NOT) in the generation of optokinetic and smooth-pursuit eye movements, we recorded the activity of 155 single units in four behaving rhesus macaques. The monkeys were trained to fixate a stationary target spot during visual testing and to track a small moving spot in a variety of visual environments. 2. The majority (82%) of NOT neurons responded only to visual stimuli. Most units responded vigorously for large-field (70 x 50 degrees) moving visual stimuli and responded less, if at all, during smooth-pursuit eye movements in the dark; many of these units had large receptive fields (greater than 10 x 10 degrees) that included the fovea. The remaining visual units responded more vigorously during smooth-pursuit eye movements in the dark than during movement of large-field visual stimuli; all but one had small receptive fields (less than 10 x 10 degrees) that included the fovea. For all visual units that responded during smooth pursuit, extinction of the small moving target so briefly that pursuit continued caused the firing rates to drop to resting levels, confirming that the discharge was due to visual stimulation of receptive fields with foveal and perifoveal movement sensitivity and not to smooth-pursuit eye movements per se. 3. Eighteen percent of all NOT units ceased their tonic discharge in association with all saccades including the quick phases accompanying optokinetic or vestibular nystagmus. The pause in firing began after saccade onset, was unrelated to saccade duration, and occurred even in complete darkness. 4. Most (90%) of the visual NOT units were direction selective. They exhibited an increase in firing above resting during horizontal (ipsilateral) background movement and/or during smooth pursuit of a moving spot and a decrease in firing during contralateral movement. 5. The firing rates of NOT units were highly dependent on stimulus velocity. All had velocity thresholds of less than 1 degree/s and exhibited a monotonic increase in firing rate with visual stimulus velocity over part (n = 90%) or all (n = 10%) of the tested range (i.e., 1-200 degrees/s). Most NOT units exhibited velocity tuning with an average preferred velocity of 64 degrees/s.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The human visual system is strikingly insensitive to speed changes attributed to the need to infer visual acceleration, observed during stationary fixation, indirectly by comparing velocities integrated over time. The objective of this study was to test if smooth pursuit eye movements improve the detection of speed changes. This was expected for two reasons: first, pursuit reduces the retinal image slip velocity, leading to smaller Weber fractions for velocity changes; secondly, pursuit provides acceleration-dependent retinal position cues unavailable during stationary fixation such as displacements of the target image away from the fovea due to unexpected changes in target velocity. In a first set of experiments thresholds for just noticeable speed changes were measured in ten healthy human subjects confronted with a horizontally moving target, changing its velocity unpredictably during its ramp-like movement. During stationary fixation, the Weber fraction averaged 0.13 for a starting velocity of the target being 15°/s. Smooth pursuit of the same target significantly reduced the Weber fraction down to 0.08. In a second set of experiments, the discrimination of speed changes was tested in patients (n=10) with pursuit disturbances characterized by increased retinal image slip and unidirectional retinal image displacements. These patients showed a strong perceptual bias to report speed increments and an insensitivity to speed decrements. We argue that this asymmetry is a necessary consequence of a mechanism exploiting retinal position errors for the detection of speed change, confronted with directionally biased errors due to the pursuit impairment. In summary, the detection of speed changes is facilitated by pursuit eye movements but is highly susceptible to pursuit insufficiencies.  相似文献   

3.
When tracking a moving target in the natural world with pursuit eye movement, our visual system must compensate for the self-induced retinal slip of the visual features in the background to enable us to perceive their actual motion. We previously reported that the speed of the background stimulus in space is represented by dorsal medial superior temporal (MSTd) neurons in the monkey cortex, which compensate for retinal image motion resulting from eye movements when the direction of the pursuit and background motion are parallel to the preferred direction of each neuron. To further characterize the compensation observed in the MSTd responses to the background motion, we recorded single unit activities in cortical areas middle temporal (MT) and MSTd, and we selected neurons responsive to a large-field visual stimulus. We studied their responses to the large-field stimulus in the background while monkeys pursued a moving target and while fixated a stationary target. We investigated whether compensation for retinal image motion of the background depended on the speed of pursuit. We also asked whether the directional selectivity of each neuron in relation to the external world remained the same even during pursuit and whether compensation for retinal image motion occurred irrespective of the direction of the pursuit. We found that the majority of the MSTd neurons responded to the visual motion in space by compensating for the image motion on the retina resulting from the pursuit regardless of pursuit speed and direction, whereas most of the MT neurons responded in relation to the genuine retinal image motion.  相似文献   

4.
Eye-head (EH) neurons within the medial vestibular nuclei are thought to be the primary input to the extraocular motoneurons during smooth pursuit: they receive direct projections from the cerebellar flocculus/ventral paraflocculus, and in turn, project to the abducens motor nucleus. Here, we recorded from EH neurons during head-restrained smooth pursuit and head-unrestrained combined eye-head pursuit (gaze pursuit). During head-restrained smooth pursuit of sinusoidal and step-ramp target motion, each neuron's response was well described by a simple model that included resting discharge (bias), eye position, and velocity terms. Moreover, eye acceleration, as well as eye position, velocity, and acceleration error (error = target movement - eye movement) signals played no role in shaping neuronal discharges. During head-unrestrained gaze pursuit, EH neuron responses reflected the summation of their head-movement sensitivity during passive whole-body rotation in the dark and gaze-movement sensitivity during smooth pursuit. Indeed, EH neuron responses were well predicted by their head- and gaze-movement sensitivity during these two paradigms across conditions (e.g., combined eye-head gaze pursuit, smooth pursuit, whole-body rotation in the dark, whole-body rotation while viewing a target moving with the head (i.e., cancellation), and passive rotation of the head-on-body). Thus our results imply that vestibular inputs, but not the activation of neck proprioceptors, influence EH neuron responses during head-on-body movements. This latter proposal was confirmed by demonstrating a complete absence of modulation in the same neurons during passive rotation of the monkey's body beneath its neck. Taken together our results show that during gaze pursuit EH neurons carry vestibular- as well as gaze-related information to extraocular motoneurons. We propose that this vestibular-related modulation is offset by inputs from other premotor inputs, and that the responses of vestibuloocular reflex interneurons (i.e., position-vestibular-pause neurons) are consistent with such a proposal.  相似文献   

5.
The directional selectivity of the visual response properties was determined in 148 neurons, all located in area MT of three hemispheres of two macaque monkeys. The perferred direction of every neuron was obtained by analyzing the response obtained by a circular movement of the background while the monkeys fixated a stationary target. The distribution of the preferred directions was isotropic and showed no ipsiversive bias. MT neurons were excited in a directionally selective manner during the execution of optokinetic nystagmus, in a similar way to that produced by visual stimulation during fixation. The majority of neurons showed a sensitivity to the velocity of retinal image slip. Activity during the execution of optokinetic nystagmus could be traced back to residual retinal image slip in the direction of optokinetic stimulation. No dynamic effects of the neuronal activity during the build-up of eye velocity in early optokinetic nystagmus were observed. Obviously, the activity in area MT did not reflect the charging of the velocity storage mechanism. Accordingly, following the cessation of stimulation, the activity dropped to the level of spontaneous activity and did not parallel the execution of optokinetic afternystagmus. These results suggest that area MT is not part of the velocity storage mechanism and, furthermore, that the storage mechanism must be downstream of area MT in the processing of visual motion for the generation of the optokinetic nystagmus and afternystagmus.  相似文献   

6.
When a large-field image is suddenly moved in front of an observer, an ocular following response (OFR) with short latency (<60 ms in monkey and <85 ms in human) is observed. Previous studies have shown that neurons in the pretectal nucleus of the optic tract (NOT) of the monkey respond to movements of large-field visual stimuli. To understand the potential role of the NOT in the OFR, we first recorded single-unit activity in the NOT of four monkeys (Macaca fuscata). Sixty-six NOT neurons preferred large-field ipsiversive visual motion. In 86% (49/57) of the neurons, optimal directions were distributed over +/-30 degrees from ipsilateral. NOT units were sensitive to the speed of the visual motion; 54% (27/50) preferred slow (< or =20 degrees/s), 22% (11/50) preferred fast (> or =80 degrees/s) and the remainder intermediate speeds. Their response latencies to the moving visual scene were very short (approximately 51 ms), and 44% of them led the onset of the OFR by 10 ms or more. To characterize the response properties of these neurons, we reconstructed the temporal firing patterns of 17 NOT neurons, using the acceleration, velocity, position and bias components of retinal image slip or eye movements during the OFR by a least squares error method. For each stimulus speed fitting condition, using either retinal slip or eye movements, their firing patterns were matched to some extent although the goodness of fit was better using retinal slip than when eye movements were used. Neither of these models could be applied independently of stimulus speed, suggesting that the firing pattern of the NOT neurons represented information associated with retinal slip or eye movements during the OFR, over a limited range. To provide further evidence that the NOT is involved in generating the OFR, we placed unilateral microinjections of muscimol into the NOT. Following the muscimol injection, we observed a approximately 50% decrease in eye velocity of the OFR toward the side of injection regardless of stimulus speed, while only a weak effect was observed in the OFR during contraversive or vertical image motion. These results suggest that the NOT may play a role in the initiation and support of the short-latency ocular following response.  相似文献   

7.
1. The anatomical connections of the dorsolateral pontine nucleus (DLPN) implicate it in the production of smooth-pursuit eye movements. It receives inputs from cortical structures believed to be involved in visual motion processing (middle temporal cortex) or motion execution (posterior parietal cortex) and projects to the flocculus of the cerebellum, which is involved in smooth pursuit. To determine the role of the DLPN in smooth pursuit, we have studied the discharge patterns of 191 DLPN neurons in five monkeys trained to make smooth-pursuit eye movements of a spot moving either across a patterned background or in darkness. 2. Four unit types could be distinguished. Visual units (15%) discharged in response to movement of a large textured pattern, often in a direction-selective fashion but not during smooth pursuit of a spot in the dark. Eye movement neurons (31%) discharged during sinusoidal smooth pursuit in the dark with peak discharge rate either at peak eye position or peak eye velocity, but they showed no response during background movement or during other visual stimulation. These units continued to discharge when the target was extinguished (blanked) briefly, and the monkey continued to make smooth eye movements in the dark. The majority (54%) of our DLPN units discharged during both smooth pursuit in the dark and background movement while the monkey fixated. Blanking the target during smooth pursuit revealed that these units fell into two distinct classes. Visual pursuit units ceased discharging during a blank, suggesting that they had only a visual sensitivity. Pursuit and visual units continued to discharge during the blank, indicating that they had a combined oculomotor and visual sensitivity. 3. Ninety-five percent of the units that discharged during smooth pursuit were direction selective. These units had rather broad directional tuning curves with widths at half height ranging from 65 to 180 degrees. Many preferred directions for DLPN units were observed, although the vertical and near-vertical directions predominated. 4. Most units that responded to large-field background movement were direction selective. During sinusoidal movement of a large-field background, half of them also discharged in relation to stimulus velocity, whereas others did not.  相似文献   

8.
The intermediate and deep layers of the monkey superior colliculus (SC) comprise a retinotopically organized map for eye movements. The rostral end of this map, corresponding to the representation of the fovea, contains neurons that have been referred to as "fixation cells" because they discharge tonically during active fixation and pause during the generation of most saccades. These neurons also possess movement fields and are most active for targets close to the fixation point. Because the parafoveal locations encoded by these neurons are also important for guiding pursuit eye movements, we studied these neurons in two monkeys as they generated smooth pursuit. We found that fixation cells exhibit the same directional preferences during pursuit as during small saccades-they increase their discharge during movements toward the contralateral side and decrease their discharge during movements toward the ipsilateral side. This pursuit-related activity could be observed during saccade-free pursuit and was not predictive of small saccades that often accompanied pursuit. When we plotted the discharge rate from individual neurons during pursuit as a function of the position error associated with the moving target, we found tuning curves with peaks within a few degrees contralateral of the fovea. We compared these pursuit-related tuning curves from each neuron to the tuning curves for a saccade task from which we separately measured the visual, delay, and peri-saccadic activity. We found the highest and most consistent correlation with the delay activity recorded while the monkey viewed parafoveal stimuli during fixation. The directional preferences exhibited during pursuit can therefore be attributed to the tuning of these neurons for contralateral locations near the fovea. These results support the idea that fixation cells are the rostral extension of the buildup neurons found in the more caudal colliculus and that their activity conveys information about the size of the mismatch between a parafoveal stimulus and the currently foveated location. Because the generation of pursuit requires a break from fixation, the pursuit-related activity indicates that these neurons are not strictly involved with maintaining fixation. Conversely, because activity during the delay period was found for many neurons even when no eye movement was made, these neurons are also not obligatorily related to the generation of a movement. Thus the tonic activity of these rostral neurons provides a potential position-error signal rather than a motor command-a principle that may be applicable to buildup neurons elsewhere in the SC.  相似文献   

9.
Previous studies in monkeys have shown that pursuit training during orthogonal whole body rotation results in task-dependent, predictive pursuit eye movements. We examined whether pursuit neurons in the frontal eye fields (FEF) are involved in predictive pursuit induced by vestibular-pursuit training. Two monkeys were rotated horizontally at 20°/s for 0.5 s either rightward or leftward with random inter-trial intervals. This chair motion trajectory was synchronized with orthogonal target motion at 20°/s for 0.5 s either upward or downward. Monkeys were rewarded for pursuing the target. Vertical pursuit eye velocities and discharge of 23 vertical pursuit neurons to vertical target motion were compared before training and during the last 5 min of the 25–45 min training. The latencies of discharge modulation of 61% of the neurons (14/23) shortened after vestibular-pursuit training in association with a shortening of pursuit latency. However, their discharge modulation occurred after 100 ms following the onset of pursuit eye velocity. Only four neurons (4/23 = 17%) discharged before the eye movement onset. A significant change was not observed in eye velocity and FEF pursuit neuron discharge during pursuit alone after training without vestibular stimulation. Vestibular stimulation alone without a target after training induced no clear response. These results suggest that the adaptive change in response to pursuit prediction was induced by vestibular inputs in the presence of target pursuit. FEF pursuit neurons are unlikely to be involved in the initial stage of generating predictive eye movements. We suggest that they may participate in the maintenance of predictive pursuit.  相似文献   

10.
Summary The activity of neurons in the dorsolateral pontine nucleus (dlpn) was studied in two awake rhesus monkeys trained to participate in a variety of visual and oculomotor tests. The visual and eye movement related responses of 73 neurons encountered in the more caudal part of the dlpn were analyzed. Thirty eight of these could be assigned to one of the three following groups. Visual-only neurons (Type 1, n = 10) responded to movement of a broad range of visual stimuli in certain preferred directions. Their receptive fields were usually large, not restricted to the contralateral visual field and always included the fovea. Visual-tracking (VT) neurons (n = 28) discharged in relation to smooth pursuit of a small target in particular preferred directions. Nine of these (Type 2) did not respond to visual stimulation during stationary fixation. Nineteen VT-cells (Type 3) discharged in relation to both visual tracking and visual stimulation. In 9 of the Type 3 neurons, the preferred directions for visual stimulation and tracking were opposite, whereas they were the same in the other 10. Visual responses of Type 3 neurons were indistinguishable from those of Type 1 neurons. Testing of an additional 9 neurons driven by either visual-tracking or pattern movement was not sufficient to allow a definite assignment to one of the groups 1, 2 or 3. The distribution of preferred directions for both visual stimulation and visual tracking was widely scattered between 0 and 360 deg. Our results suggest that the dlpn is a constituent in a cerebro-cerebellar loop important for the generation of smooth pursuit eye movements.  相似文献   

11.
1. We investigated cells in the middle temporal visual area (MT) and the medial superior temporal area (MST) that discharged during smooth pursuit of a dim target in an otherwise dark room. For each of these pursuit cells we determined whether the response during pursuit originated from visual stimulation of the retina by the pursuit target or from an extraretinal input related to the pursuit movement itself. We distinguished between these alternatives by removing the visual motion stimulus during pursuit either by blinking off the visual target briefly or by stabilizing the target on the retina. 2. In the foveal representation of MT (MTf), we found that pursuit cells usually decreased their rate of discharge during a blink or during stabilization of the visual target. The pursuit response of these cells depends on visual stimulation of the retina by the pursuit target. 3. In a dorsal-medial region of MST (MSTd), cells continued to respond during pursuit despite a blink or stabilization of the pursuit target. The pursuit response of these cells is dependent on an extraretinal input. 4. In a lateral-anterior region of MST (MST1), we found both types of pursuit cells; some, like those in MTf, were dependent on visual inputs whereas others, like those in MSTd, received an extraretinal input. 5. We observed a relationship between pursuit responses and passive visual responses. MST cells whose pursuit responses were attributable to extraretinal inputs tended to respond preferentially to large-field random-dot patterns. Some cells that preferred small spots also had an extraretinal input. 6. For 92% of the pursuit cells we studied, the pursuit response began after onset of the pursuit eye movement. A visual response preceding onset of the eye movement could be observed in many of these cells if the initial motion of the target occurred within the visual receptive field of the cell and in its preferred direction. In contrast to the pursuit response, however, this visual response was not dependent on execution of the pursuit movement. 7. For the remaining 8% of the pursuit cells, the pursuit discharge began before initiation of the pursuit eye movement. This occurred even though the initial motion of the target was outside the receptive field as mapped during fixation trials. Our data suggest, however, that such responses may be attributable to an expansion of the receptive field that accompanies enhanced visual responses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Summary The receptive field properties of single units within the nucleus lentiformis mesencephali (LM) of the pigeon were studied using electrophysiological methods. Previous studies have suggested that the avian LM may be homologous to the nucleus of the optic tract (NOT) in mammals. Single units in the pigeon LM are similar to mammalian NOT units in that they are direction-selective, mostly for horizontal directions, velocity-selective, have large visual receptive fields and respond preferentially to large stimuli with many visual contrasts. In contrast to most reports of NOT units of mammals, more than half of pigeon LM units prefer high velocities (>10°/s), a large proportion (0.37) prefer non-horizontal directions, and receptive fields that are retinotopically arranged within the LM. The response properties of pigeon LM units are compared to the response properties of units within the accessory optic nucleus (the nucleus of the basal optic root or nBOR). In the avian brain, nBOR neurons respond at low velocities (0.5–5°/s) and respond predominantly to vertical stimulus movement whereas LM units respond over a broader range of velocities (0.2–80°/s) and respond predominantly to horizontal movements. Thus, the LM and nBOR may play different roles in the control of compensatory eye movements.This work was supported in part by PHS grant EY03638 to BJW and NSF grant BNS 8312571 to SEB  相似文献   

13.
Because smooth-pursuit eye movements (SPEM) can be executed only in the presence of a moving target, it has been difficult to attribute the neuronal activity observed during the execution of these eye movements to either sensory processing or to motor preparation or execution. Previously, we showed that rhesus monkeys can be trained to perform SPEM directed toward an "imaginary" target defined by visual cues confined to the periphery of the visual field. The pursuit of an "imaginary" target provides the opportunity to elicit SPEM without stimulating visual receptive fields confined to the center of the visual field. Here, we report that a subset of neurons [85 "imaginary" visual tracking (iVT)-neurons] in area MST of 3 rhesus monkeys were identically activated during pursuit of a conventional, foveal dot target and the "imaginary" target. Because iVT-neurons did not respond to the presentation of a moving "imaginary" target during fixation of a stationary dot, we are able to exclude that responses to pursuit of the "imaginary" target were artifacts of stimulation of the visual field periphery. Neurons recorded from the representation of the central parts of the visual field in neighboring area MT, usually vigorously discharging during pursuit of foveal targets, in no case responded to pursuit of the "imaginary" target. This dissociation between MT and MST neurons supports the view that pursuit responses of MT neurons are the result of target image motion, whereas those of iVT-neurons in area MST reflect an eye movement-related signal that is nonretinal in origin. iVT-neurons fell into two groups, depending on the properties of the eye movement-related signal. Whereas most of them (71%) encoded eye velocity, a minority showed responses determined by eye position, irrespective of whether eye position was changed by smooth pursuit or by saccades. Only the former group exhibited responses that led the eye movement, which is a prerequisite for a causal role in the generation of SPEM.  相似文献   

14.
The smooth pursuit eye movement system uses retinal information about the image-slip-velocity of the target in order to match the eye-velocity-in-space (i.e., gaze-velocity) to the actual target velocity. To maintain the target image on the fovea during smooth gaze tracking, and to compensate for the long delays involved in processing visual motion information and/or eye velocity commands, the pursuit system must use prediction. We have shown recently that both retinal image-slip-velocity and gaze-velocity signals are coded in the discharge of single pursuit-related neurons in the simian periarcuate cortex. To understand how periarcuate pursuit neurons are involved in predictive smooth pursuit, we examined the discharge characteristics of these neurons in trained Japanese macaques. When a stationary target abruptly moved sinusoidally along the preferred direction at 0.5 Hz, the response delays of pursuit cells seen at the onset of target motion were compensated in succeeding cycles. The monkeys were also required to continue smooth pursuit of a sinusoidally moving target while it was blanked for about half of a cycle at 0.5 Hz. This blanking was applied before cell activity normally increased and before the target changed direction. Normalized mean gain of the cells' responses (re control value without blanking) decreased to 0.81(+/-0.67 SD), whereas normalized mean gain of the eye movement (eye gain) decreased to 0.65 (+/-0.16 SD). A majority (75%) of pursuit neurons discharged appropriately up to 500 ms after target blanking even though eye velocity decreased sharply, suggesting a dissociation of the activity of those pursuit neurons and eye velocity. To examine whether pursuit cell responses contain a predictive component that anticipates visual input, the monkeys were required to fixate a stationary target while a second test laser spot was moved sinusoidally. A majority (68%) of pursuit cells tested responded to the second target motion. When the second spot moved abruptly along the preferred direction, the response delays clearly seen at the onset of sinusoidal target motion were compensated in succeeding cycles. Blanking (400-600 ms) was also applied during sinusoidal motion at 1 Hz before the test spot changed its direction and before pursuit neurons normally increased their activity. Preferred directions were similar to those calculated for target motion (normalized mean gain=0.72). Similar responses were also evoked even if the second spot was flashed as it moved. Since the monkeys fixated the stationary spot well, such flashed stimuli should not induce significant retinal slip. These results taken together suggest that the prediction-related activity of periarcuate pursuit neurons contains extracted visual components that reflect direction and speed of the reconstructed target image, signals sufficient for estimating target motion. We suggest that many periarcuate pursuit neurons convey this information to generate appropriate smooth pursuit eye movements.  相似文献   

15.
This study compares brain activation patterns evoked by smooth pursuit and by fixation suppression of the optokinetic reflex (OKR) using similar retinal stimulation. Functional magnetic resonance imaging (fMRI) was performed during smooth pursuit stimulation in which a moving target was presented on a stationary pattern of stripes, and during fixation suppression of OKR in which a stationary target was presented on a moving pattern of stripes. All subjects could effectively ignore the background pattern and were able to keep the target continuously on the fovea with few saccades, in both experiments. Smooth pursuit evoked activation in the frontal eye fields (FEF), the supplementary eye fields (SEF), the parietal eye fields (PEF), the motion-sensitive area (MT/V5), and in lobules and vermis VI of the cerebellum (oculomotor areas). Fixation suppression of OKR induced activation in the FEF, PEF, and MT/V5. The direct comparison analysis revealed more activation in the right lobule VI of the cerebellum and in the right lingual and calcarine gyri during smooth pursuit than during fixation suppression of OKR. Using similar retinal stimulation, our results show that smooth pursuit and fixation suppression of the OKR appear to activate largely overlapping pathways. The increased activity in the oculomotor areas of the cerebellum during smooth pursuit is probably due to the presence of an active eye movement component.  相似文献   

16.
The frontal pursuit area (FPA) lies posterior to the frontal eye fields in the frontal cortex and contains neurons that are directionally selective for pursuit eye movements. Lesions of the FPA (alternately called "FEFsem") cause deficits in pursuit acceleration and velocity, which are largest for movements directed toward the lesioned side. Conversely, stimulation of the FPA evokes pursuit from fixation and increases the gain of the pursuit response. On the basis of these properties, it has been hypothesized that the FPA could underlie the selection of pursuit direction. To test this possibility, we manipulated FPA activity and measured the effect on target selection behavior in rhesus monkeys. First, we unilaterally inactivated the FPA with the GABA agonist muscimol. We then measured the monkeys' performance on a pursuit-choice task. Second, we applied microstimulation unilaterally to the FPA during pursuit initiation while monkeys performed the same pursuit-choice task. Both of these manipulations produced significant effects on pursuit metrics; the inactivation decreased pursuit velocity and acceleration, and microstimulation evoked pursuit directly. Despite these changes, both manipulations failed to significantly alter choice behavior. These results show that FPA activity is not necessary for pursuit target selection.  相似文献   

17.
Summary The activity of 249 neurons in the dorsomedial frontal cortex was studied in two macaque monkeys. The animals were trained to release a bar when a visual stimulus changed color in order to receive reward. An acoustic cue signaled the start of a series of trials to the animal, which was then free to begin each trial at will. The monkeys tended to fixate the visual stimuli and to make saccades when the stimuli moved. The monkeys were neither rewarded for making proper eye movements nor punished for making extraneous ones. We found neurons whose discharge was related to various movements including those of the eye, neck, and arm. In this report, we describe the properties of neurons that showed activity related to visual fixation and saccadic eye movement. Fixation neurons discharged during active fixation with the eye in a given position in the orbit, but did not discharge when the eye occupied the same orbital positions during nonactive fixation. These neurons showed neither a classic nor a complex visual receptive field, nor a foveal receptive visual field. Electrical stimulation at the site of the fixation neurons often drove the eye to the orbital position associated with maximal activity of the cell. Several different kinds of neurons were found to discharge before saccades: 1) checking-saccade neurons, which discharged when the monkeys made self-generated saccades to extinguish LED's; 2) novelty-detection saccade neurons, which discharged before the first saccade made to a new visual target but whose activity waned with successive presentations of the same target. These results suggest that the dorsomedial frontal cortex is involved in attentive fixation. We hypothesize that the fixation neurons may be involved in codifying the saccade toward a target. We propose that their involvement in arm-eye-head motor-planning rests primarily in targeting the goal of the movement. The fact that saccaderelated neurons discharge when the saccades are self initiated, implies that this area of the cortex may share the control of voluntary saccades with the frontal eye fields and that the activation is involved in intentional motor processes.  相似文献   

18.
Parietal lobe mechanisms for directed visual attention.   总被引:11,自引:0,他引:11  
1. Experiments were made on the cortex of the inferior parietal lobule in 10 hemispheres of six alert, behaving monkeys. The electrical signs of the impulse discharges of single cortical cells were recorded as the monkeys executed tasks requiring them to fixate stationary visual targets, track those which moved slowly, and to make saccadic movements to foveate those which suddenly jumped from one locus to another within the field of view. A total of 907 neurons of area 7 were identified in terms of their physiological properties, particularly the correlation of their activity with the oculomotor components of these behavioral acts of directed visual attention; 480 of these were located by cytoarchitectural layer. Most identifiable cells of area 7 are visuomotor neurons, in a special and conditional sense. Their discharge frequencies increase before and during those steady fixations and movements of the eyes which secure and maintain foveation of objects, but only if the visual targets engaged are linked by a strong motivational drive; in our experiments, one between thirst and the light whose dimming the animal has learned to detect for liquid reward. We have identified and studied three major classes of neurons in area 7. 2. The visual fixation neurons (57%) accelerate discharge synchronously with fixation of a visual object the animal desires. The incremented discharge continues until reward, but then declines abruptly even when there is no immediate shift of the line of gaze. Fixation neurons are relatively inactive during those casual fixations by which the animal insepcts the surrounding environment. Mist fixation neurons subtend gaze fields limited to one quadrant or half of the total gaze field. The sum of the gaze fields of the fixation neurons in one hemisphere is weighted moderately toward the contralateral side. Fixation cells also discharge during slow pursuit movements in any direction so long as the movement stays within the gaze field of the neuron under study. About 40% of fixation cells are suppressed before and during saccadic movements of the eyes to a new target within the gaze field of the fixation cell. Those suppressed are located preferentially in layer V of the cortex. Suppression is maximal for saccades directed contralaterally to the hemisphere under study. 3. Visual tracking neurons are active during oculomotor pursuit of slowly moving visual objects, not during steady fixations. They show a marked directional but no laterality relation, and are suppressed before and during a visually evoked saccade superimposed on the smooth pursuit movement. The rate of discharge is a flat function of tracking speed so that these cells do not appear to emit signals which specify the speed of smooth pursuit movements. 4. The saccade neurons are active before and during visually evoked saccadic movements of the eyes but not before spontaneous saccades, no matter whether made in light or near darkness. The discharge of saccade neurons leads the eye movement by as much as 150 ms (mean, 73 ms)...  相似文献   

19.
Periarcuate frontal cortex is involved in the control of smooth pursuit eye movements, but its role remains unclear. To better understand the control of pursuit by the "frontal pursuit area" (FPA), we applied electrical microstimulation when the monkeys were performing a variety of oculomotor tasks. In agreement with previous studies, electrical stimulation consisting of a train of 50-microA pulses at 333 Hz during fixation of a stationary target elicited smooth eye movements with a short latency (approximately 26 ms). The size of the elicited smooth eye movements was enhanced when the stimulation pulses were delivered during the maintenance of pursuit. The enhancement increased as a function of ongoing pursuit speed and was greater during pursuit in the same versus opposite direction of the eye movements evoked at a site. If stimulation was delivered during pursuit in eight different directions, the elicited eye velocity was fit best by a model incorporating two stimulation effects: a directional signal that drives eye velocity and an increase in the gain of ongoing pursuit eye speed in all directions. Separate experiments tested the effect of stimulation on the response to specific image motions. Stimulation consisted of a train of pulses at 100 or 200 Hz delivered during fixation so that only small smooth eye movements were elicited. If the stationary target was perturbed briefly during microstimulation, normally weak eye movement responses showed strong enhancement. If delivered at the initiation of pursuit, the same microstimulation caused enhancement of the presaccadic initiation of pursuit for steps of target velocity that moved the target either away from the position of fixation or in the direction of the eye movement caused by stimulation at the site. Stimulation in the FPA increased the latency of saccades to stationary or moving targets. Our results show that the FPA has two kinds of effects on the pursuit system. One drives smooth eye velocity in a fixed direction and is subject to on-line gain control by ongoing pursuit. The other causes enhancement of both the speed of ongoing pursuit and the responses to visual motion in a way that is not strongly selective for the direction of pursuit. Enhancement may operate either at a single site or at multiple sites. We conclude that the FPA plays an important role in on-line gain control for pursuit as well as possibly delivering commands for the direction and speed of smooth eye motion.  相似文献   

20.
The activity of vertical burst neurons (BNs) was recorded in the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF-BNs) and in the interstitial nucleus of Cajal (NIC-BNs) in head-restrained cats while performing saccades or smooth pursuit. BNs emitted a high-frequency burst of action potentials before and during vertical saccades. On average, these bursts led saccade onset by 14 +/- 4 ms (mean +/- SD, n = 23), and this value was in the range of latencies ( approximately 5-15 ms) of medium-lead burst neurons (MLBNs). All NIC-BNs (n = 15) had a downward preferred direction, whereas riMLF-BNs showed either a downward (n = 3) or an upward (n = 5) preferred direction. We found significant correlations between saccade and burst parameters in all BNs: vertical amplitude was correlated with the number of spikes, maximum vertical velocity with maximum of the spike density, and saccade duration with burst duration. A correlation was also found between instantaneous vertical velocity and neuronal activity during saccades. During fixation, all riMLF-BNs and approximately 50% of NIC-BNs (7/15) were silent. Among NIC-BNs active during fixation (8/15), only two cells had an activity correlated with the eye position in the orbit. During smooth pursuit, most riMLF-BNs were silent (7/8), but all NIC-BNs showed an activity that was significantly correlated with the eye velocity. This activity was unaltered during temporary disappearance of the visual target, demonstrating that it was not visual in origin. For a given neuron, its ON-direction during smooth pursuit and saccades remained identical. The activity of NIC-BNs during both saccades and smooth pursuit can be described by a nonlinear exponential function using the velocity of the eye as independent variable. We suggest that riMLF-BNs, which were not active during smooth pursuit, are vertical MLBNs responsible for the generation of vertical saccades. Because NIC-BNs discharged during both saccades and pursuit, they cannot be regarded as MLBNs as usually defined. NIC-BNs could, however, be the site of convergence of both the saccadic and smooth pursuit signals at the premotoneuronal level. Alternatively, NIC-BNs could participate in the integration of eye velocity to eye position signals and represent input neurons to a common integrator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号