首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetics of pyrethroid-modified sodium channels and the interaction of N-octylguanidine with the modified channels have been studied with internally perfused and voltage-clamped squid giant axons. The pyrethroids used were 1R-cis-phenothrin; 1R-cis-permethrin; 1R-cis-cyphenothrin; and 1R-cis-deltamethrin. Modification of sodium channels by pyrethroids resulted in marked slowing of opening and closing kinetics. The rate at which sodium channels arrived at the open pyrethroid-modified state during a depolarizing step was independent of the concentration of pyrethroids applied. The time of exposure to pyrethroids required for the pyrethroid-induced sodium tail current following a step depolarization to reach a steady-state amplitude was independent of the frequency of short (5 ms) depolarizing pulses, and in the pronase-treated axons was independent of the membrane potential (0 mV or -90 mV). We conclude that sodium channels are modified by pyrethroids primarily in the closed resting state. A small fraction of sodium channels is modified in the open state. The dose-response curve for N-octylguanidine block of sodium channels was not shifted by pyrethroids. The rate at which the pyrethroid-modified sodium channels were blocked by octylguanidine during a depolarizing step depended neither on the concentration of pyrethroids nor on the depolarizing potential, but depended on the concentration of octylguanidine. The time course of the pyrethroid-induced slow sodium tail current was not altered by octylguanidine. We conclude that the actions of pyrethroids and N-octylguanidine on sodium channels are independent of each other.  相似文献   

2.
Pyrethriods are known to increase the steady-state sodium current during a step depolarization and to increase and prolong the tail sodium current associated with a step repolarization of the membrane. The pyrethroid-induced tail sodium current of squid axons developed as a function of the duration of the conditioning depolarizing pulse. However, with further lengthening the conditioning pulse duration, it decreased, further increased, or remained constant depending on the direction of sodium current during the depolarization, irrespective of the membrane potential per se. The depletion or accumulation of sodium in the periaxonal space during a 200-ms conditioning depolarizing pulse in the axon internally treated with pronase, pyrethroids, or both, was demonstrated by measurements of the changes in sodium reversal potential. Thus the observed changes in tail current amplitude as a function of the conditioning pulse duration are explicable in terms of changes in sodium concentration in the periaxonal space without assuming inactivation of the pyrethroid-modified channel.  相似文献   

3.
The effects of 4 different pyrethroid insecticides on sodium channel gating in internally perfused, cultured mouse neuroblastoma cells (N1E-115) were studied using the suction pipette, voltage clamp technique. Pyrethroids increased the amplitude of the sodium current, sometimes by more than 200%. Activation of the sodium current occurred at more hyperpolarized potentials than under control conditions. The declining phase of the sodium current during depolarization was markedly slowed down and after repolarization of the membrane a large, slowly decaying sodium tail current developed. Pyrethroids did not affect the sodium current reversal potential, steady-state sodium inactivation or recovery from sodium channel inactivation. The amplitude of the pyrethroid-induced slow tail current was always proportional to the sodium current at the end of the preceding depolarizing pulse. The rate of decay of the slow tail current strongly depended on pyrethroid structure and increased in the order deltamethrin, cyphenothrin, fenfluthrin and phenothrin. The rate of decay further depended on membrane potential and temperature. Below -85 m V the instantaneous current-voltage relationship of the slow tail current showed a negative slope conductance. The tail current decayed more slowly at low temperatures. Arrhenius plots indicated that the relaxation of open sodium channels to a closed state involved a higher energy barrier for pyrethroid-affected than for normal channels. The energy barrier was higher after deltamethrin than after the non-cyano pyrethroid fenfluthrin. It is concluded that in mammalian neuronal membrane pyrethroids selectively reduce the rate of closing of sodium channels both during depolarization and after repolarization of the nerve membrane.  相似文献   

4.
The interaction of pyrethroids with the voltage-dependent sodium channel was studied in voltage-clamped nodes of Ranvier and isolated spinal ganglion neurons of the clawed frog, Xenopus laevis. In the node, pyrethroids prolonged the sodium tail current associated with a step repolarization of the membrane. It was found that the amplitude of the slow, pyrethroid-induced, sodium tail current (PIT) first increased and then decreased as a function of the duration of membrane depolarization (to -5 mV). This decrease of the PIT amplitude was absent when depolarizations to the sodium equilibrium potential (+40 mV) were used. Measurements of changes in sodium reversal potential indicated that sodium ion depletion in the perinodal space is largely responsible for the inactivation of the pyrethroid-modified sodium current. Inactivation is not completely abolished by pyrethroid treatment since the probability of channel opening, measured in membrane patches excised from spinal ganglion cells, decreased slowly during prolonged depolarization. Analysis of unitary currents indicated that both activation and inactivation are retarded by pyrethroids. The arrival of sodium channels in the pyrethroid-modified open state followed a time course that was slower than both activation and inactivation of unmodified sodium channels. Our findings indicate that sodium channels are modified when in the closed resting state and that both opening and closing kinetics are delayed by pyrethroids.  相似文献   

5.
The voltage-dependent inactivation of Ca currents was explored in dissociated intermediate lobe (IL) cells from the rat pituitary. On the basis of current-voltage relations two main inward currents could be identified in this cell, a transient current, (I-t), and a sustained current, (I-s). Inactivation was explored either by changing the holding potential and testing the change in the inward currents during a brief test pulse, or, by depolarizing the membrane and following the decay of the evoked inward current. Three current decay rates were identified, each with a characteristic dependence on membrane potential. The fastest decay rate (tau 1), was attributed to the inactivation of the I-t current and had a value of 57 ms at -40 mV, decreasing to 10 ms at -10 mV (extrapolated value of 6 ms at 0 mV). The other two decay rates, tau 2 and tau 3, decreased monotonically with depolarization of the membrane potential and reflected the inactivation of the I-s current with values of 1.8 and 20 s at 0 mV. I-s inactivation and reactivation was found to occur even in the normal resting potential range of this cell. These properties of the calcium channels can explain the voltage-dependent inactivation of secretion that has been observed previously in this and other secretory cells. In addition, they suggest that calcium currents, and hence secretion, may be modulated by external factors that cause small, but sustained, changes in the resting potential of the IL cell.  相似文献   

6.
Pyrethroid insecticides exert toxic effects by prolonging the opening of voltage-gated sodium channels. More than 20 sodium channel mutations from arthropod pests and disease vectors have been confirmed to confer pyrethroid resistance. These mutations have been valuable in elucidating the molecular interaction between pyrethroids and sodium channels, including identification of two pyrethroid receptor sites. Previously, two alanine to valine substitutions, one in the pore helix IIIP1 and the other in the linker-helix connecting S4 and S5 in domain III (IIIL45), were found in Drosophila melanogaster mutants that are resistant to DDT and deltamethrin (a type II pyrethroid with an α-cyano group at the phenylbenzyl alcohol position, which is lacking in type I pyrethroids), but their role in target-site-mediated insecticide resistance has not been functionally confirmed. In this study, we functionally examined the two mutations in cockroach sodium channels expressed in Xenopus laevis oocytes. Both mutations caused depolarizing shifts in the voltage dependence of activation, conferred DDT resistance and also resistance to two Type I pyrethroids by almost abolishing the tail currents induced by Type I pyrethroids. In contrast, neither mutation reduced the amplitude of tail currents induced by the Type II pyrethroids, deltamethrin or cypermethrin. However, both mutations accelerated the decay of Type II pyrethroid-induced tail currents, which normally decay extremely slowly. These results provided new insight into the molecular basis of different actions of Type I and Type II pyrethroids on sodium channels. Computer modeling predicts that both mutations may allosterically affect pyrethroid binding.  相似文献   

7.
A characterization of the properties of voltage-gated sodium channels expressed in the human cerebellar medulloblastoma cell line TE671 is presented. Membrane currents were recorded under voltage clamp conditions using the patch clamp technique in both the whole-cell and the excised-patch configurations. Macroscopic sodium currents display a typical transient time course with a sigmoidal rise to a peak followed by an exponential decay. The rates of early activation and subsequent inactivation accelerate and approach a maximum in response to test potentials, V, of greater depolarization. The magnitude of peak sodium current increased from negligible values below V = -50 mV and reached a maximum at V = -3.6 mV +/- 2.7 mV (mean +/- S.E.M., n = 12). Sodium currents reversed at V = + 70 mV, near the predicted Nernst equilibrium potential for a Na+ selective channel. The peak sodium conductance, gpeak increased with depolarizing voltages to a maximum at V = approximately 0 mV, exhibiting half-activation voltage at V approximately equal to -36.8 mV and an e-fold change in gpeak/9.5 mV. The Hodgkin-Huxley inactivation parameter h infinity indicates that at V = -73.6 mV half of the sodium currents were inactivated. Single channel current recordings demonstrated the occurrence of discrete events: the latency for first opening was shorter as the depolarizing pulse became more positive. The single-channel current amplitude was ohmic with a slope conductance, gamma = 17.13 pS +/- 0.66 pS. Sodium channel currents were reversibly blocked by tetrodotoxin (TTX).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effects of the pyrethroid insecticide tetramethrin on voltage-dependent sodium channels were studied with internally perfused crayfish giant axons. At low concentrations in the order of 10-8-10-9M, tetramethrin caused an increase in depolarizing after-potential which in turn triggered repetitive after-discharges. Under Voltage clamp conditions, the sodium current was markedly prolonged during a step depolarization, and a large and prolonged sodium tail current appeared upon step repolarization. A population of sodium channels having activation and inactivation kinetics identical to those in control axons was observed in the tetramethrin-poisoned axons, indicating that only a fraction of the channels was modified. The modified channels exhibited remarkably slow kinetics, activating with a time course of 100 msec to 2 sec and inactivating with a time course of 1-5 sec depending on the membrane potential. The voltage dependence of the modified channels was shifted in the direction of hyperpolarization by about 10-20 mV with respect to normal sodium channels. The large inward sodium tail current associated with step repolarization of the membrane decayed with a time course of 20-600 msec. A kinetic hypothesis describing the behavior of sodium channels in a tetramethrin-poisoned axon is presented and discussed in relation of the behavior of the sodium channels modified by other toxins.  相似文献   

9.
Du Z  Meng Z 《Brain research》2004,1010(1-2):127-133
The effect of sulfur dioxide (SO2) derivatives, a common air pollutant and exists in vivo as an equilibrium between bisulfate and sulfite, on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channels in cultured post-natal dorsal root ganglion (DRG) neurons were studied using the whole cell configuration of patch-clamp technique. SO2 derivatives on two types of sodium currents were either inhibitory or stimulatory depending on the kinetic parameters tested. At a holding potential of -80 mV, SO2 derivatives suppressed TTX-S sodium currents when depolarizing potential was negative to -30 mV and TTX-R sodium currents when negative to -10 mV but they increased them when the depolarizing potential was positive to -30 or -10 mV. SO2 derivatives shifted the conductance-voltage curve for TTX-R sodium currents in the depolarizing direction but had little effect on that for TTX-S sodium currents. The steady-state inactivation curve for TTX-R sodium channel was shifted by SO2 derivatives in the depolarizing direction as that for TTX-S sodium channel. SO2 derivatives changed the reversal potential and increased the maximum conductance of two types of sodium channels. SO2 derivatives postponed the activating time and delayed the inactivation of sodium currents. The results suggest that SO2 derivatives would increase the excitability of neurons and alter the ion selectivity for two types of sodium currents.  相似文献   

10.
ATP modulation of sodium currents in rat dorsal root ganglion neurons   总被引:1,自引:0,他引:1  
The modulation of tetrodotoxin-sensitive (TTX-S) and slow tetrodotoxin-resistant (TTX-R) sodium currents in rat dorsal root ganglion neurons by ATP was studied using the whole-cell patch-clamp method. The effects of ATP on two types of sodium currents were either stimulatory or inhibitory depending on the kinetic parameters tested. At a holding potential of -80 mV ATP suppressed TTX-S sodium currents when the depolarizing potential was positive to -30 mV but it increased them when the depolarizing potential was negative to -30 mV. At the same holding potential slow TTX-R sodium currents were always increased by ATP regardless of the depolarizing potential. In both types of sodium currents ATP shifted both the conductance-voltage relationship curve and the steady-state inactivation curve in the hyperpolarizing direction, and accelerated the time-dependent inactivation. ATP decreased the maximum conductance of TTX-S sodium currents but increased that of slow TTX-R sodium currents. The results suggest that ATP would decrease the excitability of neurons with TTX-S sodium channels but would increase that of neurons with slow TTX-R sodium channels. The effects of ATP on sodium currents were preserved in the presence of a G-protein inhibitor, GDP-beta-S, or purinergic antagonists, suramin and Reactive Blue-2, suggesting that purinergic receptors might not be involved in ATP modulation of sodium currents.  相似文献   

11.
Currents through batrachotoxin-modified sodium channels in frog myelinated fibres were measured under voltage-clamp conditions. Reversal potential (Erev) of steady-state currents is shown to be about 5 mV less positive than Erev of initial (peak) currents. Control experiments with procaine and tetrodotoxin in external solutions showed that this shift of Erev during depolarizing pulse cannot be accounted for by the presence of unmodified sodium channels, unblocked potassium channels, nonlinearity of the leakage or any changes in transmembrane gradients of current-carrying cations. "Instantaneous" current measurements showed that Erev becomes less positive as amplitude and duration of preliminary depolarization increase. The results obtained are consistent with assumption that sodium-potassium selectivity of the batrachotoxin-modified channels depends on potential.  相似文献   

12.
Kinetic and steady-state characteristics of aconitine-modified sodium channels were studied in the Ranvier node membrane. Aconitine-modified sodium channels are shown to be inactivated only partially. The voltage dependence of the fraction of noninactivated channels (h infinity) may be described by a three-state model of the channel with closed, open and inactivated states. A reasonable agreement with the data was obtained when parameters of the inactivated state were supposed to be not changed after aconitine modification of the channels. The membrane repolarization to -70 divided by -110 mV, after long (10 ms) depolarizing shift induces firstly fast current decay ("tail") and then its rather slow increase to a steady-state level. Kinetics of this current requires two or more open states to be postulated.  相似文献   

13.
Voltage-gated ionic currents were recorded from cultured trout astrocytes with the whole-cell variation of the patch-clamp technique. In a subpopulation of astrocytes depolarizations above ?40 m V activated a fast transient inward current that was identified as a sodium current by ion substitution experiments, its current reversal potential, and its TTX-sensitivity. Regarding threshold of activation, peak current voltage, and amplitude this current closely resembled those previously described for mammalian astrocytes. Voltage-dependence of inactivation and kinetics, however, markedly differed from the “glial-like” sodium current occurring in mammalian hippocampal or optic nerve astrocytes, since the sodium current of trout astrocytes exhibited a faster time course of activation and decay and a more depolarized steady-state inactivation curve with midpoints close to ?60 mV. During a period of 2 weeks in culture the biophysical properties of the sodium current did not change significantly, albeit a continuous decrease in current density was observed. At depolarizing voltage steps positive to ?40 mV, additionally voltage-gated potassium outward currents were evoked, which could be separated into a steady-state current with delayed rectifier properties and an inactivating component resembling the A-type current. Moreover, in a subpopulation of astrocytes an inward potassium current was elicited at hyperpolarizing potentials, which exhibited biophysical features consistent with the potassium inward rectifier of mammalian astrocytes. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Bursting pacemaker neurons of Tritonia and Aplysia were studied in voltage-clamp experiments to determine the ionic requirements of the slow outward tail current. This current is important for terminating bursts and hyperpolarizing the neuron during the interval between bursts and therefore contributes to the timing of pacemaker activity. A method for rapid extracellular perfusion of the neuron soma with solutions of different ionic composition was used to study the ionic dependence of the tail current. Measurements of the current-voltage relationship were made at different times during the decay of the tail current to determine the reversal potential in different ionic solutions. These experiments showed that 2 or more slow outward currents contribute to the tail current. Temperature had a large effect on these currents. At cold temperatures (10-15 degrees C), the tail current was predominantly a K current. At warm temperatures (20-23 degrees C), both a K current and a K-insensitive outward current were seen. Bursting pacemaker activity occurred throughout this temperature range. Both the K current and the K-insensitive current required Ca influx for activation. These findings help to reconcile conflicting reports in the literature concerning the ionic dependence of the slow outward tail current and suggest a mechanism for temperature compensation of bursting activity in these pacemaker cells.  相似文献   

15.
Ionic currents through batrachotoxin-modified sodium channels in frog nerve fibres were measured over a wide range of membrane potentials. At potentials above +80 mV currents decay in time and their steady-state level decreased as potentials increased. "Instantaneous" current measurements have shown that this phenomenon was due to the decrease in net channel conductance. Scorpion toxin affected current kinetics only slightly at these potentials, which suggested that these decays were not caused by usual inactivation process. Externally applied procaine induced slow (tens of ms) potential-dependent block of batrachotoxin-modified channels at large positive potentials. At large negative potentials (above -100 mV) "instantaneus" currents decreased due to fast voltage-dependent block of the channels by calcium ions.  相似文献   

16.
A scorpion alpha-toxin-sensitive background sodium channel was characterized in short-term cultured adult cockroach dorsal unpaired median (DUM) neurons using the cell-attached patch-clamp configuration. Under control conditions, spontaneous sodium currents were recorded at different steady-state holding potentials, including the range of normal resting membrane potential. At -50 mV, the sodium current was observed as unclustered, single openings. For potentials more negative than -70 mV, investigated patches contained large unitary current steps appearing generally in bursts. These background channels were blocked by tetrodotoxin (TTX, 100 nm), and replacing sodium with TMA-Cl led to a complete loss of channel activity. The current-voltage relationship has a slope conductance of 36 pS. At -50 mV, the mean open time constant was 0.22 +/- 0.05 ms (n = 5). The curve of the open probability versus holding potentials was bell-shaped, with its maximum (0.008 +/- 0.004; n = 5) at -50 mV. LqhalphaIT (10-8 m) altered the background channel activity in a time-dependent manner. At -50 mV, the channel activity appeared in bursts. The linear current-voltage relationship of the LqhalphaIT-modified sodium current determined for the first three well-resolved open states gave three conductance levels: 34, 69 and 104 pS, and reversed at the same extrapolated reversal potential (+52 mV). LqhalphaIT increased the open probability but did not affect either the bell-shaped voltage dependence or the open time constant. Mammal toxin AaHII induced very similar effects on background sodium channels but at a concentration 100 x higher than LqhalphaIT. At 10-7 m, LqhalphaIT produced longer silence periods interrupted by bursts of increased channel activity. Whole-cell experiments suggested that background sodium channels can provide the depolarizing drive for DUM neurons essential to maintain beating pacemaker activity, and revealed that 10-7 m LqhalphaIT transformed a beating pacemaker activity into a rhythmic bursting.  相似文献   

17.
Lee GY  Shin YK  Lee CS  Song JH 《Brain research》2002,950(1-2):95-102
The effects of arachidonic acid on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium currents in rat dorsal root ganglion neurons were assessed using the whole-cell patch-clamp method. Both sodium currents were modulated in a similar way by extracellular application of arachidonic acid. Arachidonic acid increased the currents at lower depolarizing potentials, while it suppressed the currents at higher depolarizing potentials and at less negative holding potentials. These effects were due to the shifts of both the conductance–voltage curve and the steady-state inactivation curve in the hyperpolarizing direction. Indomethacin, a cyclooxygenase inhibitor, suppressed the arachidonic acid-induced shift of the conductance–voltage curve but not that of the steady-state inactivation curve. 5,8,11,14-Eicosatetraynoic acid, a non-metabolizable arachidonic acid analog, failed to shift the conductance–voltage curve but still produced the shift of the steady-state inactivation curve. Thus it is assumed that the effect of arachidonic acid on the sodium channel activation is caused by the metabolite(s) of arachidonic acid. However, the effect on the steady-state sodium channel inactivation is exerted by arachidonic acid itself. It is suggested that arachidonic acid, by modulating sodium currents, may alter the excitability of sensory neurons depending on the resting membrane potential.  相似文献   

18.
Decay of sodium currents in repolarization ("tail current") was studied in from axonal membrane. The decay in the membrane repolarization to -40 divided by -60 mV has two exponential components: fast and slow. The fraction of the slow component in the total "tail current" (theta M) decreases as the repolarization potential (Vp) becomes more negative; at Vp more negative than -80 mV "tail" follows practically one-exponential time course. When lengthening the test pulse (at the given Vp) the fraction of the fast component in the "tail" decreases quicker than that of the slow component, following approximately the kinetics of inactivation during the tests pulse. Scorpion toxin treatment results in slowing down "tail" kinetics mainly at the expense of increasing the fraction of the slow component. A kinetic diagram assuming two open state for the channel is suggested. A hypothesis is advanced that scorpion toxin, DDT and trinitrophenol have a common "site" to interact with the gating mechanism of the sodium channel.  相似文献   

19.
Farris HE  Ricci AJ 《Neuroreport》2005,16(9):943-947
In voltage-clamp, uncompensated series resistance results in steady-state voltage errors that scale with the amplitude of the elicited current and are often correctable offline. However, while investigating mechanoelectric transduction currents at hair cells' resting potential, voltage-gated calcium channels and calcium-activated potassium channels (BK) were activated in voltage-clamp by displacing the sensory hair bundle. This resulted from steady-state voltage errors (<1.5 mV) induced by series resistance changing the holding potential. Thus, uncompensated series resistance, interacting with an elicited current, resulted in a voltage error that could induce the erroneous activation of other currents. This error is not correctable offline. Recognizing this type of error is critical when investigating multiple voltage-dependent conductances with steep voltage dependence.  相似文献   

20.
N Ogata 《Brain research》1987,403(2):225-233
The action of gamma-aminobutyric acid (GABA) in the supraoptic nucleus was investigated using guinea pig brain slices. GABA produced a membrane depolarization accompanied by a decrease in the input resistance. The action of GABA was concentration-dependent throughout a wide range of concentrations (10(-7)-10(-3) M). In none of the cells examined, a membrane hyperpolarization was observed. The reversal potential for the depolarization induced by GABA was about 25 mV positive to the resting membrane potential. The amplitude of the GABA-induced depolarization was increased to 1.5 X the control by reducing the external Cl- from 134.2 mM to 10.2 mM. The action of GABA was readily antagonized by relatively low concentrations of bicuculline (10(-5) M). The action of GABA in the hippocampus or in the anterior hypothalamus was markedly different from that in the supraoptic nucleus, i.e. GABA produced both depolarizing and hyperpolarizing responses in the hippocampus and consistently a hyperpolarization in the anterior hypothalamus. The depolarizing but not the hyperpolarizing response in the hippocampus was selectively blocked by picrotoxin (2 X 10(-5) M) or by bicuculline (10(-5) M). The depolarizing component was dependent on the external Cl- concentration and had a reversal potential similar to that of the depolarization induced by GABA in the supraoptic nucleus. The hyperpolarizing component was resistant to bicuculline and had a reversal potential about 30 mV negative to the resting membrane potential.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号