首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heme has been reported to be an important contributor to endogenous N-nitrosation within the colon and to the enhanced incidence of colon cancer observed with increased intake of red meat. This study uses the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) as a target to evaluate hemin potentiation of nitric oxide (NO)-mediated nitrosation. Formation of 14C-2-nitrosoamino-3-methylimidazo[4,5-f]quinoline (N-NO-IQ) was monitored by HPLC following incubation of 10 microM IQ with the NO donor spermine NONOate (1.2 microM NO/min) at pH 7.4 in the presence or absence of hemin. N-NO-IQ formation due to autoxidation of NO was at the limit of detection (0.1 microM) and increased 22-fold in the presence of 10 microM hemin and an in situ system for generating H2O2 (glucose oxidase/glucose). A linear increase in N-NO-IQ formation was observed from 1 to 10 microM hemin. Significant nitrosamine formation occurred at fluxes of NO and H2O2 as low as 0.024 and 0.25 microM/min, respectively. Potentiation by hemin was not affected by a 400-fold excess flux of H2O2 over NO or a 4.8-fold excess flux of NO over H2O2. Reactive nitrogen species produced by hemin potentiation had a 46-fold greater affinity for IQ than those produced by autoxidation. Azide inhibited autoxidation, suggesting involvement of the nitrosonium ion, NO+. Hemin potentiation was inhibited by NADH, but not azide, suggesting oxidative nitrosylation with NO2* or a NO2*-like species. IQ and 2,3-diaminonaphthylene were much better targets for nitrosation than the secondary amine morpholine. Apc(min) mice with dextran sulfate sodium-induced colitis demonstrated increased levels of urinary nitrite and nitrate consistent with increased expression of iNOS and NO synthesis. As reported previously, identical conditions increased fecal N-nitroso compounds. Thus, hemin potentiation of NO-mediated nitrosation of heterocyclic amines provides a testable mechanism by which red meat consumption can generate N-nitroso compounds and initiate colon cancer under inflammatory conditions, such as colitis.  相似文献   

2.
Metabolism of 2-amino-3-methylimidazo[4,5-f]quinoline in the male rat   总被引:1,自引:0,他引:1  
The metabolism of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) was studied in the male rat using the radiochemical labels 14C and 3H at positions 2 and 5 of the molecule, respectively. Adult male Fischer 344 rats were administered [2-14C]IQ or [5-3H]IQ by oral gavage at dose levels of 20 or 40 mg/kg body weight. Rats were also given [2-14C]IQ in the diet at a dose level of 300 ppm for 2 days and after administration of unlabelled IQ (300 ppm) in the diet for approximately 6.5 wk for an additional 2 days. In the initial 48 hr following oral administration of 20 or 40 mg [2-14C]IQ/kg body weight, about 40-50% radioactivity was recovered in the urine, and about 30-38% radioactivity was recovered in the faeces. In the initial 72 hr following consumption of [2-14C]IQ (300 ppm) in the diet about 26% radioactivity was recovered in the urine and about 61% radioactivity was recovered in the faeces. Following cannulation of the bile ducts, rats administered a single dose of [2-14C]IQ (40 mg/kg body weight) by oral gavage excreted about 15% of the administered dose in the bile over a period of 2 days. Urine from rats given [2-14C]IQ contained three main polar metabolites that included a glucuronide, a sulphate ester and IQ sulphamate, and a number of less polar metabolites that included IQ, 2-acetylamino-3-methylimidazo[4,5-f]quinoline, 2-aminoimidazo[4,5-f]quinoline and 2-amino-3,6-dihydro-3-methyl-7H-imidazo[4,5-f]quinoline-7-one (7-OH-IQ). Administration of [2-14C]IQ by oral gavage or in the diet gave the same metabolites, but in different amounts. In the faeces of rats given [2-14C] by oral gavage, IQ-sulphamate was the major metabolite in the polar fraction. Non-polar metabolites similar to those found in the urine were also present, but in different amounts. A major, non-polar faecal metabolite, 7-OH-IQ was probably formed as a result of the activity of the intestinal bacterial flora. In rats given a single gavage dose of [2-14C]IQ, excretion of metabolites was higher in the urine and lower in the faeces compared with that in animals fed [2-14C]IQ in the diet. One polar metabolite present in the urine, IQ-sulphamate (39%), was found at considerably higher levels in rats dosed orally with IQ compared with those fed IQ (less than 6%). Thus, IQ is extensively metabolized to give a number of polar and non-polar metabolites, the amounts of which depend, in part, on the mode of dosing.  相似文献   

3.
N-Nitrosamines and nitrosamides can initiate cancer. These studies evaluated the stability and reactivity of 2-nitrosoamino-3-methylimidazo[4,5-f]quinoline (N-NO-IQ) to assess its possible role in the initiation of colon cancer by 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). (14)C-N-NO-IQ was incubated with different solvents and pHs in the presence and in the absence of nucleophiles and analyzed by HPLC. The products identified by electrospray ionization mass spectrometry include 2-chloro-3-methylimidazo[4,5-f]quinoline (2-Cl-IQ), 2,2'-azo-3,3'-dimethylimidazo[4,5-f]quinoline (AZO-IQ), 2-azido-IQ (2-N(3)-IQ), 3-methylimidazo[4,5-f]quinoline (deamino-IQ), and IQ. A variety of organic solvents were tested with 0.1 N HCl. 2-Cl-IQ and IQ were formed following acidification of all solvents. AZO-IQ was only formed in methanol. Deamino-IQ was the major product formed in all of the alcohols tested, except for methanol. Under acidic conditions that completely convert N-NO-IQ in 5 min (acetonitrile with 0.1 N HCl), 62% of N-NO-IQ remains after 30 min if dimethyl sulfoxide is substituted for acetonitrile. N-NO-IQ was stable in the physiologic pH range of 5.5-9.0 and did not react with nucleophiles over a 4 h period at pH 7.4 and 37 degrees C. At acidic pH (pH < or =2.0) for 30 min and 37 degrees C, N-NO-IQ becomes labile forming electrophile(s), which combine with biologically relevant nucleophiles. The reaction of N-NO-IQ at pH 2.0 followed first-order kinetics (t(1/2) = 10 +/- 2 min) and was significantly increased in 10 mM NaN(3) (t(1/2) = 2 +/- 0.1 min). 2-N(3)-IQ was the major product observed in the latter incubation. N-NO-IQ binding to DNA at pH 2.0 is 100-fold more than that at pH 7.4. At pH 2.0, greater than 90% of the binding was inhibited by 10 mM NaN(3). Thus, N-NO-IQ forms a reactive electrophile(s) at acidic pH, which binds DNA. N-NO-IQ reaction products may depend on the pH and the hydrophobic milieu of cells or tissues.  相似文献   

4.
Both cooked red meat intake and chronic inflammation/infection are thought to play a role in the etiology of colon cancer. The heterocyclic amine 2-amino-3-methylimidazo[4,5-f ]quinoline (IQ) is formed during cooking of red meat and may be involved in initiation of colon cancer. Reactive nitrogen oxygen species (RNOS), components of the inflammatory response, contribute to the deleterious effects attributed to inflammation on normal tissues. This study assessed the possible chemical transformation of IQ by RNOS. RNOS were generated by various conditions to react with (14)C-IQ, and samples were evaluated by HPLC. Myeloperoxidase (MPO)-catalyzed reaction was dependent upon both H(2)O(2) and NO(2)(-). This reaction produced an azo-IQ dimer and IQ dimer along with two nitrated IQ products identified by ESI/MS. 2-Nitro-IQ was not detected. Product formation was inhibited by 2 mM cyanide. Reduction in nitrated products observed with 100 mM chloride was not altered with 0.5 mM taurine. Nitrated products were also produced by other conditions, ONOO(-) and NO(2)(-) + HOCl, which generate nitrogen dioxide radical. In contrast, conditions which generate N(2)O(3), such as diethylamine NONOate, produced only small amounts of nitrated products with the major product identified by MS and NMR as N-nitroso-IQ. MPO activation of IQ to bind DNA was dependent upon both H(2)O(2) and NO(2)(-). RNOS generated by ONOO(-) and DEA NONOate also activated IQ DNA binding. The nitrated IQ products were not activated by MPO to bind DNA. In contrast, N-nitroso-IQ was activated to bind DNA by MPO +/- NO(2)(-). HOCl activated N-nitroso-IQ, but not IQ. RAW cells produced N-nitroso-IQ and increased amounts of NO(2)(-)/NO(3)(-), when incubated with 0.1 mM IQ and stimulated with lipopolysaccharide and interferon gamma. Results demonstrate chemical transformation and activation of IQ by RNOS and activation of its N-nitroso product by biological oxidants, events which may contribute to initiation of colon cancer.  相似文献   

5.
The beef-extract mutagen, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), was shown, by alkaline elution procedures, to induce DNA damage in radiation-induced mouse leukaemia cells. The effect, which was dose related, occurred in incubations containing S-9 mix derived from polychlorinated biphenyl-induced rat liver but not in the absence of this metabolic activation system. An increased alkaline elution of DNA was also observed following IQ addition to cultures of hepatocytes from 3,3',4,4'-tetrachloroazobenzene-induced rat liver, and the DNA damage was again dose related. IQ has thus been shown to be genotoxic to mammalian cells in the presence of an effective activation system.  相似文献   

6.
2-Amino-3-methylimidazo[4.5-f]quinoline (IQ) is a potent bacterial mutagen and rodent carcinogen which also produces hepatocellular carcinoma in monkeys. The metabolism and disposition of this procarcinogen were investigated in monkeys undergoing carcinogen bioassay and in monkeys given an acute dose of IQ. Analysis of urine, feces, and bile revealed that IQ was extensively metabolized. A number of metabolites in urine were purified by high-performance liquid chromatography and characterized by 1H NMR and mass spectroscopy. Metabolites resulted from cytochrome P450-mediated ring oxidation at the C-5 position or N-demethylation. These metabolites could be further transformed by conjugation to sulfate or beta-glucuronic acid. Glucuronidation and sulfamate formation at the exocyclic amine group were other major routes of metabolism. Enteric bacteria also contributed to IQ biotransformation by forming the 7-oxo derivatives of IQ and N-demethyl-IQ. The metastable N2-glucuronide conjugate of the carcinogenic metabolite, 2-(hydroxyamino)-3-methylimidazo[4,5-f]quinoline, was found in urine. This indicates that metabolic activation through cytochrome P450-mediated N-oxidation occurs in vivo and that glucuronidation is a means of transport of the carcinogenic metabolite to extrahepatic tissues.  相似文献   

7.
 Prostaglandin-H synthase (PHS), a mammalian peroxidase of interest for the extrahepatic formation of reactive intermediates of carcinogens, catalyzes in vitro the metabolic activation of the mutagen and carcinogen 2-amino-3-methylimidazo-[4,5-f ]quinoline (IQ). Incubation of 14C-labeled IQ with ram seminal vesicle microsomes (RSVM), a rich source of PHS, resulted in protein binding and generated products mutagenic in S. typhimurium YG1024. The mutagenic activity produced in IQ/PHS incubations was stable and extractable with ethyl acetate. Upon fractionation of such extracts by HPLC and subsequent analysis, two metabolites were identified as 2,2′-azo-bis-3-methylimidazo[4,5-f ]quinoline (azo-IQ) and 3-methyl-2-nitro-imidazo[4,5-f ]quinoline (nitro-IQ) confirmed by comparison of HPLC retention times, UV/VIS-, 1H-NMR-spectroscopy, and mass spectrometry of synthesized standards. Azo-IQ was obtained by chemical oxidation of IQ with metasodium periodate. It was the major metabolite in PHS incubations, but has not been detected in monooxygenase incubations. Azo-IQ, without metabolic activation, was much less mutagenic in S. typhimurium YG1024 (308 rev/nmol) than nitro-IQ and 3-methyl-2-nitroso-imidazo[4,5-f ]quinoline (nitroso-IQ), two other S9-independent mutagens which have been synthesized by chemical oxidation of IQ with sodium nitrite. Nitro-IQ was formed only in trace amounts but due to its potent mutagenicity in S. typhimurium YG1024 (2×106 rev/nmol) it accounted for most of the mutagenic activity of the incubations. These data show that PHS-mediated in vitro metabolism of IQ results in its metabolic activation; thus PHS may contribute to the genotoxicity of IQ in extrahepatic tissues. Received: 25 July 1994/Accepted: 30 August 1994  相似文献   

8.
9.
The heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is one of a number of carcinogens found in barbecued meat and fish. It is mutagenic in bacterial and mammalian assays and induces tumors in mammals. IQ is biochemically activated to a derivative which reacts with DNA to form a major covalent adduct at carbon 8 of guanine. This adduct may deform the DNA and consequently cause a mutation, which may be responsible for initiating IQ's carcinogenicity. Atomic resolution structures of the IQ-damaged DNA are not yet available experimentally. We have carried out an extensive molecular mechanics energy minimization search to locate feasible structures for the major IQ-DNA adduct in the representative sequence d(5'-G1-G2-C3-G4-C5-C6-A7-3'). d(5'-T8-G9-G10-C11-G12-C13-C14-3') with IQ modification at G4; this contains the GGCGCC mutational hotspot sequence known as NarI. The molecular mechanics program AMBER 5.0 with the force field of Cornell et al. [(1995) J. Am. Chem. Soc. 117, 5179-5197] was employed, including explicit Na(+) counterions and an implicit treatment for solvation. However, key parameters, the partial charges, bond lengths, bond angles, and dihedral parameters of the modified residue, are not available in the AMBER database. We carefully parametrized the force field, created 800 starting conformations which uniformly sampled at 18 degrees intervals each of the three flexible torsion angles that govern the IQ-DNA orientation, and minimized their energy. A conformational mix of structural types, including major groove, minor groove, and base-displaced intercalated carcinogen positions, was generated. This mixture may be related to the diversity of mutational outcomes induced by IQ.  相似文献   

10.
2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is a highly mutagenic heterocyclic amine formed in all cooked meats. IQ has been found to be a potent inducer of frameshift mutations in bacteria and carcinogenic in laboratory animals. Upon metabolic activation, IQ forms covalent adducts at the C8- and N2-positions of deoxyguanosine with a relative ratio of up to approximately 4:1. We have previously incorporated the major dGuo-C8-IQ adduct into oligonucleotides through the corresponding phosphoramidite reagent. We report here the sequence-specific synthesis of oligonucleotides containing the minor dGuo-N2-IQ adduct. Thermal melting analysis revealed that the dGuo-N2-IQ adduct significantly destabilizes duplex DNA.  相似文献   

11.
The heterocyclic amine 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is one of a group of heterocyclic amine carcinogens that exists in cooked meat and fish. It causes mutations in bacterial and mammalian assays and induces tumors in mammals. MeIQx is converted within cells to a reactive derivative which forms a major covalent adduct at carbon-8 of guanine in DNA. This adduct may alter the DNA conformation at critical stages of the replicative process, and cause mutations which initiate the carcinogenic process. Atomic resolution structures of the MeIQx-damaged DNA are not yet available experimentally. We have carried out an extensive molecular mechanics/energy minimization search to locate feasible structures for the major MeIQx adduct in DNA, using the sequence d(5'-C1-G2-C3-G4[IQ]-C5-G6-C7-3').d(5'-G8-C9-G10-C11-G12-C13-G14-3') with MeIQx modification at G4. We have created 1152 starting conformations which uniformly sampled each of the three flexible torsion angles that govern the MeIQx-DNA orientation at 15 degrees intervals, and minimized their energy. A mixture of conformations was generated, which were separated into families according to the position of the ring system of the carcinogenic amine: major groove, minor groove, and base-displaced-intercalated. While a generally similar mixture had been generated previously for the related carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) [Wu, X., et al. (1999) Chem. Res. Toxicol. 12, 895-905], differences were found which could be rationalized in terms of the additional methyl group in the MeIQx.  相似文献   

12.
The covalent binding of the carcinogenic N-hydroxy metabolites of 2-amino-3-methylimidazo-[4,5-f]quinoline (IQ) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) to deoxynucleosides and DNA was investigated in vitro. Two major adducts were formed by the reaction of the N-acetoxy derivatives of IQ and MeIQx with deoxyguanosine (dG); however, no adducts were formed with deoxycytidine, deoxyadenosine, or thymidine. From proton NMR and mass spectroscopic characterization the adducts were identified as 5-(deoxyguanosin-N2-yl)-2-amino-3-methylimidazo[4,5-f]quinoline (dG-N2-IQ),N-(deoxyguanosin-8-yl)-2-amino-3-methylimidazo-[4,5-f]q uinoline (dG-C8-IQ), 5-(deoxyguanosin-N2-yl)-2-amino-3,8-dimethylimidazo[4,5-f]qu inoxaline (dG-N2-MeIQx), and N-(deoxyguanosin-8-yl)-2-amino-3,8-dimethylimidazo[4,5-f]qui noxaline (dG-C8-MeIQx). The level of dG-C8 adducts was approximately 8-10 times greater than the amount of dG-N2 adducts formed from the reaction of dG with the N-acetoxy derivatives of IQ and MeIQx. The C-8-substituted dG adduct was also the major adduct formed from reactions of DNA with N-acetoxy-IQ and N-acetoxy-MeIQx. Approximately 60-80% of the bound carcinogens were recovered from DNA as dG-C8 adducts upon enzymatic digestion. The dG-N2 adducts also were detected and accounted for approximately 4% of the bound IQ and 10% of the bound MeIQx. These results suggest that the relative contributions of the nitrenium and carbenium ion resonance forms as well as DNA macromolecular structure are major determinants for DNA adduct substitution sites. Investigations on adduct conformation of 1H NMR spectroscopy revealed that the anti form is preferred for the dG-N2 adducts of IQ and MeIQx, while the syn form is preferred for the dG-C8 adducts. The possible role of these adducts in the initiation of carcinogenesis is discussed.  相似文献   

13.
Accumulating evidence from human and experimental animal studies indicates that consumption of heterocyclic amines (HA), derived from cooked meat and fish, may be associated with an increased incidence of cancer. Experiments were initiated to assess the role of one of these compounds, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), as a potential transplacental carcinogen, as well as to evaluate whether in utero exposure to IQ results in the induction of fetal cytochrome P4501A1 (Cyp1a1), P4501B1 (Cyp1b1), and/or glutathione S-transferase (GST). Inducible, or responsive, backcrossed fetuses resulting from a cross between congenic C57BL/6 (Ah(d)Ah(d)) nonresponsive female mice and C57BL/6 (Ah(b)Ah(b)) responsive male mice were transplacentally exposed to olive oil or 6.25, 12.5, or 25 mg/kg of IQ on day 17 of gestation. No macroscopically or microscopically visible liver, lung, or colon tumors were found in the transplacentally treated offspring by one year after birth. Ethoxyresorufin O-deethylase (EROD) and 1-chloro-2,4-dinitrobenzene assays were performed to evaluate whether transplacental exposure to IQ results in the induction of fetal Cyp1a1 and GST, respectively, in lung and liver tissues. Results showed levels of EROD and GST activity in tissues of IQ-treated mice to be very close, if not identical, to those of mice treated with olive oil. Similarly, ribonuclease protection assay data showed that the levels of Cyp1a1 and Cyp1b1 RNA in tissues of IQ-treated mice were not significantly different from those of oil-treated controls. Previous studies have shown that the developing organism expresses very low levels of Cyp1a2. Thus, in utero exposure to IQ does not lead to induction of Cyp1a1, Cyp1a2, or Cyp1b1 in the fetal compartment, thereby maintaining the low levels of these activating enzymes in the developing organism. Taken together, these data imply that, at least under the conditions employed for these experiments, IQ may not play an important role in transplacentally induced tumorigenesis.  相似文献   

14.
Heterocyclic amines and inflammation have been implicated in the etiology of colon cancer. We have recently demonstrated that during autoxidation of the inflammatory mediator nitric oxide 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) undergoes nitrosation to form 2-nitrosoamino-3-methylimidazo[4,5-f]quinoline (N-NO-IQ). This study evaluates the genotoxicity of N-NO-IQ and compares the adducts it forms to those of 2-hydroxyamino-3-methylimidazo[4,5-f]quinoline (N-OH-IQ). N-NO-IQ was incubated with 2'-deoxyguanosine 3'-monophosphate (dGp) under a variety of inflammatory conditions. 32P-Postlabeling demonstrated the presence of multiple adducts. Incubation of N-OH-IQ with dGp at pH 7.4, 5.5, or 2.0 resulted in the formation of a single major adduct, N-(deoxyguanosin-8-yl)-IQ (dG-C8-IQ). Using a combination of 32P-postlabeling, HPLC, and nuclease P1 treatment, N-NO-IQ was shown to produce dG-C8-IQ under several different conditions. HOCl oxidation of N-NO-IQ increased dG-C8-IQ formation, and this was further increased as pH decreased from 7.4 to 5.5. Oxidation of N-NO-IQ formed a new adduct, adduct 2, while in the absence of oxidants adduct m was the major adduct. Adducts 2 and m were not formed by N-OH-IQ and not further identified. The results demonstrate that N-NO-IQ forms N-(deoxyguanosin-8-yl)-IQ, is genotoxic, is activated by conditions that mediate inflammatory responses, and is a possible cancer risk factor for individuals with colitis, inflammation of the colon.  相似文献   

15.
We have previously suggested that differences in cancer incidence between Polynesians (including Maoris and people from several Pacific islands) and Europeans in New Zealand may at least partially relate to differences in the species of food plants (fruits, vegetables and cereals) preferentially eaten by these groups. Twenty-five food plants that are typically eaten in different amounts by these two population groups were selected for detailed study. Antimutagenic properties of three extracts from each of the selected plants were investigated using a preincubation mutagenicity assay with Salmonella typhimurium strain TA1538 against the mutagenicity of the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). The data revealed strong antimutagenic properties in several of the food plants commonly eaten by Polynesians, especially rice, watercress, pawpaw, taro leaves, green banana and mango. Using the New Zealand food database, a number of nutrients and micronutrients with antimutagenic and anticarcinogenic potential were identified from the selected food plants. Some of these were tested for antimutagenic potential in parallel experiments to those done with the food plant extracts. Although some of these micronutrients are antimutagens against IQ, their concentrations in the food plants failed to explain the protection against mutagenicity found in the experiments with extracts of the food plants. Thus, other types of chemical, not identified in the database, must be leading to antimutagenesis. Possible active molecules include chlorophylls, carotenoids, flavonoids and coumarins, many of which are also known to be anticarcinogens. If human cancer data are to be interpreted in terms of cancer protection, these components need urgently to be quantified in food plants in the New Zealand diet, especially in those food plants eaten in large amounts by Polynesians.  相似文献   

16.
2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is a highly mutagenic heterocyclic amine found in cooked meats. The major DNA adduct of IQ is at the C8-position of dGuo. We have previously reported the incorporation of the C8-IQ adduct into oligonucleotides, namely, the G1-position of codon 12 of the N-ras oncogene sequence (G1G2T) and the G3-position of the NarI recognition sequence (G1G2CG3CC) (Elmquist et al. (2004) J. Am. Chem. Soc. 126, 11189-11201). Ultraviolet spectroscopy and circular dichroism studies indicated that the conformation of the adduct in the two oligonucleotides was different, and they were assigned as groove-bound and base-displaced intercalated, respectively. The conformation of the latter was subsequently confirmed through NMR and restrained molecular dynamics studies (Wang et al. (2006) J. Am. Chem. Soc. 128, 10085-10095). We report here the incorporation of the C8-IQ adduct into the G1- and G2-positions of the NarI sequence. A complete analysis of the UV, CD, and NMR chemical shift data for the IQ protons are consistent with the IQ adduct adopting a minor groove-bound conformation at the G1- and G2-positions of the NarI sequence. To further correlate the spectroscopic data with the adduct conformation, the C8-aminofluorene (AF) adduct of dGuo was also incorporated into the NarI sequence; previous NMR studies demonstrated that the AF-modified oligonucleotides were in a sequence-dependent conformational exchange between major groove-bound and base-displaced intercalated conformations. The spectroscopic data for the IQ- and AF-modified oligonucleotides are compared. The sequence-dependent conformational preferences are likely to play a key role in the repair and mutagenicity of C8-arylamine adducts.  相似文献   

17.
Capillary liquid chromatography/microelectrospray mass spectrometry has been applied to the detection of deoxyribonucleoside adducts of the food-derived mutagen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) from in vitro and in vivo sources. Constant neutral loss (CNL) and selective reaction monitoring (SRM) techniques with a triple-quadrupole mass spectrometer enabled sensitive and specific detection of IQ adducts in vitro and in animals. Detection of 1 adduct in 10(4) unmodified bases is achieved using CNL scanning detection, while the lower detection limits using SRM approach 1 adduct in 10(7) unmodified bases using 300 microg of DNA. The DNA adducts N-(deoxyguanosin-8-yl)-2-amino-3-methylimidazo[4, 5-f]quinoline (dG-C8-IQ) and 5-(deoxyguanosin-N(2)-yl)-2-amino-3-methylimidazo[4,5-f]quinoline (dG-N(2)-IQ) were detected in kidney tissues of chronically treated cynomolgus monkeys at levels and in proportions consistent with previously published (32)P-postlabeling data [Turesky, R. J., et al. (1996) Chem. Res. Toxicol. 9, 403-408]. Thus, capillary tandem LC/MS is a highly sensitive technique, which can be used to screen for DNA adducts in vivo.  相似文献   

18.
Suspensions of rat-liver cells metabolized 14C-labelled 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) to metabolites that were ethyl acetate extractable, water soluble or covalently bound to macromolecules. The major ethyl acetate extractable metabolite(s) had a retention time on the high-performance liquid chromatograph (HPLC), an ultraviolet spectrum and an Rf value on the thin-layer chromatograph that corresponded to those of the N-acetylated derivative. Relatively more of this metabolite was formed from MeIQ than from IQ. In contrast, IQ was more easily converted to water-soluble metabolites than was MeIQ. The amount of covalently bound metabolite(s) found with MeIQ as test substance was larger than that found with IQ. No major increase in the ethyl acetate-extractable metabolites was obtained after incubation of the aqueous phase with β-glucuronidase or aryl sulphatase in comparison with untreated controls. HPLC analysis showed that after acid hydrolysis of the water-soluble metabolites, about 55 and 20% of the hydrolysed metabolites had retention times that were the same as those of IQ and MeIQ, respectively. The ratio between covalently bound (activated) metabolites and water-soluble (detoxified) metabolites was larger for MeIQ than for IQ. From these data, one would expect MeIQ to be more potent than IQ as a liver carcinogen in male rats.  相似文献   

19.
J C Peleran  D Rao  G F Bories 《Toxicology》1987,43(2):193-199
The extractable unconjugated metabolites of 2-amino-3-methylimidazo-[4,5-f]quinoline (IQ) were identified in the urine of rats which had received a single dose of [3H]IQ by gavage. The dichloromethane and ethylacetate extracts prepared from the alkalinized 0-24 h urines were analyzed by radio-TLC and radio-HPLC. The 3 major HPLC fractions were submitted to DCI-MS analysis. Unchanged IQ, N-acetylIQ and 3-N-demethylIQ have been identified. Extractable unconjugated metabolites represent only about 0.85% of the total radioactivity excreted in the urine.  相似文献   

20.
Metabolic pathways of the mutagen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) remain incompletely characterized in humans. In this study, the metabolism of MeIQx was investigated in primary human hepatocytes. Six metabolites were characterized by UV and mass spectroscopy. Novel metabolites were additionally characterized by 1H NMR spectroscopy. The carcinogenic metabolite, 2-(hydroxyamino)-3,8-dimethylimidazo[4,5-f]quinoxaline, which is formed by cytochrome P450 1A2 (P450 1A2), was found to be transformed into the N(2)-glucuronide conjugate, N(2)-(beta-1-glucosiduronyl)-2-(hydroxyamino)-3,8-dimethylimidazo[4,5-f]quinoxaline. The phase II conjugates N(2)-(3,8-dimethylimidazo[4,5-f]quinoxalin-2-yl)sulfamic acid and N(2)-(beta-1-glucosiduronyl)-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, as well as the 7-oxo derivatives of MeIQx and N-desmethyl-MeIQx, 2-amino-3,8-dimethyl-6-hydro-7H-imidazo[4,5-f]quinoxalin-7-one (7-oxo-MeIQx), and 2-amino-6-hydro-8-methyl-7H-imidazo[4,5-f]quinoxalin-7-one (N-desmethyl-7-oxo-MeIQx), thought to be formed exclusively by the intestinal flora, were also identified. A novel metabolite was characterized as 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic acid (IQx-8-COOH), and it was the predominant metabolite formed in hepatocytes exposed to MeIQx at levels approaching human exposure. IQx-8-COOH formation is catalyzed by P450 1A2. This metabolite is a detoxication product and does not induce umuC gene expression in Salmonella typhimurium strain NM2009. IQx-8-COOH is also the principal oxidation product of MeIQx excreted in human urine [Turesky, R., et al. (1998) Chem. Res. Toxicol. 11, 217-225]. Thus, P450 1A2 is involved in both the metabolic activation and detoxication of this procarcinogen in humans. Analogous metabolism experiments were conducted with hepatocytes of untreated rats and rats pretreated with the P450 inducer 3-methylcholanthrene. Unlike human hepatocytes, the rat cell preparations did not produce IQx-8-COOH but catalyzed the formation of 2-amino-3,8-dimethyl-5-hydroxyimidazo[4,5-f]quinoxaline as a major P450-mediated detoxication product. In conclusion, our results provide evidence of a novel MeIQx metabolism pathway in humans through P450 1A2-mediated C(8)-oxidation of MeIQx to form IQx-8-COOH. This biotransformation pathway has not been detected in experimental animal species. Considerable interspecies differences exist in the metabolism of MeIQx by P450s, which may affect the biological activity of this mutagen and must be considered when assessing human health risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号