首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Moloney murine leukemia retrovirus-derived vector N2 was used to transfer the bacterial NeoR gene (conferring resistance to the neomycin analogue G418) into hematopoietic progenitor cells. Approximately 5% of day seven CFU-GM were resistant to 2,000 micrograms/ml G418, using a supernatant infection protocol in the absence of vector-producing cells. A greater proportion of CFU-GM colonies were recovered relative to uninfected controls as the stringency of selection was diminished. Enzyme activity was detected in drug-resistant colonies, confirming that the resistant colonies obtained after infection with N2 represented cells producing neomycin phosphotransferase. Activity in the CFU-GM colonies approached 50% of that of drug-resistant vector- producing cells on a per cell basis. To test the hypothesis that more rapidly cycling bone marrow cells would be more susceptible to vector infection, we treated progenitor cells obtained from cyclic hematopoietic (CH) dogs with the N2 vector. Despite the increased numbers of hematopoietic progenitor cells obtained from CH dogs, the proportion of G418-resistant CFU-GM did not increase over that obtained with N2-infected normal marrow. These results demonstrate that retroviral vectors can be used to transfer and express exogenous genes in canine hematopoietic progenitor cells.  相似文献   

2.
The present study aims at expressing a reporter gene in hematopoietic cells in vivo by introducing it into primitive hematopoietic cells with a 2-gene retroviral vector. Various constructs of retroviral vectors containing the human IL-2 receptor α chain gene (TAC) as the reporter and the neomycin phosphotransferase gene (neo) as a selectable marker were engineered, and the effectiveness of these vectors for expression of the reporter gene was evaluated after transfection into the packaging cell line GP+E86. It was found that the highest levels of reporter gene expression were attained with constructs ordered 5′ long terminal repeat (LTR)-TAC-internal promoterneo-3′ LTR. In experiments investigating the expression of a reporter gene in hematopoietic cells, we used the Escherichia coli β-galactosidase gene (lacZ) instead of TAC, because a very sensitive detection method was available for lacZ. For transduction of hematopoietic progenitors, packaging cell lines producing recombinant viruses were cultured in a Transwell hung into a Dexter-type bone marrow (BM) culture. The BM cells were selected with G418, and transferred into irradiated recipient mice. LacZ enzyme activity was detectable in the peripheral blood lymphocytes (PBL) of recipients taken 8 wk after reconstitution.  相似文献   

3.
Szilvassy  SJ; Cory  S 《Blood》1994,84(1):74-83
Efficient gene delivery to multipotential hematopoietic stem cells would greatly facilitate the development of effective gene therapy for certain hematopoietic disorders. We have recently described a rapid multiparameter sorting procedure for significantly enriching stem cells with competitive long-term lymphomyeloid repopulating ability (CRU) from 5-fluorouracil (5-FU)-treated mouse bone marrow. The sorted cells have now been tested as targets for retrovirus-mediated delivery of a marker gene, NeoR. They were cocultured for 4 days with fibroblasts producing a high titer of retrovirus in medium containing combinations of the hematopoietic growth factors interleukin-3 (IL-3), IL-6, c-kit ligand (KL), and leukemia inhibitory factor (LIF) and then injected into lethally irradiated recipients, together with sufficient "compromised" bone marrow cells to provide short-term support. Over 80% of the transplanted mice displayed high levels (> or = 20%) of donor- derived leukocytes when analyzed 4 to 6 months later. Proviral DNA was detected in 87% of these animals and, in half of them, the majority of the hematopoietic cells were marked. Thus, infection of the stem cells was most effective. The tissue and cellular distribution of greater than 100 unique clones in 55 mice showed that most sorted stem cells had lymphoid as well as myeloid repopulating potential. Secondary transplantation provided strong evidence for infection of very primitive stem cells because, in several instances, different secondary recipients displayed in their marrow, spleen, thymus and day 14 spleen colony-forming cells the same proviral integration pattern as the primary recipient. Neither primary engraftment nor marking efficiency varied for stem cells cultured in IL-3 + IL-6, IL-3 + IL-6 + KL, IL-3 + IL-6 + LIF, or all four factors, but those cultured in IL-3 + IL-6 + LIF appeared to have lower secondary engraftment potential. Provirus expression was detected in 72% of the strongly marked mice, albeit often at low levels. Highly efficient retroviral marking of purified lymphomyeloid repopulating stem cells should enhance studies of stem cell biology and facilitate analysis of genes controlling hematopoietic differentiation and transformation.  相似文献   

4.
OBJECTIVE: Current protocols of retroviral gene transfer into murine hematopoietic stem cells (HSC) result in variable gene transfer efficiency and involve various procedures that are not clinically applicable. We developed and evaluated a reliable transduction protocol that is more related to clinical methods. MATERIALS AND METHODS: HSC were enriched from steady-state bone marrow by magnetic cell sorting (lineage depletion) and cultured in defined serum-free medium containing an improved growth factor cocktail (Flt3-ligand, stem cell factor, interleukin-3, interleukin-11). Cell-free ecotropic retroviral vector particles, generated by transient transfection of human 293T-based packaging cells, were preloaded at defined titers on CH296-coated tissue culture plates, thus largely avoiding serum contamination. These conditions were evaluated in 17 experiments involving 29 transduction cultures and 185 recipient mice. RESULTS: After two rounds of infection, the gene marking rates in cultured mononuclear cells and stem/progenitor cells (Lin(-)c-Kit(+)) were 15 to 85% (53.7%+/-21.7%, n=23) and 30 to 95% (69.8%+/-20.4%, n=17), respectively. Even after one round of infection, gene transfer was efficient (31.2%+/-15.1%, n=12). Using identical conditions, gene transfer rates were highly reproducible. Average transgene expression in reconstituted animals correlated well with pretransplant data. Using a moderate multiplicity of infection, the majority of transduced cells carried less than three transgene copies. In addition, coinfection was possible to establish two different vectors in single cells. CONCLUSION: The protocol described here achieves efficient retroviral transduction of murine bone marrow repopulating cells with a defined gene dosage, largely avoiding procedures that decrease stem cell output and repopulating capacity. This protocol may help to improve the predictive value of preclinical efficiency/toxicity studies for gene therapeutic interventions and basic research.  相似文献   

5.
Acute promyelocytic leukemia (APL) is associated with chromosomal translocations resulting in fusion proteins of the retinoic acid receptor (RAR). Here, we report a novel murine model system for APL, based on the transduction of purified murine hematopoietic progenitors (lin(-)) using high-titer retroviral vectors encoding promyelocytic leukemia-RAR (PML-RAR), and the green fluorescent protein (GFP) as a marker. PML-RAR-expressing lin(-) cells were impaired in their ability to undergo terminal myeloid differentiation and showed increased proliferative potential in vitro. Inoculation of transduced lin(-) cells into syngeneic, irradiated mice resulted in the development of retinoic acid-sensitive promyelocytic leukemias at high frequency (> 80%) and short latency (approximately 4 months). Morphologic and immunophenotypic analysis revealed no gross abnormalities of the preleukemic bone marrows. However, hematopoietic progenitors from PML-RAR preleukemic mice showed a severe impairment in their ability to undergo myeloid differentiation in vitro. This result, together with the monoclonality or oligoclonality of the leukemic blasts, supports a "multiple-hit" model, where the fusion protein causes a "preleukemic" phase, and leukemia occurs after additional genetic lesions. This model system faithfully reproduces the main characteristics of human APL and represents a versatile tool for the in vitro and in vivo study of mechanisms of leukemogenesis and the design of protocols for differentiation treatment.  相似文献   

6.
Liu B  Daviau J  Nichols CN  Strayer DS 《Blood》2005,106(8):2655-2662
Hematopoietic stem cell (HSC) gene transfer has been attempted almost entirely ex vivo and has been limited by cytokine-induced loss of self-renewal capacity and transplantation-related defects in homing and engraftment. Here, we attempted to circumvent such limitations by injecting vectors directly into the bone marrow (BM) to transduce HSCs in their native environment. Simian virus 40 (SV40)-derived gene delivery vectors were used because they transduce resting CD34+ cells very efficiently. Rats received SV-(Nef-FLAG), carrying FLAG marker epitope--or a control recombinant SV40 (rSV40)--directly into both femoral marrow cavities. Intracellular transgene expression by peripheral blood (PB) or BM cells was detected by cytofluorimetry. An average of 5.3% PB leukocytes expressed FLAG for the entire study--56 weeks. Transgene expression was sustained in multiple cell lineages, including granulocytes (average, 3.3% of leukocytes, 20.4% of granulocytes), CD3+ T lymphocytes (average, 0.53% of leukocytes, 1% of total T cells), and CD45R+ B lymphocytes, indicating gene transfer to long-lived progenitor cells with multilineage capacity. An average of 15% of femoral marrow cells expressed FLAG up to 16.5 months after transduction. Thus, direct intramarrow administration of rSV40s yields efficient gene transfer to rat BM progenitor cells and may be worthy of further investigation.  相似文献   

7.
Transduction and expression of a transgene in hematopoietic stem cells with retroviral vectors still remain major challenges for gene therapy in blood disorders. Use of an easily detectable gene marker, such as the nlsLacZ, at the laboratory and clinical levels, provides a powerful approach of these two combined problems.  相似文献   

8.
Transduction and expression of a transgene in hematopoietic stem cells with retroviral vectors still remain major challenges for gene therapy in blood disorders. Use of an easily detectable gene marker, such as the nlsLacZ, at the laboratory and clinical levels, provides a powerful approach of these two combined problems.  相似文献   

9.
Side effects of retroviral gene transfer into hematopoietic stem cells   总被引:18,自引:19,他引:18  
Baum C  Düllmann J  Li Z  Fehse B  Meyer J  Williams DA  von Kalle C 《Blood》2003,101(6):2099-2114
Recent conceptual and technical improvements have resulted in clinically meaningful levels of gene transfer into repopulating hematopoietic stem cells. At the same time, evidence is accumulating that gene therapy may induce several kinds of unexpected side effects, based on preclinical and clinical data. To assess the therapeutic potential of genetic interventions in hematopoietic cells, it will be important to derive a classification of side effects, to obtain insights into their underlying mechanisms, and to use rigorous statistical approaches in comparing data. We here review side effects related to target cell manipulation; vector production; transgene insertion and expression; selection procedures for transgenic cells; and immune surveillance. We also address some inherent differences between hematopoiesis in the most commonly used animal model, the laboratory mouse, and in humans. It is our intention to emphasize the need for a critical and hypothesis-driven analysis of "transgene toxicology," in order to improve safety, efficiency, and prognosis for the yet small but expanding group of patients that could benefit from gene therapy.  相似文献   

10.
The retroviral vector N2, which is derived from the Moloney murine leukemia retrovirus, was used to transfer the bacterial NeoR gene (conferring resistance to the neomycin analogue G418) into hematopoietic progenitor cells from fetal, neonatal, and adult dogs and cats. Infection of canine and feline bone marrow cells with the N2 vector resulted in resistance of granulocyte-macrophage colony-forming units (CFU-GM) to G418. Approximately 2%-4% of fetal liver, fetal bone marrow, and adult bone marrow day-7 CFU-GM were resistant to 1.75 mg/ml G418, a dose toxic to cells not expressing the NeoR gene, after infection with the N2 retrovirus. In sharp contrast to the low rate of infectivity of both fetal and adult marrow samples, the mean +/- SD of G418-resistant CFU-GM was 11.7% +/- 14.1% and 14.0% +/- 18.1% for neonatal dog and cat marrow samples, respectively. The neomycin phosphotransferase enzyme activity was detected in G418-resistant CFU-GM, confirming that G418-resistant CFU-GM expressed the NeoR gene. The increased efficiency of retroviral vector-mediated gene transfer into neonatal hematopoietic progenitor cells was not due to an increased fraction of actively dividing cells, as determined by tritiated thymidine suicide. Understanding the basis for increased gene transfer into neonatal hematopoietic progenitor cells may be helpful in designing effective retroviral vectors/gene transfer protocols for gene therapy.  相似文献   

11.
We present a general strategy for the efficient insertion of recombinant retroviral vector DNA into the mouse germ line via infection of preimplantation mouse embryos. Transgenic mice were generated that harbor a replication-competent recombinant retrovirus (delta Mo + Py M-MuLV) that lacks the Moloney murine leukemia virus (M-MuLV)-type enhancer sequence in the long terminal repeat (LTR). Instead, the LTR contains an enhancer element that permits polyoma virus F101 to grow in undifferentiated F9 embryonal carcinoma cells. Expression studies in different tissues of animals transgenic for delta Mo + Py M-MuLV indicate possibilities to target and modulate expression of retroviral recombinants in mice via their LTR enhancer sequences. In addition, 16 transgenic mice were generated that harbor proviral DNA of a defective recombinant retrovirus carrying a mutant dihydrofolate reductase gene.  相似文献   

12.
Human bone marrow mononuclear cells (BMMNCs) and enriched CD34 positive (CD34+) cells were transduced with adenovirus vectors encoding Escherichia coli beta-galactosidase gene. Tranductions were carried out by 24-hour coincubation with adenovirus vectors at different multiplicities of infections (moi). Efficacy of gene transfer into BM cells and expression of the gene product (ie, beta-galactosidase) were studied using X-Gal histochemical staining and flow cytometric analysis. X-Gal staining demonstrated that the percentage of positive cells at mois of 5 to 500 was 3.4% to 34.5% for BMMNCs and 6.0% to 20.0% for enriched CD34+ cells. Similar results (1.5% to 35.7% for BMMNCs and 5.4% to 24.2% for enriched CD34+ cells) were obtained with flow cytometric analysis using fluorescein di-beta-D-galactopyranoside (FDG). Multicolor flow cytometry analysis, which included FDG, demonstrated that BM progenitors (CD34+ or CD34+CD38-), T cells (CD2+), B cells (CD19+), natural killer cells (CD56+), granulocytes, and monocytes all expressed the adenovirus transgene. To ascertain the effects of adenovirus vectors on normal BM progenitors, the numbers of colony forming unit-granulocyte/macrophage (CFU-GM), burst-forming unit- erythrocyte (BFU-E), and high-proliferative potential-colony-forming cells (HPP-CFC) after 24-hour coincubation with adenovirus vectors were determined. When BMMNCs or enriched CD34+ cells were incubated with adenovirus vectors at mois of 5 and 50, no significant differences in the numbers of CFU-GM, BFU-E, and HPP-CFC were observed compared with the uninfected control cells. However, the numbers of CFU-GM were significantly (P < .01) decreased when BMMNCs or enriched CD34+ cells were incubated with adenovirus vectors at a moi of 500, compared with the uninfected control cells. The adenovirus infected cells, purified by cell sorting for FDG expression, were capable of growing in culture and gave rise to various colonies (ie, CFU-GM, BFU-E, and HPP-CFC). These data indicate that recombinant adenovirus vectors can be used to transfer genes to human BM hematopoietic cells with expression of the exogenous gene at a high transduction efficiency.  相似文献   

13.
14.
Genetically modified lymphocytes have been successfully used for correction of ADA deficiency in children and in controlling graft-versus-host disease (GvHD) after allogeneic bone marrow transplantation. Low transduction efficiencies are, however, limiting for gene therapeutic strategies based on lymphocytes. In this study we compared protocols for highly efficient gene transfer into human T cells using retroviral vector-containing supernatant. We showed that infection of both human primary T cells and CD4+ Jurkat cells is most efficient on the matrix component fibronectin. Transduction was carried out with a retroviral vector encoding both the human intracytoplasmatically truncated low-affinity nerve growth factor receptor (ΔLNGFR) as a gene transfer marker and the Herpes simplex virus thymidine kinase for negative selection. Based on ΔLNGFR expression genetically modified cells were enriched to near purity by magnetic cell sorting (MACS). Enriched cells could be shown to be highly sensitive to ganciclovir.  相似文献   

15.
Y Dror  M H Freedman 《Blood》1999,94(9):3048-3054
Shwachman-Diamond syndrome (SD), an inherited disorder with varying cytopenias and a marked tendency for malignant myeloid transformation, is an important model for understanding genetic determinants in hematopoiesis. To define the basis for the faulty hematopoietic function, 13 patients with SD (2 of whom had myelodysplasia with a clonal cytogenetic abnormality) and 11 healthy marrow donors were studied. Patients with SD had significantly lower numbers of CD34(+) cells on bone marrow aspirates. SD CD34(+) cells plated directly in standard clonogenic assays showed markedly impaired colony production potential, underscoring an intrinsically aberrant progenitor population. To assess marrow stromal function, long-term marrow stromal cell cultures (LTCs) were established. Normal marrow CD34(+) cells were plated over either SD stroma (N/SD) or normal stroma (N/N); SD CD34(+) cells were plated over either SD stroma (SD/SD) or normal stroma (SD/N). Nonadherent cells harvested weekly from N/SD LTCs were strikingly reduced compared with N/N LTCs; numbers of granulocyte-monocyte colony-forming units (CFU-GM) derived from N/SD nonadherent cells were also lower. SD/N showed improved production of nonadherent cells and CFU-GM colonies compared with SD/SD, but much less than N/N. Stem-cell and stromal properties from the 2 patients with SD and myelodysplasia did not differ discernibly from SD patients without myelodysplasia. We conclude that in addition to a stem-cell defect, patients with SD have also a serious, generalized marrow dysfunction with an abnormal bone marrow stroma in terms of its ability to support and maintain hematopoiesis. This dual defect exists in SD with and without myelodysplasia.  相似文献   

16.
Efficient gene transfer into human hepatocytes by baculovirus vectors.   总被引:25,自引:0,他引:25       下载免费PDF全文
Viral vectors are the most efficient tools for gene delivery, and the search for tissue-specific infecting viruses is important for the development of in vivo gene therapy strategies. The baculovirus Autographa californica nuclear polyhedrosis virus is widely used as a vector for expression of foreign genes in insect cells, and its host specificity is supposed to be restricted to arthropods. Here we demonstrate that recombinant A. californica nuclear polyhedrosis virus is efficiently taken up by human hepatocytes via an endosomal pathway. High-level reporter gene expression from heterologous promoters was observed in human and rabbit hepatocytes in vitro. Mouse hepatocytes and some other epithelial cell types are targeted at a considerably lower rate. The efficiency of gene transfer by baculovirus considerably exceeds that obtained by calcium phosphate or lipid transfection. These properties of baculovirus suggest a use for it as a vector for liver-directed gene transfer but highlight a potential risk in handling certain recombinant baculoviruses.  相似文献   

17.
We investigated whether gene transfer into hematopoietic cells could be achieved by direct injection of retroviral vector supernatant into the bone marrow space of newborn sheep.Six sheep (5 weeks old) were injected bilaterally with either 1 mL of G1nBgSvNa8.1 vector supernatant (titer: 1 x 10(7)) in each hip (n = 5) or with 3 mL of the same vector preparation/hip (n = 1). In addition, one 3-month-old sheep was injected unilaterally with 1 mL of the same vector preparation. Blood and marrow of these animals were analyzed for the transgene before injection and at intervals thereafter.At 1 week postinjection, an average of 11.6% of the lymphocytes and 25.5% of the granulocytes/monocytes in the marrow, and an average of 0.9% of the lymphocytes and 1.8% of the granulocytes/monocytes in the blood contained and expressed the LacZ gene. The presence/expression of the transgene has persisted for at least 13 months within the blood and bone marrow of these animals.These findings demonstrate that the direct injection of small volumes of high-titer retroviral supernatant into the bone marrow of newborn sheep results in transduction of hematopoietic cells that persists for at least 13 months postinjection.  相似文献   

18.
Hematopoietic stem cell gene transfer using integrating vectors has been actively investigated for more than two decades as a prospective treatment for several congenital and acquired human diseases, and retroviral vectors encoding potentially therapeutic genes have been the most rigorously pursued. Early trials in humans testing retroviral vectors in several clinical settings supported the safety of this approach, and recent studies have demonstrated remarkable efficacy in children with severe combined immunodeficiency. The anticipated success established the therapeutic potential of hematopoietic stem cell gene transfer, but the subsequent development of leukemia in two treated children has re-emphasized the risks related to gene therapy. In this review, we describe this complication, discuss the leukemogenic risk of integrating retroviral vectors, and propose strategies to decrease the likelihood of its occurrence.  相似文献   

19.
OBJECTIVE: To optimize retroviral gene transfer into primary human natural killer (NK) cells. MATERIALS AND METHODS: NK cells from healthy donors were expanded ex vivo for a period of 21 days. Retroviral transductions were carried out by replacing culture media with retrovirus-containing supernatant during 2-hour incubations on days 3, 4, 5, 6, 10, 15, or 20. In some experiments, NK cells were transduced on 2 consecutive days (days 5 and 6). Green fluorescent protein served as a marker for detection of transduced cells. RESULTS: NK cells showed a median of 27.2% transduction efficiency after a single transduction round (transduction on day 5) and a median of 47.1% transduction efficiency after two rounds of transduction (transduction on days 5 and 6), 24 hours after exposure to retrovirus-containing supernatants. On day 21 after initial culture, 51.9% of NK cells were transduced after a single transduction round (transduction on day 5) and 75.4% after two rounds of transduction (transduction on days 5 and 6). Gene transfer did not change the function or phenotype of NK cells as determined by phenotypical analysis, nor did the proliferative ability or cytotoxic function change. CONCLUSION: The results show that NK cells can successfully be transduced with retroviral vectors, without any detectable changes in phenotype or function. This may open up new possibilities in the studies of NK cell biology and the development of NK cells for immunotherapy regimens.  相似文献   

20.
BACKGROUND/AIMS: Lentivirus-mediated ex vivo gene therapy is becoming a promising approach for the treatment of liver metabolic disorders. However, the feasibility of this approach needs to be studied in large animal models. The purpose of this study was to evaluate the efficacy of ex vivo gene transfer into Macaca hepatocytes with two different HIV-1 derived lentiviral vectors. METHODS: A self-inactivating lentivector was constructed to express GFP under the control of the hepatic apolipoprotein A-II promoter. Freshly isolated and thawed hepatocytes were transduced in suspension with lentiviral vectors expressing the GFP gene under the control of a ubiquitous promoter (EF1-alpha) and the apolipoprotein A-II promoter. Transduced thawed hepatocytes were transplanted into the spleen of newborn mice, and livers analyzed 4 and 12 weeks after transplantation. RESULTS: We show that lentivectors are efficient in transducing hepatocytes in suspension either freshly isolated or cryopreserved. We also show that thawed and transduced hepatocytes engrafted and participated in liver growth after transplantation into newborn mice and that the apolipoprotein A-II promoter is functional. CONCLUSIONS: Our data show that transplantation of transduced hepatocytes into monkeys should allow to evaluate the fate of transplanted cells and transgene expression in a pre-clinical model of ex vivo gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号