首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to evaluate the strontium-containing hydroxyapatite (Sr-HA) cement in primary hip replacement, using a rabbit model, and to investigate the histological findings at the cement-implant and bone-cement interfaces under weight-bearing conditions. Unilateral hip replacement was performed with Sr-HA cement or polymethylmethacrylate (PMMA) cement in rabbits and observations were made after 6 months. Good fixation between the Sr-HA cement and implant was observed. Osseointegration of the Sr-HA cement with cancellous bone was widespread. Many multinucleus cells covered the surface of the cement, and resorbed the superficial layer of the cement. By scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis, high calcium and phosphorus levels were detected at the interface with a thickness of about 10 microm. Intimate contact was also observed between the Sr-HA cement and cortical bone without fibrous layer intervening. The overall affinity index of bone on Sr-HA cement was (85.06 +/- 5.40)%, which is significantly higher than that on PMMA cement (2.77%+/- 0.49%). On the contrary, a fibrous layer was consistently observed between PMMA cement and bone, and PMMA cement evoked an inflammatory response and foreign body reaction in the surrounding bony tissues. Results suggested good bioactivity and bone-bonding ability of the Sr-HA cement under weight-bearing conditions.  相似文献   

2.
Trabecular bone response to injectable calcium phosphate (Ca-P) cement   总被引:10,自引:0,他引:10  
The aim of this study was to investigate the physicochemical, biological, and handling properties of a new developed calcium phosphate (Ca-P) cement when implanted in trabecular bone. Ca-P cement consisting of a powder and a liquid phase was implanted as a paste into femoral trabecular bone of goats for 3 days and 2, 8, 16, and 24 weeks. The cement was tested using three clinically relevant liquid-to-powder ratios. Polymethylmethacrylate bone cement, routinely used in orthopedics, was used as a control. The Ca-P cement was easy to handle and was fast setting with good cohesion when in contact with body fluids. X-ray diffraction at the different implantation periods showed that the cement had set as an apatite and remained stable over time. Histological evaluation after 2 weeks, performed on 10 microm un-decalcified sections, showed abundant bone apposition on the cement surface without any inflammatory reaction or fibrous encapsulation. At later time points, the Ca-P cement implants were totally covered by a thin layer of bone. Osteoclast-like cells, as present at the interface, had resorbed parts of the cement mass. At locations where Ca-P cement was resorbed, new bone was formed without loss of integrity between the bone bed and the cement. This demonstrated the osteotransductive property of the cement, i.e., resorption of the material by osteoclast-like cells, directly followed by the formation of new bone. Histological and histomorphometrical evaluation did not show any significant differences between the Ca-P cement implanted at the three different liquid/powder ratios. The results indicate that the investigated Ca-P cement is biocompatible, osteoconductive, as well as osteotransductive and is a candidate material for use as a bone substitute.  相似文献   

3.
We have developed two types of polymethylmethacrylate (PMMA)-based bioactive bone cements containing bioactive glass beads (designated GBC) or apatite-wollastonite containing glass-ceramic powder (designated AWC) as the filler. A new method was used to evaluate the bone-cement interfacial strength of these bioactive bone cements. Two types of bioactive bone cements (GBC and AWC) and PMMA cement (CMW-1) were put in a frame attached to the smooth tibial metaphyseal cortex of the rabbit and polymerized in situ. The load required to detach the cement from the bone was measured at 4, 8, and 16 weeks after implantation. The interfacial tensile strength of GBC and AWC showed significantly higher values than PMMA cement from 4 weeks, and increased with time. For GBC, strength reached a maximum value of 12.39 +/- 1.79 kgf 16 weeks after implantation. Histological examination of rabbit tibiae up to 16 weeks demonstrated no intervening layer between the bioactive bone cements and the bone, whereas fibrous tissue was observed at the interface between the PMMA cement and the bone. From this study, we conclude that PMMA-based bioactive bone cements have a relatively higher adhesiveness at the interface than the conventionally used PMMA cement, showing potential as a promising alternative.  相似文献   

4.
We have studied a new adhesive bone cement, that consists of 4-methacryloyloxyethyl trimellitate anhydride (4-META) and methylmethacrylate (MMA) as monomers, tri-n-butyl borane (TBB) as the initiator, and polymethylmethacrylate powder (4-META/MMA-TBB cement). This cement has shown remarkable adhesive properties to bone in vitro. In this study, we assessed the interface in vivo periodically. The femora of rabbits were fenestrated and filled with either the 4-META/MMA-TBB cement or a conventional polymethylmethacrylate cement. The animals were killed after 1, 4, 12, and 24 weeks to analyze the interface by optical microscopy and transmission electron microscopy. Optical microscopic examinations showed that the cured 4-META/MMA-TBB adhesive cement bonded to bone directly for 24 weeks, whereas a fibrous tissue layer was observed between the bone and cured conventional cement at 12 weeks after the operation. The transmission electron microscopy views of 4-META/MMA-TBB cement bonded to bone demonstrated a unique "hybridized bone" with the cement in the subsurface of the substrate in every case. The formation of the hybridized bone indicates the bonding mechanism of the adhesive cement to bone, which prevents the fibrosis intervention between bone and cement. These results suggest that the biomechanical and adhesive properties of 4-META/MMA-TBB cement make it a useful bone-bonding agent in orthopedic surgery.  相似文献   

5.
We developed a bioactive bone cement (BABC) that consists of apatite and wollastonite containing glass ceramic (AW-GC) powder and bisphenol-A-glycidyl dimethacrylate (Bis-GMA) based resin. In the present study, the effectiveness of the BABC for repair of segmental bone defects under load-bearing conditions was examined using a rabbit tibia model. Polymethylmethacrylate (PMMA) bone cement was used as a control. A 15-mm length of bone was resected from the middle of the shaft of the tibia, and the tibia was fixed by two Kirschner wires. The defects were replaced by cement. Each cement was used in 12 rabbits; six rabbits were sacrificed at 12 and 25 weeks after surgery, and the tibia containing the bone cement was excised and tension tested. At both the intervals studied, the failure loads of the BABC were significantly higher than those of the PMMA cement. The BABC was in direct contact with bone, whereas soft tissue was observed between the cement and bone in all PMMA cement specimens. Results indicated that the BABC was useful as a bone substitute under load-bearing conditions.  相似文献   

6.
Three types of bioactive polymethylmethacrylate (PMMA)-based bone cement containing nano-sized titania (TiO2) particles were prepared, and their mechanical properties and osteoconductivity are evaluated. The three types of bioactive bone cement were T50c, ST50c, and ST60c, which contained 50 wt% TiO2, and 50 and 60 wt% silanized TiO2, respectively. Commercially available PMMA cement (PMMAc) was used as a control. The cements were inserted into rat tibiae and allowed to solidify in situ. After 6 and 12 weeks, tibiae were removed for evaluation of osteoconductivity using scanning electron microscopy (SEM), contact microradiography (CMR), and Giemsa surface staining. SEM revealed that ST60c and ST50c were directly apposed to bone while T50c and PMMAc were not. The osteoconduction of ST60c was significantly better than that of the other cements at each time interval, and the osteoconduction of T50c was no better than that of PMMAc. The compressive strength of ST60c was equivalent to that of PMMAc. These results show that ST60c is a promising material for use as a bone substitute.  相似文献   

7.
Ni GX  Chiu KY  Lu WW  Wang Y  Zhang YG  Hao LB  Li ZY  Lam WM  Lu SB  Luk KD 《Biomaterials》2006,27(24):4348-4355
Clinical outcome of cemented implants to revision total hip replacement (THR) is not as satisfactory as primary THR, due to the loss of bone stock and normal trabecular pattern. This study evaluated a bioactive bone cement, strontium-containing hydroxyapatite (Sr-HA) bone cement, in a goat revision hip hemi-arthroplasty model, and compared outcomes with polymethylmethacrylate (PMMA) bone cement. Nine months after operation, significantly higher bonding strength was found in the Sr-HA group (3.36+/-1.84 MPa) than in the PMMA bone cement group (1.23+/-0.73 MPa). After detached from the femoral component, the surface of PMMA bone cement mantle was shown relatively smooth, whereas the surface of the Sr-HA bioactive bone cement mantle was uneven, by SEM observation. EDX analysis detected little calcium and no phosphorus on the surface of PMMA bone cement mantle, while high content of calcium (14.03%) and phosphorus (10.37%) was found on the surface of the Sr-HA bone cement mantle. Even higher content of calcium (17.37%) and phosphorus (10.84%) were detected in the concave area. Intimate contact between Sr-HA bioactive bone cement and bone was demonstrated by histological and SEM observation. New bone bonded to the surface of Sr-HA cement and grew along its surface. However, fibrous tissue was observed between PMMA bone cement and bone. The results showed good bioactivity of Sr-HA bioactive bone cement in this revision hip replacement model using goats. This in vivo study also suggested that Sr-HA bioactive bone cement was superior to PMMA bone cement in terms of bone-bonding strength. Use of bioactive bone cement may be a possible solution overcoming problems associated with the use of PMMA bone cement in revision hip replacement.  相似文献   

8.
Vertebral cement augmentation is reported to be a safe and effective technique for providing stabilization and pain relief. However, adjacent intervertebral discs may be at risk of accelerated degeneration as a result of aggravated nutritional constraints. Therefore, we investigated the effects of injecting polymethylmethacrylate (PMMA) into three adjacent lumbar vertebrae on intervertebral disc and vertebral bone tissue in 12 skeletally mature sheep. After 6 and 12 months of augmentation, the sheep were euthanized and their spines were processes for histological evaluation. Semiquantitative histomorphological analysis of discs and endplates was conducted using published criteria. Histomorphological changes in the augmented bone were assessed qualitatively. Approximately 80% of the length of the endplates was in contact with PMMA. However, there was no significant difference between the histopathological score of the discs adjacent to augmented vertebrae and the score of the control discs. Bone tissue reaction to PMMA was characterized by a thin fibrous tissue layer and occasional foreign-body reactions. New bone formation was present in all augmented vertebrae. Concerns about aggravation of disc degeneration as a result of vertebral cement augmentation seem to be unsubstantiated. Furthermore, adverse effects of PMMA cement on bone biology do not seem to be a relevant issue.  相似文献   

9.
背景:磷酸钙骨水泥克服了聚甲基丙烯酸甲酯的诸多缺点并具有良好的生物相容性。而负载复合重组人类骨形态发生蛋白2的磷酸钙骨水泥经固化后可具有微孔结构,可提高经皮椎体成形充填材料的临床价值。 目的:探讨以可注射型磷酸钙骨水泥和纤维蛋白胶作为共同载体,复合重组人类骨形态发生蛋白2,替代聚甲基丙烯酸甲酯应用于新西兰大白兔椎体成形的可行性。 方法:制备磷酸钙骨水泥/纤维蛋白胶/复合重组人类骨形态发生蛋白2新型复合材料。采用小鼠肌袋异位诱导成骨模型对不同植入材料进行骨诱导活性评价;模仿椎体成形观察新型复合材料和聚甲基丙烯酸甲酯植入兔椎体后的生物力学改变。 结果与结论:新型复合材料植入后2,4周碱性磷酸酶水平最高,植入后4周软骨细胞逐渐成熟,新骨形成,抗压强度和抗扭转强度明显低于正常椎体和聚甲基丙烯酸甲酯植入后(P < 0.05),8周后材料被进一步降解,抗压强度和抗扭转强度均有所上升,扛扭转强度与正常椎体相比无显著差别,但仍明显低于聚甲基丙烯酸甲酯(P < 0.05)。microCT提示其新生骨形成多而早,但聚甲基丙烯酸甲酯未见材料吸收及周围骨质长入。说明新型复合材料植入椎体后能够获得良好的骨诱导和骨传导功能,材料降解和新骨替代同步,接近于正常椎体的骨愈合,可望替代聚甲基丙烯酸甲酯应用于椎体成形。  相似文献   

10.
The use of injectable calcium phosphate (CaP) biomaterials in noninvasive surgery should provide efficient bone colonization and implantation. Two different kinds of injectable biomaterials are presently under development: ionic hydraulic bone cements that harden in vivo after injection, and an association of biphasic calcium phosphate (BCP) ceramic granules and a water-soluble polymer vehicle (a technique particularly investigated by our group), providing an injectable CaP bone substitute (IBS). In our study, we compared these two approaches, using physicochemical characterizations and in vivo evaluations in light microscopy, scanning electron microscopy, and three-dimensional microtomography with synchrotron technology. Three weeks after implantation in rabbit bone, both biomaterials showed perfect biocompatibility and bioactivity, but new bone formation and degradation of the biomaterial were significantly greater for BCP granules than for ionic cement. Newly formed bone developed, binding the BCP granules together, whereas new bone grew only on the surface of the cement, which remained dense, with no obvious degradation 3 weeks after implantation. This study confirms that BCP granules carried by a cellulosic polymer conserve bioactivity and are conducive to earlier and more extensive bone substitution than a carbonated-hydroxyapatite bone cement. The presence of intergranular spaces in the BCP preparation, as shown on microtomography imaging, seems particularly favorable, allowing body fluids to reach each BCP granule immediately after implantation. Thus, the IBS functions as a completely interconnected ceramic with total open macroporosity. This new bone replacement approach should facilitate microinvasive bone surgery and local delivery of bone therapy agents.  相似文献   

11.
The use of polymethylmethacrylate (PMMA)-based bone cement is popular in orthopedics for the fixation of artificial joints with bone. However, it has a major problem with prostheses loosening because of coverage by fibrous tissue after long-term implantation. Recently, a bioactive bone cement has been developed that shows direct bonding to living bone through modification of PMMA resin with gamma-methacryloxypropyltrimethoxysilane (MPS) and calcium acetate. The cement is designed to exhibit bioactivity, through incorporation of silanol groups and calcium ions. Thus, it has the potential to form a layer of bone-like hydroxyapatite, which is essential for achieving direct bonding to living bone. This type of modification allows the cement to show spontaneous hydroxyapatite formation on its surface in a simulated body fluid after one day, and there is evidence of osteoconduction of the cement in rabbit tibia for periods of more than three weeks. However, the influence of the dissolved ions from the modified cement has not yet been clarified. Thus, the authors focused on the dissolution of the modified PMMA-based bone cement and its tissue response in muscle and bone by comparison with the behavior of non-modified PMMA-based bone cement. One week after implantation in the latissimus dorsi of a rabbit, the modified PMMA-based bone cement showed more inflammatory width than the commercial cement. However, four weeks after implantation, the inflammatory width of both cements was essentially the same. The osteoconductivity around the modified cement was higher than that for the conventional cement after four weeks implantation. These results indicate that the initial dissolution of calcium acetate from the modified cement to form the hydroxyapatite induced the acute inflammation around tissue, but also developed the osteoconductivity. It is suggested that the initial inflammation can be effective for inducing osteoconduction through a bone healing reaction when the material provides an environment that promotes bone formation.  相似文献   

12.
The chemical resemblance of calcium phosphate (CaP) cements and the mineral phase of bone is a problem in distinguishing CaP cement from bone tissue by means of common, noninvasive techniques (e.g., X-ray imaging and microcomputed tomography [μCT]). In this study, the feasibility of using tantalumpentoxide (Ta(2)O(5)) powder as radiopacifier in CaP cements was analyzed. A distal femoral condyle model in male adult Wistar rats was used. After 6 weeks of implantation time, the results were analyzed by means of μCT and histology. Unambiguous distinction of CaP cement from native bone tissue and volumetric measurements of the materials appeared to be possible by means of μCT scanning. Furthermore, there was no evidence of either inflammation or fibrous tissue around the implant materials or at the bone-material interface. In conclusion, the addition of Ta(2)O(5) as a radiopacifying additive to CaP cements allows discrimination between bone substitute and surrounding bone tissue. Consequently, Ta(2)O(5) represents an effective and biocompatible additive in CaP cements for in vivo monitoring purposes.  相似文献   

13.
A bioactive bone cement (designated GBC), consisting of bioactive glass beads as an inorganic filler and poly(methyl methacrylate) (PMMA) as an organic matrix, has been developed. The purpose of the present study was to examine the effect of the size of the glass beads added as a filler to GBC on its mechanical properties and osteoconductivity. Serial changes in GBC with time were also examined. Four different sizes of beads (mean diameters 4, 5, 9, and 13 microm) consisting of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) glass were added to four GBC mixes in a proportion of 70 wt %. The bending strength of GBC increased as the mean size of the glass beads decreased. The four GBC mixes were packed into the intramedullary canals of rat tibiae to evaluate osteoconductivity, as determined by an affinity index. Rats were sacrificed at 4 and 8 weeks after surgery. The affinity index, which equaled the length of bone in direct contact with the cement surface expressed as a percentage of the total length of the cement surface, was calculated for each cement at each interval. Histologically, new bone had formed along the surface of all types of GBC within 4 weeks. At each time interval, there was a trend for the affinity index of GBC to increase as the mean glass bead size decreased. The affinity indices for all types of GBC increased significantly with time up to 8 weeks. The handling properties of GBC were comparable to those of conventional PMMA bone cement. We concluded that, considering both mechanical properties and osteoconductivity, GBC made with smaller sized glass beads as filler was the most suitable cement. GBC shows promise as an alternative bone cement with improved properties compared to conventional PMMA bone cement.  相似文献   

14.
A new bioactive bone cement (designated GBC) consisting of polymethyl methacrylate (PMMA) as an organic matrix and bioactive glass beads as an inorganic filler has been developed. The bioactive beads, consisting of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) glass, have been newly designed, and a novel PMMA powder was selected. The purpose of the present study was to compare this new bone cement GBC's mechanical properties in vitro and its osteoconductivity in vivo with cements consisting of the same matrix as GBC and either apatite- and wollastonite-containing glass-ceramic (AW-GC) powder (designated AWC) or sintered hydroxyapatite (HA) powder (HAC). Each filler added to the cements amounted to 70 wt %. The bending strength of GBC was significantly higher than that of AWC and HAC (p < 0.0001). Cements were packed into intramedullar canals of rat tibiae in order to evaluate osteoconductivity as determined by an affinity index. Rats were sacrificed at 2, 4, and 8 weeks after operation. An affinity index, which equaled the length of bone in direct contact with the cement expressed as a percentage of the total length of the cement surface, was calculated for each cement. At each time interval studied, GBC showed a significantly higher affinity index than AWC or HAC up to 8 weeks after implantation (p < 0.03). The value for GBC increased significantly with time up to 8 weeks (p < 0.006). The handling property of GBC was comparable with that of PMMA bone cement. Our study revealed that the higher osteoconductivity of GBC was due to the higher bioactivity of the bioactive glass beads at the cement surface and the lower solubility of the new PMMA powder to MMA monomer. In addition, it was found that the smaller spherical shape and glassy phase of the glass beads gave GBC strong enough mechanical properties to be useful under weight-bearing conditions. GBC shows promise as an alternative with improved properties to the conventionally used PMMA bone cement.  相似文献   

15.
Novel antimicrobial poly(methyl methacrylate) (PMMA)-based bone cement was synthesized by co-polymerizing PMMA/MMA with various percentages of quaternary amine dimethacrylate (QADMA) by free radical bulk polymerization technique at room temperature using benzoyl peroxide and N,N-dimethyl-p-toulidine (DMPT) as a redox initiator. The modified bone cement was characterized by FT-IR and 1H-NMR spectral studies. The thermal and physical properties of the bone cements of varying composition of QADMA were evaluated by thermogravimetric analysis (TGA), differential calorimetry (DSC) and contact angle measurements. Peak exothermic temperature was observed to decrease, while setting time increased with increase in QADMA content in the bone cement formulations. The antibacterial activity of the synthesized bone cement containing quaternary amine dimethacrylate against Escherichia coli and Staphylococcus aureus was studied by zone of inhibition, colony count method and scanning electron microscopy (SEM). QADMA containing acrylic bone cement showed a broad spectrum of contact killing antimicrobial properties. Retention of E. coli onto the surface of PMMA bone cement was observed, whereas there was complete prevention of retention of E. coli onto the modified PMMA bone cement with 15% QADMA. The studies were compared with the acrylic bone cement synthesized using 15% N-vinyl-2-pyrrolidone (NVP) in place of QADMA to which iodine was added as an antimicrobial agent during co-polymerization.  相似文献   

16.
The attachment of an implant material to bone relates to surface roughness and surface chemistry. There is a relatively low chemical bonding strength of so-called bioactive surfaces. Hydroxyapatite interfaces typically have an interfacial tensile strength of 0.15-1.5 MPa. An attachment force similar to that of bioactive surfaces might also be reached through mechanical interlock with ordinary bone cement. This study measured bone cement interfacial tensile strength for polished (R(a) 0.5 microm) and regular (R(a) 4.8 microm) vacuum mixed PMMA bone cement. Bone bonding was evaluated by a detachment test. We used unloaded cement surfaces, which could be detached from the bone. Titanium plates were developed such that a cement fill was contained within a plate, which was contained within a titanium holder. The cement surface came into contact with traumatized bone only, and the rest of the plate had no contact with tissue. The cement surface was either polished or left untreated after conventional preparation. Four weeks later, the plates were detached from the bone by a perpendicular force. The detaching load of the polished cement surface never exceeded 0.07 MPa, whereas for unpolished cement there was a load up to 0.9 MPa. The results suggest that surface irregularities and microinterlock enable an attachment that can resist tension between bone and a cement surface.  相似文献   

17.
Novel antimicrobial poly(methyl methacrylate) (PMMA)-based bone cement was synthesized by co-polymerizing PMMA/MMA with various percentages of quaternary amine dimethacrylate (QADMA) by free radical bulk polymerization technique at room temperature using benzoyl peroxide and N, N-dimethyl-p-toulidine (DMPT) as a redox initiator. The modified bone cement was characterized by FT-IR and 1H-NMR spectral studies. The thermal and physical properties of the bone cements of varying composition of QADMA were evaluated by thermogravimetric analysis (TGA), differential calorimetry (DSC) and contact angle measurements. Peak exothermic temperature was observed to decrease, while setting time increased with increase in QADMA content in the bone cement formulations. The antibacterial activity of the synthesized bone cement containing quaternary amine dimethacrylate against Escherichia coli and Staphylococcus aureus was studied by zone of inhibition, colony count method and scanning electron microscopy (SEM). QADMA containing acrylic bone cement showed a broad spectrum of contact killing antimicrobial properties. Retention of E. coli onto the surface of PMMA bone cement was observed, whereas there was complete prevention of retention of E. coli onto the modified PMMA bone cement with 15% QADMA. The studies were compared with the acrylic bone cement synthesized using 15% N-vinyl-2-pyrrolidone (NVP) in place of QADMA to which iodine was added as an antimicrobial agent during co-polymerization.  相似文献   

18.
A new bioactive bone cement, designated GBC, has been developed. It consists of polymethyl methacrylate (PMMA) as an organic matrix and bioactive glass beads as an inorganic filler. The bioactive beads, consisting of MgO--CaO--SiO(2)--P(2)O(5)--CaF(2) glass, have been newly designed, and a novel PMMA powder was selected. The purpose of the present study was to evaluate the effects on mechanical properties and osteoconductivity of adding a phosphoric ester (PE) monomer to the cement as an adhesion-promoting agent. Four kinds of cements were prepared: GBC, GBC with PE (designated GBC/PE), a cement consisting of the same PMMA used in GBC with apatite- and wollastonite-containing glass-ceramic (AW-GC) powder (designated AWC), and AWC with PE (designated AWC/PE). Each filler was added to the cement at 70 wt %. Adding PE to either GBC or AWC resulted in increases in the bending strength and decreases in the Young's modulus compared with the unmodified cements. Cements were packed into the intramedullar canals of rat tibiae to evaluate osteoconductivity as determined by an affinity index. Rats were sacrificed at 4 and 8 weeks after operation. The affinity index (length of bone in direct contact with the cement expressed as a percentage of the total length of the cement surface) was calculated for each cement. Adding PE to either GBC or AWC resulted in significant increases in the affinity index compared with the unmodified cements. The affinity index for GBC was significantly higher than that of AWC, and that for GBC/PE was also significantly higher than that of AWC/PE. The affinity indices for each cement increased significantly with time up to 8 weeks. Our study revealed that the higher osteoconductivity of GBC/PE was due to the large alkyl group in the PE monomer, to the hydrophilicity of the phosphoric acid in the PE monomer, and to the higher bioactivity of the bioactive glass beads at the cement surface. GBC/PE shows promise as an alternative bone cement with improved properties compared with conventional PMMA bone cement.  相似文献   

19.
Evaluation of bioactive bone cement in canine total hip arthroplasty   总被引:3,自引:0,他引:3  
Total hip arthroplasties (THAs) were performed in beagle dogs using a bioactive bone cement (BABC) consisting of a silane-treated apatite- and wollastonite-containing glass-ceramic (AW glass-ceramic) powder and a silica glass powder as the filling particles and a bisphenol-A-glycidyl dimethacrylate-based resin (Bis-GMA-based resin) as the organic matrix. The outcomes were compared with the results of polymethylmethacrylate (PMMA) bone cement. The mechanical properties of the BABC were stronger than those of PMMA bone cement. The bonding strength of the BABC to bone in the dogs' femora increased with time and reached 3.7 MPa at 24 months after implantation whereas that of PMMA bone cement was 2.0 MPa (p < 0.05). Histological examination showed direct bonding between the BABC and the femoral bone for up to 24 months after implantation. However, with PMMA bone cement an intervening soft-tissue layer consistently was observed at the bone-cement interface. Direct bonding at the interface between the BABC and the bone through a calcium phosphorous layer 30 microm-thick was revealed by scanning electron microscopy. Femoral bone resorption was observed at 24 months after implantation in the BABC group, but it was not observed in the PMMA bone cement group. Direct bonding between BABC and the bone may have accelerated femoral bone resorption. Cement fractures of the BABC were observed on the acetabular side 24 months after implantation. Weak bonding between the BABC and an acetabular component made of ultrahigh molecular weight polyethylene (UHMWPE), relatively high elastic characteristics of BABC, and weakness of the calcium phosphorous layer formed on the surface of this cement seemed to lead to failure at 24 months on the acetabular side.  相似文献   

20.
We conducted an in vivo experiment to evaluate the resorption rate of a calcium phosphate cement (CPC) with macropores larger than 100 microm, using the CPC called Biocement D (Merck Biomaterial, Darmstadt, Germany), which after setting only shows pores smaller than 1 microm. The gas bubble method used during the setting process created macroporosity. Preset nonporous and porous cement implants were inserted into the trabecular bone of the tibial metaphysis of goats. The size of the preset implants was 6 mm and the diameter of the drill hole was 6.3 mm, leaving a gap of 0.3 mm between implant surface and drill wall. After 2 and 10 weeks, the animals were euthanized and cement implants with surrounding bone were retrieved for histologic evaluation. Light microscopy at 2 weeks revealed that the nonporous implants were surrounded by connective tissue. On the cement surface, we observed a monolayer of multinucleated cells. Ten weeks after implantation, the nonporous implants were still surrounded by connective tissue. However, a thin layer of bone now covered the implant surface. No sign of cement resorption was observed. In contrast, the porous cement evoked a completely different bone response. At 2 weeks, bone formation had already occurred inside the implant porosity. Bone formation even appeared to occur as a result of osteoinduction. Also, at their outer surface, the porous implants were completely surrounded by bone. At 2 weeks, about 31% of the initial cement was resorbed. After 10 weeks, 81% of the initial phosphate cement was resorbed and new bone was deposited. On the basis of these observations, we conclude that the creation of macropores can significantly improve the resorption rate of CPC. This increased degradation is associated with almost complete bone replacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号