首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the early events in insulin signal transmission in liver, isolated rat hepatocytes were labeled with 32P, and proteins phosphorylated in response to insulin were detected by immunoprecipitation with anti-phosphotyrosine and anti-receptor antibodies and analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and autoradiography. In these cells, insulin rapidly stimulated tyrosine phosphorylation of the 95,000-Mr beta-subunit of the insulin receptor and a 175,000-Mr phosphoprotein (pp175). Both proteins were precipitated by anti-phosphotyrosine antibody, whereas only the insulin receptor was recognized with anti-insulin-receptor antibody. In the insulin-stimulated state, both pp175 and the receptor beta-subunit were found to be phosphorylated on tyrosine and serine residues. Based on precipitation by the two antibodies, receptor phosphorylation was biphasic with an initial increase in tyrosine phosphorylation followed by a more gradual increase in serine phosphorylation over the first 30 min of stimulation. The time course of phosphorylation of pp175 was rapid and paralleled that of the beta-subunit of the insulin receptor. The pp175 was clearly distinguished from the insulin receptor, because it was detected only when boiling SDS was used to extract cellular phosphoproteins, whereas the insulin receptor was extracted with either Triton X-100 or SDS. In addition, the tryptic peptide maps of the two proteins were distinct. The dose-response curve for insulin stimulation was shifted slightly to the left of the insulin receptor, suggesting some signal amplification at this step. These data suggest that pp175 is a major endogenous substrate of the insulin receptor in liver and may be a cytoskeletal-associated protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
Alteration of insulin-receptor kinase activity by high-fat feeding   总被引:4,自引:0,他引:4  
It has been demonstrated in in vivo and in vitro experiments that high-fat (HF) feeding causes insulin resistance. To elucidate the mechanism for this effect, we have measured the kinase activity of the insulin receptor purified from livers of HF-fed rats that showed impaired insulin action in isolated rat adipocytes. In adipocyte experiments, HF feeding led to a 65% decrease in the maximal response stimulated by insulin in a 2-deoxyglucose uptake study. Although insulin binding to adipocytes of HF-fed rats also decreased to 50% of control due to decreased binding affinity, the postbinding defect should be accounted for by decreased insulin action in view of the presence of spare receptor. In contrast to adipocytes, insulin binding to the lectin-purified insulin receptor from livers showed no difference in receptor-binding affinity between HF-fed and control rats. Insulin-stimulated phosphorylation of the beta-subunit of the insulin receptor was decreased to almost 50% throughout the entire dose-response curve. The study of glutamine-tyrosine (4:1) phosphorylation by the insulin-receptor kinase showed results similar to those of the autophosphorylation study. These results suggest that an HF diet causes insulin resistance by affecting insulin-receptor kinase, which plays an important role in transmembrane signaling between insulin binding and insulin action.  相似文献   

4.
We used anti-insulin-receptor and anti-phosphotyrosine antibodies to elucidate the mechanism of decreased insulin-receptor tyrosine kinase activity observed in subjects with non-insulin-dependent diabetes mellitus (NIDDM). Lectin-purified insulin receptors were labeled with 125I-labeled NAPA-DP-insulin and autophosphorylated in the presence of 500 microM unlabeled ATP. Immunoprecipitation occurred in 43 +/- 8% of the autophosphorylated, 125I-labeled receptors from nondiabetic subjects with anti-phosphotyrosine antibodies in contrast to 100% immunoprecipitation with anti-insulin-receptor antibodies. Anti-phosphotyrosine antibodies immunoprecipitated only 14 +/- 6% of NIDDM receptors (P less than .05 vs. nondiabetic receptors). A significant correlation existed between maximal insulin-stimulated receptor tyrosine kinase activity and the proportion of receptors immunoprecipitated by anti-phosphotyrosine antibodies (r = .76, P less than .01). These results suggest that human adipocytes contain two distinct receptor populations, both of which bind insulin but only one of which is capable of insulin-stimulated tyrosine phosphorylation. In nondiabetic subjects, 40-50% of the receptors that bind insulin are capable of insulin-stimulated tyrosine autophosphorylation. The proportion of receptors that bind insulin but are incapable of insulin-stimulated tyrosine autophosphorylation is increased in NIDDM; the magnitude of this increase correlated with the magnitude of the decrease in kinase activity.  相似文献   

5.
Insulin-receptor binding and tyrosine kinase activity have been studied in brown adipose tissue from lean and obese mice. Brown adipose tissue carries functional insulin receptors comparable with those of conventional insulin target tissues. The alpha-subunit (Mr, 130,000) was labeled with photoreactive insulin; the beta-subunit (Mr, 95,000) was phosphorylated in a cell-free system, and its level of phosphorylation was increased in a dose-dependent manner by insulin. Two types of obese mice, mice rendered obese by gold thioglucose injection (GTG obese) and genetically obese ob/ob mice, were used. Insulin-receptor number was decreased by 60-70% in obese mice, when expressed per milligram of plasma membrane protein or per microgram of glycoprotein, whereas only a 30-40% diminution was observed in skeletal muscle, indicating that insulin receptors from brown adipose tissue are greatly affected by the downregulation process. Insulin-stimulated autophosphorylation of the insulin-receptor beta-subunit was decreased by 60-70% in preparations of obese mice compared with lean mice in direct proportion to the diminished level of insulin-receptor number. Similarly, the ability of receptors to catalyze the phosphorylation of a synthetic substrate (copolymer glutamate-tyrosine) was reduced. These results suggest that the decrease in insulin-receptor number and in associated tyrosine kinase activity could explain the insulin-resistant glucose uptake and the alteration in diet-induced thermogenesis described in obese animals.  相似文献   

6.
Serine residues of the human insulin receptor (HIR) may be phosphorylated and negatively regulate the insulin signal. We studied the impact of 16 serine residues in HIR by mutation to alanine and co-overexpression in human embryonic kidney (HEK) 293 cells together with the docking proteins insulin receptor substrate (IRS)-1, IRS-2, or (SHC) Src homologous and collagen-like. As a control, IRS-1 was also cotransfected with an HIR with a juxtamembrane deletion (HIR delta JM) and therefore not containing the domain required for interaction with IRS-1. Coexpression of HIR with IRS-1, IRS-2, and SHC strongly enhanced tyrosine phosphorylation of these proteins. A similar increase in tyrosine phosphorylation was observed in cells overexpressing IRS-1, IRS-2, or SHC together with all HIR mutants except HIR delta JM and a mutant carrying exchanges of serines 1177, 1178, and 1182 to alanine (HIR1177/78/82), although this mutant showed normal autophosphorylation. Analysis of total cell lysates with anti-phosphotyrosine antibodies showed that in addition to the overexpressed substrates, other cellular proteins displayed reduced levels of tyrosine phosphorylation in these cells. To study consequences for phosphatidylinositol 3-kinase (PI 3-kinase) activation, we established stable NIH3T3 fibroblast cell lines overexpressing wild-type HIR, HIR1177/78/82, and other HIR mutants as the control. Again, HIR1177/78/82 showed normal autophosphorylation but showed a clear decrease in tyrosine phosphorylation of endogenous IRS-1 and activation of PI 3-kinase. This decrease in kinase activity also occurred in an in vitro kinase assay towards recombinant IRS-1. Finally, we performed a separation of the phosphopeptides by high-performance liquid chromatography and could not detect any differences in the profiles of HIR and HIR1177/78/82. In conclusion, we have defined a region in HIR that is important for substrate phosphorylation but not autophosphorylation. Therefore, this mutant may provide new insights into the mechanism of kinase activation and substrate phosphorylation.  相似文献   

7.
The insulin signaling cascade was investigated in rat myocardium in vivo in the presence of streptozocin (STZ)-induced diabetes and after diabetes treatment by islet transplantation under the kidney capsule. The levels of insulin-stimulated tyrosine phosphorylation of the insulin receptor beta-subunit, insulin receptor substrate (IRS)-2, and p52(Shc) were increased in diabetic compared with control heart, whereas tyrosine phosphorylation of IRS-1 was unchanged. The amount of the p85 subunit of phosphatidylinositol 3-kinase (PI 3-kinase) and the level of PI 3-kinase activity associated with IRS-2 were also elevated in diabetes, whereas no changes in IRS-1-associated PI 3-kinase were observed. Insulin-induced phosphorylation of Akt on Thr-308 was increased fivefold in diabetic heart, whereas Akt phosphorylation on Ser-473 was normal. In contrast with Akt phosphorylation, insulin-induced phosphorylation of glycogen synthase kinase (GSK)-3, a major cellular substrate of Akt, was markedly reduced in diabetes. In islet-transplanted rats, the majority of the alterations in insulin-signaling proteins found in diabetic rats were normalized, but insulin stimulation of IRS-2 tyrosine phosphorylation and association with PI 3-kinase was blunted. In conclusion, in the diabetic heart, 1) IRS-1, IRS-2, and p52(Shc) are differently altered, 2) the levels of Akt phosphorylation on Ser-473 and Thr-308, respectively, are not coordinately regulated, and 3) the increased activity of proximal-signaling proteins (i.e., IRS-2 and PI 3-kinase) is not propagated distally to GSK-3. Islet transplantation under the kidney capsule is a potentially effective therapy to correct several diabetes-induced abnormalities of insulin signaling in cardiac muscle but does not restore the responsiveness of all signaling reactions to insulin.  相似文献   

8.
Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice   总被引:24,自引:0,他引:24  
Klover PJ  Zimmers TA  Koniaris LG  Mooney RA 《Diabetes》2003,52(11):2784-2789
Interleukin (IL)-6 is one of several proinflammatory cytokines associated with the insulin resistance of obesity and type 2 diabetes. There is, however, little direct evidence in vivo for a causative role of IL-6 in insulin resistance. Here, a 5-day constant subcutaneous infusion of hIL-6 before portal vein insulin challenge resulted in impairment of early insulin receptor signaling in the liver of mice. Importantly, the sixfold elevation of IL-6 attained with constant infusion was similar to levels reached in obesity. Consistent with an hepatic response to IL-6, STAT3 phosphorylation was increased in livers of IL-6-treated mice at 5 days. Chronic infusion of IL-6 also reduced hepatic insulin receptor autophosphorylation by 60% and tyrosine phosphorylation of insulin receptor substrates-1 and -2 by 60 and 40%, respectively. IL-6 had no effect on the mass of these proteins. IL-6 also decreased refeeding-dependent glucokinase mRNA induction by approximately 40%. Insulin tolerance tests revealed reduced insulin sensitivity. In contrast to hepatic insulin receptor signal transduction, 5-day IL-6 exposure failed to suppress skeletal muscle insulin receptor signal transduction. These data suggest that chronic IL-6 treatment selectively impairs hepatic insulin signaling in vivo, further supporting a role for IL-6 in hepatic insulin resistance of obesity.  相似文献   

9.
We identified a possible endogenous substrate (pp185) of the insulin-receptor kinase in human adipocytes by treating intact cells with insulin and immunoblotting the cellular extracts with polyclonal antiphosphotyrosine antibody. This 185,000-Mr protein was phosphorylated on tyrosine residues in response to insulin in both rat and human adipocytes. The time course of pp185 phosphorylation at 37 degrees C was rapid and corresponded closely to insulin-receptor autophosphorylation but preceded insulin-stimulated glucose transport. Unlike many growth factor receptors, including the insulin receptor, pp185 was not adsorbed to wheat-germ agglutinin. We found that pp185 phosphorylation occurred at 12 degrees C and that the phosphoprotein was associated with both cytoplasmic and membrane fractions at this temperature. Furthermore, pp185 phosphorylation was induced to the same extent as insulin by vanadate and hydrogen peroxide, compounds previously shown to mimic the biologic effects of insulin. In addition, dose-response analysis of insulin-stimulated glucose transport, receptor autophosphorylation, and pp185 phosphorylation resulted in ED50 values of 0.3, 12, and 12 ng/ml, respectively. These results demonstrate the magnitude of "spare" autophosphorylation and pp185 phosphorylation with respect to glucose transport stimulation in human adipocytes. To determine whether the insulin resistance characteristic of non-insulin-dependent diabetes mellitus (NIDDM) and obesity is associated with a defect in receptor autophosphorylation and/or endogenous substrate phosphorylation, we estimated the extent of beta-subunit and pp185 phosphorylation in adipocytes from NIDDM, obese, and healthy subjects. Although the efficiency of coupling between receptor activation and pp185 phosphorylation was normal in obesity and NIDDM, the capacity for insulin-receptor autophosphorylation was approximately 50% lower in NIDDM subjects compared with nondiabetic obese or lean subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Temporal dynamics of tyrosine phosphorylation in insulin signaling   总被引:5,自引:0,他引:5  
The insulin-signaling network regulates blood glucose levels, controls metabolism, and when dysregulated, may lead to the development of type 2 diabetes. Although the role of tyrosine phosphorylation in this network is clear, only a limited number of insulin-induced tyrosine phosphorylation sites have been identified. To address this issue and establish temporal response, we have, for the first time, carried out an extensive, quantitative, mass spectrometry-based analysis of tyrosine phosphorylation in response to insulin. The study was performed with 3T3-L1 adipocytes stimulated with insulin for 0, 5, 15, and 45 min. It has resulted in the identification and relative temporal quantification of 122 tyrosine phosphorylation sites on 89 proteins. Insulin treatment caused a change of at least 1.3-fold in tyrosine phosphorylation on 89 of these sites. Among the responsive sites, 20 were previously known to be tyrosine phosphorylated with insulin treatment, including sites on the insulin receptor and insulin receptor substrate-1. The remaining 69 responsive sites have not previously been shown to be altered by insulin treatment. They were on proteins with a wide variety of functions, including components of the trafficking machinery for the insulin-responsive glucose transporter GLUT4. These results show that insulin-elicited tyrosine phosphorylation is extensive and implicate a number of hitherto unrecognized proteins in insulin action.  相似文献   

11.
Insulin like growth factor I (IGF‐I) and insulin like growth factor binding protein‐2 (IGFBP‐2) function coordinately to stimulate AKT and osteoblast differentiation. IGFBP‐2 binding to receptor protein tyrosine phosphatase β (RPTPβ) stimulates polymerization and inactivation of phosphatase activity. Because phosphatase and tensin homolog (PTEN) is the primary target of RPTPβ, this leads to enhanced PTEN tyrosine phosphorylation and inactivation. However RPTPβ inactivation also requires IGF‐I receptor activation. The current studies were undertaken to determine the mechanism by which IGF‐I mediates changes in RPTPβ function in osteoblasts. IGFBP‐2/IGF‐I stimulated vimentin binding to RPTPβ and this was required for RPTPβ polymerization. Vimentin serine phosphorylation mediated its binding to RPTPβ and PKCζ was identified as the kinase that phosphorylated vimentin. To determine the mechanism underlying IGF‐I stimulation of PKCζ‐mediated vimentin phosphorylation, we focused on insulin receptor substrate–1 (IRS‐1). IGF‐I stimulated IRS‐1 phosphorylation and recruitment of PKCζ and vimentin to phospho‐IRS‐1. IRS‐1 immunoprecipitates containing PKCζ and vimentin were used to confirm that activated PKCζ directly phosphorylated vimentin. PKCζ does not contain a SH‐2 domain that is required to bind to phospho‐IRS‐1. To determine the mechanism of PKCζ recruitment we analyzed the role of p62 (a PKCζ binding protein) that contains a SH2 domain. Exposure to differentiation medium plus IGF‐I stimulated PKCζ/p62 association. Subsequent analysis showed the p62/PKCζ complex was co‐recruited to IRS‐1. Peptides that disrupted p62/PKCζ or p62/IRS‐1 inhibited IGF‐I/IGFBP‐2 stimulated PKCζ activation, vimentin phosphorylation, PTEN tyrosine phosphorylation, AKT activation, and osteoblast differentiation. The importance of these signaling events for differentiation was confirmed in primary mouse calvarial osteoblasts. These results demonstrate the cooperative interaction between RPTPβ and the IGF‐I receptor leading to a coordinated series of signaling events that are required for osteoblast differentiation. Our findings emphasize the important role IRS‐1 plays in modulating these signaling events and confirm its essential role in facilitating osteoblast differentiation. © 2016 American Society for Bone and Mineral Research.  相似文献   

12.
Glucosamine, a metabolite of glucose via the hexosamine biosynthetic pathway, potently induces insulin resistance in skeletal muscle by impairing insulin-induced GLUT4 translocation to the plasma membrane. Activation of phosphoinositide (PI) 3-kinase is necessary for insulin-stimulated GLUT4 translocation, and the serine/threonine kinase Akt/protein kinase B (PKB) is a downstream mediator of some actions of PI 3-kinase. To determine whether glucosamine-induced insulin resistance could be due to impaired signaling, we measured insulin receptor substrate (IRS)-1 and insulin receptor tyrosine phosphorylation; PI 3-kinase activity associated with IRS-1, IRS-2, and phosphotyrosine; and Akt activity and phosphorylation in skeletal muscle of rats infused for 2 h with glucosamine (6.0 mg x kg(-1) x min(-1)) or saline. Euglycemic-hyperinsulinemic clamp studies (12 mU x kg(-1) x min(-1) insulin) in awake rats showed that glucosamine infusion resulted in rapid induction of insulin resistance, with a 33% decrease in glucose infusion rate (P < 0.01). Tissues were harvested after saline alone (basal), 1 min after an insulin bolus (10 U/kg), or after 2 h of insulin clamp in saline- and glucosamine-infused rats. After 1 min of insulin stimulation, phosphorylation of IRS-1 and insulin receptor increased 6- to 8-fold in saline-infused rats and 7- to 10-fold in glucosamine-infused rats. In saline-infused rats, 1 min of insulin stimulation increased PI 3-kinase activity associated with IRS-1, IRS-2, or phosphotyrosine 7.6-, 6.4-, and 10-fold, respectively. In glucosamine-infused rats treated for 1 min with insulin, PI 3-kinase activity associated with IRS-1 was reduced 28% (P < 0.01) and that associated with phosphotyrosine was reduced 43% (P < 0.01). Insulin for 1 min stimulated Akt/PKB activity approximately 5-fold in both saline- and glucosamine-infused rats; insulin-induced hyperphosphorylation of Akt/PKB was not different between groups. Glucosamine infusion alone had no effect on tyrosine phosphorylation of the insulin receptor or IRS-1 or on stimulation of PI 3-kinase or Akt/PKB activity. However, 2 h of insulin clamp reduced PI 3-kinase activity associated with IRS-1, IRS-2, or phosphotyrosine to <30% of that seen with 1 min of insulin. No effect of glucosamine was seen on these signaling events when compared with 2 h of insulin clamp without glucosamine. Our data show that 1) glucosamine infusion in rats is associated with an impairment in the early activation of PI 3-kinase by insulin in skeletal muscle, 2) this insulin-resistant state does not involve alterations in the activation of Akt/PKB, and 3) prolonged insulin infusion under clamp conditions results in a blunting of the PI 3-kinase response to insulin.  相似文献   

13.
Increased insulin sensitivity in IGF-I receptor--deficient brown adipocytes   总被引:3,自引:0,他引:3  
Mur C  Valverde AM  Kahn CR  Benito M 《Diabetes》2002,51(3):743-754
Immortalized brown adipocyte cell lines have been generated from fetuses of mice deficient in the insulin-like growth factor I receptor gene (IGF-IR(-/-)), as well as from fetuses of wild-type mice (IGF-IR(+/+)). These cell lines maintained the expression of adipogenic- and thermogenic-differentiation markers and show a multilocular fat droplets phenotype. IGF-IR(-/-) brown adipocytes lacked IGF-IR protein expression; insulin receptor (IR) expression remained unchanged as compared with wild-type cells. Insulin-induced tyrosine autophosphorylation of the IR beta-chain was augmented in IGF-IR--deficient cells. Upon insulin stimulation, tyrosine phosphorylation of (insulin receptor substrate-1) IRS-1 was much higher in IGF-IR(-/-) brown adipocytes, although IRS-1 protein content was reduced. In contrast, tyrosine phosphorylation of IRS-2 decreased in IGF-IR--deficient cells; its protein content was unchanged as compared with wild-type cells. Downstream, the association IRS-1/growth factor receptor binding protein-2 (Grb-2) was augmented in the IGF-IR(-/-) brown adipocyte cell line. However, SHC expression and SHC tyrosine phosphorylation and its association with Grb-2 were unaltered in response to insulin in IGF-IR--deficient brown adipocytes. These cells also showed an enhanced activation of mitogen-activated protein kinase (MAPK) kinase (MEK1/2) and p42/p44 mitogen-activated protein kinase (MAPK) upon insulin stimulation. In addition, the lack of IGF-IR in brown adipocytes resulted in a higher mitogenic response (DNA synthesis, cell number, and proliferating cell nuclear antigen expression) to insulin than wild-type cells. Finally, cells lacking IGF-IR showed a much lower association between IR or IRS-1 and phosphotyrosine phosphatase 1B (PTP1B) and also a decreased PTP1B activity upon insulin stimulation. However, PTP1B/Grb-2 association remained unchanged in both cell types, regardless of insulin stimulation. Data presented here provide strong evidence that IGF-IR--deficient brown adipocytes show an increased insulin sensitivity via IRS-1/Grb-2/MAPK, resulting in an increased mitogenesis in response to insulin.  相似文献   

14.
We characterized metabolic and mitogenic signaling pathways in isolated skeletal muscle from well-matched type 2 diabetic and control subjects. Time course studies of the insulin receptor, insulin receptor substrate (IRS)-1/2, and phosphatidylinositol (PI) 3-kinase revealed that signal transduction through this pathway was engaged between 4 and 40 min. Insulin-stimulated (0.6-60 nmol/l) tyrosine phosphorylation of the insulin receptor beta-subunit, mitogen-activated protein (MAP) kinase phosphorylation, and glycogen synthase activity were not altered in type 2 diabetic subjects. In contrast, insulin-stimulated tyrosine phosphorylation of IRS-1 and anti-phosphotyrosine-associated PI 3-kinase activity were reduced 40-55% in type 2 diabetic subjects at high insulin concentrations (2.4 and 60 nmol/l, respectively). Impaired glucose transport activity was noted at all insulin concentrations (0.6-60 nmol/l). Aberrant protein expression cannot account for these insulin-signaling defects because expression of insulin receptor, IRS-1, IRS-2, MAP kinase, or glycogen synthase was similar between type 2 diabetic and control subjects. In skeletal muscle from type 2 diabetic subjects, IRS-1 phosphorylation, PI 3-kinase activity, and glucose transport activity were impaired, whereas insulin receptor tyrosine phosphorylation, MAP kinase phosphorylation, and glycogen synthase activity were normal. Impaired insulin signal transduction in skeletal muscle from type 2 diabetic patients may partly account for reduced insulin-stimulated glucose transport; however, additional defects are likely to play a role.  相似文献   

15.
Park HS  Jin DK  Shin SM  Jang MK  Longo N  Park JW  Bae DS  Bae YS 《Diabetes》2005,54(11):3175-3181
Leprechaunism features a clinical constellation characterized by extreme insulin resistance, growth retardation, and several distinct developmental abnormalities. One puzzling observation about leprechaunism is that mutations in the insulin receptor gene frequently associated with this syndrome cannot account for the aberrant responses of cultured cells to other growth factors. Here we report that the generation of reactive oxygen species (ROS) is impaired in cells from leprechaunism patients, thus shedding new light on this issue. Stimulation of patients' skin fibroblast cells with platelet-derived growth factor (PDGF) resulted in a lower-level tyrosine phosphorylation of cytosolic proteins compared with that seen in normal cells. In addition, consistent with the hypothesis that ROS mediate the level of tyrosine phosphorylation of cytosolic proteins through inactivation of protein tyrosine phosphatases (PTPases), patient fibroblast cells showed a significantly higher phosphatase activity than normal cells. We further showed that the lower-level tyrosine phosphorylation in response to growth factors results from the downregulation of an NADPH oxidase, Nox4, which in turn results in the reduction of ROS generation. Ectopic expression of Nox4 in the patient fibroblast cells consistently restored PDGF-induced ROS production and regulation of PTPase activities. Taken together, these data provide insight into the mechanisms through which growth retardation is associated with leprechaunism syndrome.  相似文献   

16.
严重烫伤大鼠肝细胞胰岛素信号转导缺陷机制的研究   总被引:4,自引:1,他引:3  
目的 探讨严重烫伤大鼠肝细胞中胰岛素信号转导缺陷的环节 ,初步阐明严重烫伤后机体产生胰岛素抵抗的分子基础。 方法 以 30 %体表面积Ⅲ度烫伤大鼠为模型 ,采用麦胚凝集素 葡聚糖 4B亲和层析技术 ,部分纯化大鼠肝细胞胰岛素受体 ,通过胰岛素受体结合、受体蛋白自身磷酸化、SDS 聚丙烯酰胺凝胶电泳放射自显影和外源性底物磷酸化方法 ,观察烫伤大鼠早期肝细胞胰岛素受体结合行为、受体β 亚基自身磷酸化和受体酪氨酸蛋白激酶 (TPK)活性的变化。  结果 大鼠烫伤后 3d ,肝细胞胰岛素受体最大结合容量及亲和力无明显改变 ;受体 β 亚基自身磷酸化能力明显下降 ;受体TPK活性明显降低 ,对胰岛素刺激的反应性明显减退。 结论 严重烫伤后 ,大鼠肝细胞中的胰岛素信号转导发生偶联障碍 ,导致胰岛素生物效应受体后缺陷 ,可能是胰岛素抵抗发生的分子基础。  相似文献   

17.
The effects of follicular fluid on the acrosome reaction (AR) and phosphorylation of tyrosine residues of the sperm proteins were examined in mouse epididymal sperm. Human follicular fluid (hFF) increased AR in the capacitated sperm. Genistein, a receptor tyrosine kinase (RTK) inhibitor, inhibited spontaneous AR. When the genistein was primed, hFF-induced AR was attenuated but the A23187-induced AR was not, suggesting that potentiation of AR by hFF attributed to the activation of RTK upstream the mobilization of Ca2+. Phosphotyrosine proteins of Mr 27 to 116 kDa were markedly increased in capacitated sperm but this increase was abrogated by genistein. hFF increased tyrosine phosphorylation of Mr 56 kDa protein with genistein sensitive manner, suggesting that 56 kDa phosphotyrosine protein might be involved in capacitation and AR by follicular fluid.  相似文献   

18.
The effect of topical application of epidermal growth factor (EGF) and platelet-derived growth factors (PDGFs) on the levels of EGF-R and PDGF-R proteins and their tyrosine phosphorylation were analyzed during an acute cutaneous wound healing process in mice. The growth factor-treated wounds had optimum levels of receptor proteins as early as day 1 compared with the control, which had only a basal level. Analysis of the tyrosine phosphorylation of the receptor proteins in control and growth factor-treated wounds indicated that they were phosphorylated until day 5 after wounding. Only the mature forms of α-PDGF-R and β-PDGF-R proteins were phosphorylated and not their precursors. Our results show that rapid attainment of maximum levels of growth factor receptor proteins and their tyrosine phosphorylation as early as day 1 and the maintenance of the same until day 3 appear to aid faster and better wound healing. Topical application of PDGF-AA alone did not facilitate the wound healing process and it also antagonized the EGF-medicated wound healing when applied premixed with EGF or within 30 minutes after EGF application. Under these conditions, the receptor proteins were not phosphorylated. Thus, an increased and sustained level of EGF-R and PDGF-R proteins and their tyrosine phosphorylation appear to accelerate the wound healing process.  相似文献   

19.
Defects in insulin-receptor structure can impair insulin-receptor function. We have previously identified qualitative abnormalities in insulin binding to insulin receptors from an insulin-resistant patient (Lep/Ark-1). The defects in insulin binding are probably caused by a defect in receptor structure. In this study, we used immunological probes to investigate the structural defect(s) responsible for the abnormal function. Several anti-receptor antibodies were impaired in their abilities to bind to the insulin receptor of Lep/Ark-1. For example, monoclonal antibody MoAb-51 was much less effective in inhibiting binding to insulin receptors from Lep/Ark-1 (ID50 70 nM) than to those of normal subjects (ID50 8 nM). In addition, there was a 10-fold reduction of the avidity with which human polyclonal antibody B-d immunoprecipitated the patient's insulin receptors. The avidity of antibody B-10 was also reduced, although to a lesser extent. In contrast, several site-specific antibodies against epitopes on the beta-subunit of the receptor bound to receptors from Lep/Ark-1 with normal avidity. The data with monoclonal and polyclonal antibodies are consistent with the hypothesis that the structural defect resides in the extracellular domain of this patient's insulin receptor. The normal immunoreactivity of two putative phosphorylation sites on the beta-subunit with site-specific antibodies gives further support to the conclusion that this patient's receptors have normal tyrosine kinase activity.  相似文献   

20.
The receptor-type protein tyrosine kinases in murine pancreatic islets were screened to identify possible growth/differentiation factors in pancreatic beta-cells. The analysis revealed that insulin receptor-related receptor (IRR) is highly expressed in the islets as well as in several highly differentiated beta-cell lines derived from transgenic mice. Islets predominantly contain IRR as uncleaved proreceptors compared with IRR as processed forms in the beta-cell lines, suggesting that the activity of IRR is regulated on the level of processing proteases in vivo. To examine the IRR signaling pathway, a chimeric receptor consisting of the extracellular domain of insulin receptor and the intracellular domain of IRR was expressed in Chinese hamster ovary cells. The hybrid receptor is functional because insulin is capable of tyrosine-phosphorylating the catalytic domain in these cells. It also stimulates the tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and IRS-2, indicating that both proteins serve as substrates of IRR-protein tyrosine kinase in intact cells. The phenotype of the IRS-2 knockout mouse recently reported suggests that an IRS-2-mediated signaling pathway controls the compensatory increase in pancreatic beta-cell mass in insulin-resistant states. From our findings of the specific expression of IRR and its ability of signaling to IRS-2, we speculate that this receptor might play a role in the regulation of beta-cell mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号